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CONDUCIVE INTEGRAL DOMAINS AS PULLBACKS 

valentina Barucci * , David E. Dobbs ** , Marco Fontana * 

This article presents a characterization of conducive (integral) 
domains as the pullhacks in certain types of Cartesian squares in.the 
category of commutative rings. Such squares behave well with respect 
to (semi)normalization, thus permitting us to recover the recent cha- 
racterization by Dobbs-Fedder of seminormal conducive domains. The 
conducive domains satisfying various finiteness conditions (Noetheri- 
an, Archimedean, accp)are characterized by identifying suitable res- 
trictious on the data in the corresponding Cartesian squares. Various 
necessary or sufficient conditions are given for Mori conducive doma- 
ins. Consequently, one has examples of several (acep non-Mori; Mori 
non-Noetherian) conducive domains. 

1. INTRODUCTION 

A conducive domain is a (commutative unitary integral~ domain R, 

with quotient field F, such that for every overring T of R, R_CT ~F, 

the conductor (R:T) = [xE FIxTC__R } is nonzero. This type of integral 

domain was explicitly introduced and intensively studied in a recent 

paper by D. Dobbs and R. Fedder [6], who motivated their investigation 

by noticing that all domains of (D+~)-type (cf. Gilmer [9; Appendix 2, 
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p. 558]), all valuation domains and, more generallyj all pseudo-valua- 

tion domains (for short, PVD; cf. Hedstrom-Houston [14]) satisfy the 

previous property. By the way, the notion of conducive domain was also 

implicitly considered by E. Bastida and R. Gilmer [3] in a passage of 

a paper, dedicated to (D+~-domains, in which they study the relation 

with the domains such that every nonzero ideal is divisorial {cf. W. 

Heinzer [15]). As a matter of fact, they proved the following: 

PROPOSITION 0. (Bastida-Gilmer [3, Th. 4.5]) Let R be an integral 

domain with quotient field F. The following statements a~e equivalent: 

(i) R is a conducive domain; 

(ii) Every R-submodule E of F such that R CE~F is a fractional 

ideal of R; 

(iii) For every valuation overring v of R such that R~V~F, the 

conducEo r (R:V) i 0; 

(iv) Either R = F or there exists a valuation overring v of R 

such that RCVCF and (R:V) M 0. [] 
- 

We seize the opportunity to recall that the equivalences (i) 

~(iii) ~ (iv), among other interesting characterizations of conducive 

domains, were also proved in [6~ Lemma 2.0 and Th. 3.2]. 

Although the starting point for considering conducive domains was 

founded on several pullback-type examples, Cartesian squares' tech- 

niques did not play a leading r61e in the work by Dobbs and Fedder. 

The aim of the present paper is to show how the pullback point of view 

(cf. [7]) can be used not only to recover rather easily the main re- 

sults contained in [6], but also to deepen our knowledge of several 

important classes of conducive domains. In addition to a constructive 

charaGterization of general conducive domains (in Theorem 11, the main 

new results of this paper are three theorems each of which gives a 

complete description of one of the following classes of conducive do- 

mains satisfying various finiteness conditions on their ideals: 

Noetherian conducive domains (cf. Theorem 6]; Archimedean conducive 
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domains (cf. Theorem I0) and accp conducive domains (cf. Theorem 12). 

For conducive Mori domains, we give some necessary or sufficient cri- 

teria (cf. Propositions 16 and 19). (The definitions of Archimedean, 

accp and Mori domains will be recalled later.) in particular D these re 

sults allow one to construct explicitly new examples of Archimedean 

non-accp, accp non-Mori, Mori non-Noetherian and Noetherian domains 

in the conducive (integrally closed or not) case. 

Throughout, all rings are assumed commutative with unit and all 

ring-homomorphisms are assumed unital. Given a domain R, we denote 

by C(R) the complete integral closure of R, by U(R) the set of all the 

units of R. Any unexplained material is standard as in [4 ] and [10]. 

2. RESULTS 

We start with a theorem which gives a pullback description of a 

general conducive domain. From this result and some general facts 

about pullbacks (cf., for instance, [ 7, Th. 1.4]) we can recover in 

particular Theorem 2.4 of [6]. Moreover, we notice that the following 

theorem provides a suitable extension (to the non-seminormal case) of 

Proposition 2.12 of [6]. 

THEOREM 1. Let R be an integral domain which is not a field. Then, R 

is a conducive domain if and only if there exists 

(I) a nontrivial valuation overring (v,m) of R; 

(2) an m-primary ideal b of v; 

(3) an injective ring. homomorphism u:Ae--~v/b n~ (B is a O-di- 

mensional quasilocal ring); 

such that the following diagram is a Cartesian square: 

R ~A 

PROOF. We identify,for the sake of simplicity, R with its image in V. 
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Then, the sufficiency follows immediately from the fact that (R:V)Db~0 

(cf.[7, 1.4 ] and Prop. 0). Conversely, take any non trivial~aluation o 

vetting W of a conducive domain R. Then, by hypothesis, (R:w)n~ t" g~O. 

not. 
We consider now the prime ideal radw(~)= q . Let V = Wq, Hence: 

def. 
0 ~ 9.q = (R:W).(W:V) C ~ (R:V} c(R:W~C_g; 

thus q = red W (@) Nradw(q) = radw(@- q)_qradW({) C q. Therefore radw({)= 

= q. Moreover, radv(~) = qWq ---- m (=q); thus ~ is m-primary. Consider, 

now, the following pullback diagram: 

R - - > >  R/ 

V - -  >> V/~ ---> (VI~)red = V/m 

and take b = ~ and, as u, take the canonical inclusion R/~c~V/~o O 

RF~MARK 2. We notice that a pullback representation as in (*) of a con- 

ducive domain is very far from unique, in general. For instance, if 

R is a (pseudo-)valuation domain of dimension n>2, then for each non- 

zero non-maximal prime ideal p of R 

R > R/p = A 

v= N ~ > N/pR~ = B 

is a pullback representation of R as (*) in Theorem I, with b =pRp 

Moreover, even if we fix the valuation overring (V,m) in (~) then, in 

general, there are still several m-primary ideals verifying conditions 

(2) and (3) of the previous Theorem. For instance, if ~ leads to a 

Cartesian square of type (*), then so does bn for every n > I . 

The previous Theorem allows us to give easily a pullback descrip- 

tion of the normalization and seminormalization (in the sense of Tie- 

verso [19~) of a conducive domain. For this purpose, we fix some nota- 

tion. Let R be a conducive domain which is not a field, and let (*) 

be (one of) its pullback description(s) (as in Theorem I). Let A' be 

the integral closure of A ~nside B and let A + be the seminormalization 

of A inside A'. Since m is the radical of b, it is easy to see that 

(A+)re d and (A')re d are integral domains contained in the field 
Are d ' 
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= Bre d V/ m s which we will denote by K. We notice also that (A')re d co- 

incides with (Are d )' , which denotes the inbeqral closure of. Ared in- 

side K (cf. [13; Prop. 6.5.5(i), p. 146]). Moreover. (A+)re d coincides 

with (Ared)+, which is by definition the seminormalization of Are d in 

side (Ared)' , as a direct calculation shows. Therefore, the notations 

+ and A' are not ambiguous. 
Ared red 

COROLLARY 3. Let R be a conducive domain, but not a field, and let 

(~I be(one of) its pullback description(s). Then, with the notation ~s 

above, the normalization R' (resp. the seminormalizationR + ) of R is 

a conducive domain with the following pullback description: 
+ + 

R' .... >> A' (resp., R - - ~ >  A 

I 1 red 1 I red 

V >> K V - - ~ >  K ). 

PROOF. without loss of generality, R ~ V (lest A = B, in which case 

the assertions are obvious). It is easy to see that R' (resp., R +) is 

isomorphic to Vx A' (resp. Vx A+]. Moreover, if ~ = (R:V) then by 
B ' B 

integrality we deduce that m = radv({)C R'. It is also easy to see 

that S = radR, ~) C R + (cf. [I0, Th. 1.1 ]). As a consequence, we have 

that A' (resp. A+~ is isomorphic toBx A' (resp. BXKA~ed). The con 
' K red ' -- 

clusion follows imJnediately, since a composite of Cartesian squares 

is itself Cartesian. [] 

An easy consequence of Corollary 3 and Theorem I is the following 

pullback description of normal or seminormal conducive domains. 

COROLLARY 4. Let R be an integral domain, but not a field. Then, R ,is 

an integrally closed (resp., seminormal) conducive domain if and only 

if ~here exists: (I) a non trivial valuation overring (V,m,K) of R; 

(2) an injective ring homomorphism u: D~K with D inte.qrally closed in 

K (resp.j seminormal in its integral closure in K); such that the fol- 

lowing.7: 
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R ->> D 

V - - - - - - - - - - - - ~ >  K 

is a Cartesian square. D 

We notice that the previous Corollary, in the seminormal case, is 

equivalent to Proposition 2.12 of [ 6 ] (as a matter of fact, one pseu- 

dovaluation overring of R of the type discussed in Proposition 2.12 of 

[6] is the pullback of V-->>K with the inclusion of the quotient field 

of D inside K). Moreover, it is interesting to see how the previous 

description permits us to classify easily several kinds of conducive 

domains. 

COROLLARY 5. Let R be a conducive integral domain, but not a field. 

Then, 

(al R /s completely integrally closed if and only if R is a rank 

I valuation domain; 

(b) R is a Krull domain if and only if R is a rank I discrete 

valuation ring; 

(c~ R is a Prefer domain if and only if, with notation of corol 

lary 3, D is a Prefer domain with K as field of quotients. 

PROOF. (a} : By [ 9, Lemma 26.5 ], in the notation of Corollary 3, it is 

enough to notice that now C(R} = C(V), because (R:V) ~ 0. (b): an 

easy consequence of (a), because any Krull domain is completely in- 

tegrally closed, (c} follows from [7, Th. 2.4]. D 

Our aim is now to give a characterization of the Noetherian con- 

ducive domains, for which only a necessary condition was known earlier 

(cf. [6, Cot. 2.7]}. 

THEOREM 6. Let R be an integral domain which is not a field. Then, 

R is a Noetherian conducive domain if and only if the~e exists a u- 

nique pullback representation of R as in ( * )  ~, in which v is a rank 1 
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discrete valuation domain, b = (R:V) and u is a finite homomorphism. 

PROOF. For the "if" part, we remark that the. inclusion R c-~V is finit~ 

because u is finite (cf. [7, Prop. 1.8])) then by Eakin-Naqata Theorem 

we conclude that R is Noetherian. Moreover, Theorem I shows that R is 

conducive. Conversely, for the "only if'% part, by Theorem I, we know 

that R can be obtained as a pullback as in (*). We only need to prove 

that V must be Noetherian and unique and that u must be finite. We 

notice that the complete integral closure (= integral closure, since R 

is Noetherian) C(R)= of R must coincide with the complete integral 

closure C(V) of V (cf. also Cor. 5(a)), i.e. C(V) = C(R) = R'~ V. 

Because V C C(V) always holds, we have that R' = V, thus V is uniquely 

determined. Moreover, V must be a Krull domain, by Mori-Nagata theorem 

and, thus, a rank I discrete valuation domain (cf. Cor. 5(b)). As 

RC-~V is integral, R is l-dimensional; by .Krull-Akizuki theorem [4; 

Ch. 7, Prop. 5, p. 30] we deduce that Re--~V--mV/~ is finite. In par- 

ticular, u: R/~c--~V/~ is finite. [] 

From the previous result (and its proof) we deduce immediately: 

COROLLARY 7. Let R be an integral domain. The following statements are 

equivalent: 

(i) R is a Noetherian conducive domain; 

(ii)every overring of R is a Noetherian conducive domain. 

Moreover, if ~ is not a fie~d and the above conditions hold, 

then R (and all its proper overrings) is l-dimensional local domain. 

The next example constructs some nontrivial Noethe~ian conducive 

domains. 

EXAMPLE 8. Let k C--~ K b~ a finite extension of distinct fields, and 

let X be an analytic indeterminate over K. Let V = K[[X]]=K+~ where 

i 
M = XV. We consider R = k+~={ E a X la Ek,~=. - - 0 ai6K for 

i>O i v "'-an- I- ' 

i~n}, for n~2. Then, clearly, the integral closure R' of R coincides 
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w~h V and the 

obtained by the following pullback diagrams: 

n 

seminormalization R + is equal to k+~(. These rings are 

R >> R~ =k 

R+ >> R+/~ n >> R+/.~.~= k 

V >> V/M >> V/ ~= K 

By the criterion in Theorem 6, we thus see that R and R + are 

Noetherian conducive domains, with R CR+ CR' = V. Moreover, R is nei- 

ther a PVD nor a domain of nontrivial (D+A4)-type, although R + is a 

PVD. The latter fact is not surprising because: 

REMARK 9. A seminormal Noetherian conducive domain R is always a PVD 

and its integral closure is a discrete valuation domain, by Corollary 

4 and Theorem 6. We notice also that the above mentioned results give 

back, in particular, Corollary 2.9 of [6]. 

As announced, our goal now is to give some characterization theo- 

rems, in the same spirit as in the Noetherian case, for other distin- 

guished classes of conducive domains verifying finite type conditions 

on their ideals. 

We recall that an integral domain R is Archimedean if • rnR = 0, 
n>0 

m 

for every non unit r6 R (cf.[18]). Completely integrally closed or l- 

dimensional or Noetherian integral domains are the most natural exam- 

ples of Archimedean domains. The following result gives a constructive 

characterization of Archimedean conducive domains, in the spirit of 

Theorem 5. 

THEOREM 10. Let R be an integral domain, but not a field. Then, R is an 

Archimedean conducive domain if and only if there exists a unique 

pullback representation of R as in (*) with dim(V)=1, b ={R:V) and A a 

O-dimensional quasilocal ring. 

PROOF. "Only if" part: Let (*) be a pullback representation of R (cf. 
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Theorem 1).By [2, Th. 2.2 ], we know that R is quasilocal with dim(R)=1; 

hence A is quasilocal and dim(A)=0. Since dim(R) = dim(V) + dim(A), 

[7, Th. 1.4(e) ], we deduce that dim (V) = I. Moreover, since C(R)=C(V) 

coincides with V because dim(V)=1 (cf. [ 9, Th. 23.4 ]) , it is clear 

that V is uniquely determined. "If" Dart: By general pullback-theo- 

retical considerations [7, Th. 1.4(e) ], R is a l-dimensional quasi- 

local domain and it is conducive by Theorem I. Finally, we notice that 

U(C(R)) N R = U(V) NR = (V\~ NR = Rk(m~R) = U(R). By the criterion 

in [2, Prop. 2.1], we conclude that R is Archimedean. [] 

COROLLARY 11. The integral closure and the seminormalization of an 

Archimedean conducive domain is an Archimedean (conduciv~ PVD. 

PROOF. The statement follows from Theorem 10 and Corollary 3, after 

noticing that the ring A in the (unique) pullback representation (*) 

of the Archimedean conducive domain R is such that Are d is a field 

and, hence, A' and A + are fields too. [] 
red red 

We recall that an accp domain (or 1-acc domain) is an integral 

domain for which the ascending :hain condition holds for its integral 

principal ideals. 

THEOREM 12. Let R be an integral domain but not a field. Then, R is an 

accp conducive domain if and only if there exists a unique pullback 

representation of R as in (*) , in which v is a rank I discrete valua- 

tion domain, b = (R-~V) and A a o-dimensional (quasilocal) ring. 

PROOF. "Only if" part: Let (*) be a pullback representation of R (cf. 

Theorem I). It is easy to see that an accp domain is Archimedean; so 

we know, by Theorem 10, that V is unique with dim(V) = I and A is a 0- 

dimensional quasilocal ring. It is enough to show that accp holds in 

V. Let {x V} be an ascending chain of principal ideals of V with 
n n 6 N  

Xn+1 vn = x n, for each n6W. We can suppose that, for each n6N, Xn6 R" 

(otherwise, take 0 ~ b 6(R:V) = 5 and consider the chain {bXnV}n6 N). 

If the chain {XnV}n6 W is not stationaryj we can suppose it strictly 
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ascending; hence v 6 m~ for n = 1,2,..., where ~I is the maximal ideal 
n 

of V. Let U be the ideal of V generated by the elements vl,v2= )v 
n 

We have ~C_ m = /b. By a well known property of valuation domains (cf. 

k C [I0~ Th. 17.1.(5) ]), there exists an integer k >0 such thatu b. 

k 
Hence U ~ R ,  t h a t  i s  vk 6 R ,  f o r  each  n {n = 1 , 2 , . . . ) .  Now, c o n s i d e r  

n 
k k k k 

the chain of principal ideals of R= {x R }neR ; sinte x ~ = x and 
n n+1 n n 

k 
v 6R (n = 1,2,...), this is an ascending chain of principal ideals 
n 

of R. Thus ,  by h y p o t h e s i s ,  i t  i s  s t a t i o n a r y ,  i . e .  t h e r e  e x i s t s  no>  1 

v k 6 such that, for n >--no, we have U(RI=R \ (mNR). But, we know that 
n 

k k 
v 6 m and v 6R, hence v 6 ~NR: a contradiction. 
n n n 

"If" part: By c o n s t r u c t i o n ,  R i s  a c o n d u c i v e  q u a s i l o c a l  domain  

such that U(V) VIR = U(R). Hence, we can easily transfer the accp prop- 

erty from V to R. D 

COROLLARY 13. The integral closure and the seminormalization of an 

accp conducive domain are accp (conducive) PVD's. 

PROOF. Mutatis mutandis, the proof is analogous to that of Corollary 
f 

11. [ ]  

EXAMPLE 14. As an application of Theorem 12, we can easily give an 

example of a pair of domains R CS, with the same quotient field, such 

that U(S) ilR = U(R) and accp holds in R, but accp does not hold In S 

324-325]). As a matter of fact, let R be an accp (hence, (cf. [12, p. 

Archimedean) conducive domain, described by the 

R *IR_>>~ 

]o 1 
V ~ B  

following diagram: 

where V is a rank I discrete valuation domain and A (and B) is a quas i 

local 0-dimensional ring. Suppose that there exists a non-0-dimen- 

sional ring C, ACcC B. (For instance, take V = e [~]] , B = V/X2V = 

= e + xC, where x = X + X2V, A = ~ + xC and C = Q[w]+xr Let S =~-~C). 

By Theorem 12 and Theorem I, S is a conducive domain but accp does 

not hold in S. Moreover, R,S and V have the same quotient field and 
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S C_C(R) = C(S) = V. Finally U(S)• R = U(R) by [2, Prep. 2.1] . 

We recall that an integral domain R is called a Mori domain if 

the ascending chain condition holds in the set of integral divisorial 

ideals of R (cf. [16]). A Mori domain is clearly an accp domain; thus, 

in the conducive case we know, by Theorem 12, that there exists a u- 

nique pullback representation of R as in (*), in which V is a rank I 

discrete valuation domain, b = (R:V), and A a 0-dimensional quasilocal 

ring. For a Mori conducive domain, we shall exhibit a necessary "ri- 

gidity" property concerning its overrings (cf. Proposition 16). As 

Remark 18 will point out, this property, in general, is not sufficient 

for a conducive domain to be a Mori domain. However, with Proposition 

19 (and Example 20), we shall show an explicit way to construct a 

large class of nontrivial Mori conducive domains. 

Before giving these results, we recall that an integral divi- 

serial ideal ~ of a domain R is strongly divisorial if ~-(R:~) = I, 

i.e. if |1:1) ~ (R:~) (cf. [16, p. 344]). So if ~ is a strongly divi- 

serial ideal of R, (R: ~) is an overring of R. We recall also the fol- 

lowing result which appeared in the unpublished thesis [17]. 

PROPOSITION 15 (N. Raillard). If R is a Mori domain and if I is a 

strongly divisorial ideal of R, then S=(R: ]) is a Mori domain. 

PROOF. If ~ (R) (resp., ~(S)) is the set of integral divisorial ideals 

of R (resp., of S), let ~ be the function: 

: ~(R} - -  >D(S) 

J ~ > (J: I) 

It is not difficult to show that # is a surjective map such that, if 

#(J)C #(J'), then 3 _cJ'. The statement follows easily. D 

PROPOSITION 16. Let R be an integral domain but not a field. Then R is 

a Mori cor~ucive domain (if and) only if there exists a unique pull- 

back representation of R as in ( * )  in which v is a rank 1 discrete 
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valuation domain, 5 = (R:V}~ A is a o-dimensional q~asilocal rin q and 

there exists a finite sequence of overrin.qs of R, R=R I C R2C .... C R =V 
n 

such that: 

a) for each i, i=I ,2,... :n,R i is a Mori, quasilocal,l-dimensional 

domain; and 

b) if Niis the maximal ideal of Ri, then (~i: •" )=(R. : ~. )=R. 
I z I +  I 

(i=1,...,n-1). 

PROOF. "Only if" part: Since a Mori domain is an accp domain, Theorem 

12 supplies a unique pullback representation of R as in (*), where V 

is a rank I discrete valuation domain, b = (R:V), and A is a 0-di- 

mensional quasilocal ring. In particular, R is a l-dimensional quasi- 

local domain. (This also follows from [ 2, Th. 2.2]). Let M= xV be 

the maximal ideal of V and let N be the maximal ideal of R. First of 

all, notice that M is a fractional ideal of R. Moreover, if (R:V)=xkv, 

k -k k 
with k >I, we have (R:(R:M))=(R:(R:xV))=x(R:x V)=x(x (x V}}= ~4. Thus 

is a (fractional) divisorial ideal of R and, hence~ ~ = ~ ~ R is a 

divisorial ideal of R, as an intersection of divisorial ideals. Now, 

using the uniqueness of the pullback representation, if N is principal I 

then R=R'=V is a rank I discrete valuation domain and the Proposition 

trivially holds. Thus, without loss of generality, we can suppose 

that ~ is not principal. For each z E (R:~), we have z ~ C R, hence 
I- 

z ~ C_ ~; so (R:~)C (~:N). The other inclusion being trivial, ~4 is a 

strongly divisorial ideal of R. Therefore, we can construct the ring 

R 2 = (R:~) = (~.N) C_C(R) = V, which is a l-dimensional quasilocal 

conducive Mori domain (cf. Proposition 15 and [2, Theor. 2o2!). Iterat 

ing this construction, we get an ascending chain of quasilocal con- 

ducive domains of dimension I, (Ri,Ni) , i>_I (where R = R{). We want 

to show that, for some i > I, ~i is principal~ that is, R. = V. Let 

(R.:V) = xkiv, for each i > I (with k. >0). It is enough to prove that, 
1 -- l-- 

if Ni is not principal,li then ki+ I ~< k.l " Let li>__ I be the .largest ex- 

ponent such that x V 2 ~*i (i.e. x ~V~ ~i' but x~i+Iv~Ni ). Remark. 

that (xkiv:N) = ((R. :V):N ) = (R.:VN) = ((R.:N.):V) :V) = 
i I I 1 l l l = (Ri+1 

= xki+Iv. Since xki-~ivNic_xki-~i+~iv=xkiv , we have xki-~iVc(xkiv:~i) = 
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ki+iv, since x ki-~i xki-li l~ I = x on the other hand, VNi ~ Vx V = 

ki+1 V:N ) = x~xkiv:N ) = x xki +I V = x V, we have x ki-~i V ~(x ki+l 
1 1 

= xki+1+Iv. Hence xki-li'v = xki+Iv and so k i- ~ = ki+ I. In particular 

ki ~ ki+l" 
The converse is trivial by Theorem I, because R = RI is a Mori 

domain. U 

EXAMPLE 17: As an application of Proposition 16 and Theorem 12, we give 

an explicit construction of a conducive accp, non Mori domain. 

Let R = k + XD % X2K ~X]] , where k C K are two distinct fields, D 

is an integral domain, but not a field, such that k C DC K and X is an 

analytic indeterminate over K (take, for example, k = Q, K = IR and D = 

= Q In]). By construction, R is obtained by the following pullback die- 

gram: 

R > A = R/X2V 

v = ~ ~xl] > B = v/x'v 

where A is 0-dimensional, because Are d ~ k is a field. Hence, by Theo- 

rem 12, R is a (l-dimensional} quasilocal accp conducive domain and 

its maximal ideal is N" = XD + XiK [[X]] .However, by Proposition 16, R 

is not a Mori domain because R2= (R: ~4} = D + XK IX]] is not a l-dimen- 

sional ring. 

RF~RK 18. If condition a) of Proposition 16 holds only for i=2,...,n, 

then the conclusion ("if" part) of Proposition 16 is not true anymore. 

Take for example R = k + XL+XIK ~X]] , where k is a field, K=k(tl,t2} , 

with t I and t 2 two indeterminates over k, and L = kt2+ k[tl] . Let 

K ~X]] = V. Then R is a quasilocal domain with maximal ideal N = XL + 

+ XiV. Moreover, by Theorem 12, R is an accp (conducive) domain, with 

not. 
b = (R:V) = X2V. Consider (N:N) = (R:~) = k + XV = R 2. Then, R 2 is 

a Mori (cf. [ I, Cor. 3.5] ) (quasilocal, 1-dimensional , conducive) PVD, 

with maximal ideal ~ = X~, such that (%:%) = (R2: %) = V. Hence, we 

have a finite sequence of overrings of R, R = RICRIC R, = V verifying 

condition b) and the weaker form of condition a] of Proposition 16 

(i.e.R. is Mori only for i > 2]. We want to show that R is not a Mori 
1 

domain. Notice, first o~ all, that XV is a fractional divisoz'lal ideal 
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of R, as a direct calculation shows (cf. proof of Prop. 16). Hence, 

N = XV NR is a divlsorial ideal of R and, for each nonzero element z 

in the quotient field of R, z N is still divisorial. For each n6 N, 

(n) -n (n) -(n+1) 
take z = Xt and z = X t and consider the divisorial ideal 

1 I 2 I 

of R 

-n ~ (nl~ztnlN = Xtl (XL+X2V)~Xt (n+1| 1(n)= Zl 2 (XL+X2V) = 

= X*(tl n LrTt,-(n+1)L) + X~y 

By definition of L we have: 

- C n + ~  -n.  - ~ n - ~  . ~k+k[tl I n o t . w ( n )  I nL i  ~ 
t L = t I K+t I )k+ ..+t tl 1 

The ascending chain of k-vector spaces {W (n)} n6 N is clearly not 

stationary% hence the ascending chain of integral divisorial ideals 

{I(n)}n6 ~ of R is not stationary. Thus R is not a Mori domain. 

we end the paper with a new class of examples of Mori conducive 

domains. We need the following preliminary result. 

PROPOSITION 19. Let (V,A~ be the formal power series ring K ~X]] ,where 

K is a field . Let R be a subring of v of the following type: 
k-1 k 

R = L o + XL I + X2L 2 +...+X Lk_ I + X V 

where k>1, LoCKiS a field and, for i=I ..... k-1,Li~K iS a L e -vector 

space such that LiLjCLi+ j for 0 <_i,j <_k-1 (where Li+j=K if i+j>k). 

If the ascending chain condition holds for the Lo-Vector spaces of the 

type 

w = 0 lcl,]L1+...+Ck 1,3Lk_i~ ] " -- J 

where c..e K,for i=1,...,k-1 ~nd 9 is iN ~ indez set, t~, R i8 a 
13 

conducive Moz~ domain. 

PROOF. Notice, first of all, that by construction, R is obtained ,by 

the following pullback diagram: 

k 
R - - - ~  A = R/X V 

= L is a field. Hence, by Theo- where A is 0-dimensional, because Are d 
o 

rem 12, R is a (l-dimensional, quasilocal~ accp conducive domain. 
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= ~.-..+ Notice)moreoverj that the maximal ideal of R is ~I =~{ 6] R XL I 

k-1 k 
+X L +X V, where M is a fractional ideal of R such that (R: (R:~))= 

k-1 
-k k 

=(R:(R:XV))=X(X (X V))= ~ . So also N = g{~ R is a divisorial ideal 

of R. 

Let F be the quotient field of R (and V). Any divisorial non- 

principal ideal D of R has the form D=,-~zR, with z E F and zR ~ p,so 

t ha t  P=- N z N. Hence, i t  i s  enough to  show tha t  ace holds f o r  i n t e g r a l  

d i v i s o r i a l  i dea l s  o f  R of  the type h z N, For each nonzero zE F, we can 

h h+ I 
write z = X c h + X Ch+1+..., with Ch,Ch+1,..EK , h6Z, ChM 0 (i.e., 

h is the value of z under the canonical valuation v associated to V}. 

h+ I h+2 h+k 
Thus we have z~ = X ChL1+X (ChL2 + Ch+iL1}+...+X V. 

Let @ = 0 z N, for some subset Z of K and let h=h(D)=max{v(z)I 
zE Z 

z6Z}, with h<+-, because ~ (0). 

Then, it is easy to see that 

h+ I h+l h+k- I h+k 
D = X E +...+X E +...+X E +X V 

1 X k-1 

where, for ), = I,...,k-I 

E l = 0 (Cl, jLI+- �9 -+Ck_1, jLk_1 ) 

and co . are elements of K depending on z6 Z. Let, moreover ~=ko(~ = 
l,] 

= rain {I~E ~ O} and l@(xh+kv) O. 

Take any ascending chain {I) (n)} of integral divisorial ideals 
(n)n 6N (n) 

of R of the previous type, i.e. D = N (n}ZN, for some subset Z 

of K. Notice that if n<n', then h(D (zn~ Z ~o (D (n)) > h(~ (n') ) + _ ) + 

+ Lo(V (n ' ) )  >__0, because o(n)c  p ( n ' ) c  R. So, wi thout  loss o f  g e n e r a l i t y j  

we can suppose t h a t ,  .for each n, h (p  ('n) ] + ko(I) (n)) = ~, where ~ is  a 

fixed positive integer. In this case, for each nE •, we have: 

h(~)(n) ) +k-IE (n) xh~ln) )+k (n) X~ E (n) +...+X + V 
P = Xo (D (n})  k-1 

where, 

E (n) = (I J (ci, j LI+ ... +Ck_1, j Lk_1)for ~=~o~(n)).,...,k-l, with 
(n) (n} 

c. EK. 
1,j 

Since, for each I , the ascending chain of Lo-vector spaces { E(n~ nEM 

is stationary by hypothesis, we deduce that the chain {p(n)} n6~~ f di- 

visorial ideals of R is stationary too. 

EXAMPLE 20: A new class of examples of Mori, non-Noetherian conducive 
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k-1 k 
domains. Let H = L ~ + XLI+...+ X Lk_ I § X V be a ring~ as in the 

statement of Proposition 19, where the field extension L ~ C K is non- 

finite and LI,...,Lk_ I are finite dimensional as Lo-vector spaces. As 

in the proof of Proposition 19, we see that R is obtained by the fol- 

lowing pullback diagram: 

k 
R - - > > A  = R/X V 

k 
V - �9 B = V/X V 

where the ring extension A c-.~B is non-finite, because L ~ C K is non 

finite. Hence, by Proposition 19 and the proof of Theorem 6, we easily 

conclude that R is a Mori non-Noetherian conducive domain. 
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