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1. Introduction 

The rings considered in this paper are (commutative integral) domains, typical- 

ly of finite Krull dimension. We denote the rings of polynomials and formal power 

series in n indeterminates over a ring R by R[X,, . . , X,,] and R[[X,, . . , X,,]], 

respectively. Following [9], we say a (not necessarily Noetherian) ring R is 

catenarian if for each pair PC Q of prime ideals of R, every saturated chain of 

prime ideals of R between P and Q has the same finite length. It is well known 

(cf. [21]) that each Cohen-Macaulay ring R is universally cutenariun, in the sense 

that R(X,, . . , X,] is catenarian for each integer y1 2 1. Moving beyond the 

Noetherian context, one showed in [24, 20, lo] that each locally finite-dimensional 

(LFD) Prufer domain is universally catenarian. Hopes for an analogous theory 

for formal power series rings were somewhat stimulated by the following result of 

Lequain [lY] (where ‘[Xl]’ denotes either ‘[Xl’ or ‘[[Xl]‘): if R is a Noetherian 

ring, then R[X,]]...[X,,]] IS catenarian for each integer n 2 1 if and only if 

NX,ll . . . LX,,11 IS cd enarian ’ t for some integer ~12 1. Nevertheless, it was shown 

in [7, 231 that if R is an LFD Prufer SFT-ring, then R[[X,, . . . , X,,]] is catenarian 

if and only if either n = 1 or dim(R) = 1. (Another positive result on catenarity of 

formal power series rings in one variable, over a globalized pseudo-valuation 

SFT-ring, appears in [16].) It thus seems reasonable to ask if there exists a 

non-Noetherian ring R with dim(R) > 1 such that R[[X,, . . , X,,]] is catenarian 

for each integer ~12 1. One consequence of our work is an affirmative answer to 

this question; see Example 3.6 below. 

In this paper, we are principally interested in when R[[X,, . . . , X,]] is 

catenarian for a pullback R. Recall from [3] the corresponding facts about 

polynomial rings. Namely, if T = K + M is a quasilocal domain and R = D + M, 

where D is a subring of K with quotient field k, then, if k C K is algebraic and 

T[X,, , X,,] and D[X,, . . . , X,,] are each catenarian, R[X,, . ,X,,] is 

catenarian. Moreover, the converse holds when k = K. 

Let (T, M, K) be a quasilocal domain with maximal ideal M and residue field 

K, cp : T-+ K the natural surjection, and R = q-‘(D), where D is a subring of K. 

In Theorem 2.6. we show that R[[X]] . IS catenarian if and only if T[[X]] and 

D[[X]] are each catenarian. Section 3 gives two examples to show that this 

equivalence need not hold when we pass to two or more indeterminates. 

However, suppose that D = k is a subfield of K with char(k) = p > 0 and that 

k c K is an extension of finite exponent, in the sense that K”’ C k for some integer 

e 2 1; then Corollary 3.5 establishes that, for each integer n 2 1, R[[X,, . , X,,]] 

is catenarian if and only if T[[X,, . . . , X,,]] is catenarian. This leads, as promised, 

in Example 3.6 to a non-Noetherian ring R of dimension greater than 1 such that 

R][X,, . , Y,]] IS catenarian for each integer ~12 1. 

The path to Corollary 3.5 depends on the observation that if k C K is a 

(necessarily purely inseparable) field extension of finite exponent, then the 

canonical map Spec(K[[X,, , X,,]])-Spec(k[[X,, . . . , X,,]]) is a homeomor- 

phism for each integer n 2 1. Section 4 is devoted to studying just which field 
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extensions k C K induce such homeomorphisms. Theorem 4.6, the main result of 

Section 4, is that any such k C K must be purely inseparable. (Thus, in Corollary 

4.8, the question is answered completely in case K is finitely generated as a field 

extension of k.) Section 4 also includes Corollary 4.9, giving a related characteri- 

zation of purely inseparable field extensions of finite exponent, and Proposition 

4.1, which treats analogous questions for the easier case of polynomial rings. 

2. Catenarity of a formal power series ring in one indeterminate over a 

pullback 

It is convenient to recall from [5] the following definition. A ring R is an 

SFT-ring in case, for each ideal I of R, there is a finitely generated ideal J C I and 

an integer k 2 1 such that rk E J for each YE I. The proof of [5, Theorem l] 

shows that if R is not an SFT-ring, then R[[X]] has an infinite chain of prime 

ideals. Hence, if R[[X]] 1s catenarian, then R is necessarily an SFT-ring. 

We begin with several preliminary results. 

Proposition 2.1 (Arnold [6, Proposition 2.11). Let R be an SFT-ring and let 

X,, . , X, be indeterminates over R. Let P be a prime ideal of R[[X,, . , X,]] 

andp=RnP. Then P>p[[X ,,..., X,,]]. Cl 

Proposition 2.2. Let R be a ring and p a prime ideal of R. Then the prime ideals 

P[[WI = P + XRKXII are adjacent in R[[X]]. 

Proof. Note that the prime ideal (X) has height 1 in (Rlp)[[X]], as a straight- 

forward consequence of the fact that n (X”) = 0. Since 

R[[XlI /P[[XII = (RIPMXII and (P + XR[[X~I)~PUX~~ = (W ) 

we have ht(( p + XR[[X]]) /p[[X]]) = 1. 0 

In the rest of this section, we let (T, M, K) denote a quasilocal domain with 

maximal ideal M and residue field K, cp : T+ K the natural surjection, and 

R = cp .-l(D), where D is a subring of K. The domain R is then a pullback given by 

the following diagram: 

R = q-‘(D)- T 

I 

Proposition 2.3 (Khalis [IS]). With the same hypotheses as above, we have: 

(1) R is an SFT-ring if and only if T and D are each SFT-rings. 
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(2) [f R is an SFT-ring, then 
(a) the prime ideal M[[X]] has the same height in both T[[X]] and R[[X]], and 

(b) ht(M[[X]]) + dim(D[[X]]) s dim(R[[X]]) 5 dim(T[[X]]) + dim(D[[X]]) 

- 1. If (R is an SFT-ring and) either D is afield or T is either a Noetherian domain 

or a valuation domain, then dim(R[[X]]) = dim(T[[X]]) + dim(D[[X]]) - 1. 0 

Lemma 2.4. lf T and D are SFT-rings, then the function 5 : Spec(T[[X]]) + 

Spec(R[[Xll) given by t!(Q) = Q n RN41 d m uces an order-preserving bijection 

between Spec(T[[X]]) and flK = {P E Spec(R[[X]]) 1 PC M + XR[[X]]}. 

Proof. Let 9, = {Q E Spec(T[[X]]) ( Q n T 5 M} and Y,< = {Q E Spec(R[[X]]) 1 

Q n R g M}. As in [18, Proposition 3.31, the contraction map r : 93+ YR given 

by T(Q) = Q C-I RKXll 1s an order-preserving bijection. Since T is a quasilocal 

SFT-ring with maximal ideal M and dim(T[[X]]IM[[X]]) = 1, if Q is a prime 

ideal of T[[X]] with Q n T= M, then either Q = M[[X]] or Q = M + XT[[X]]. 
Similarly, if Q E OR and Q n R = M, then either Q = M[[X]] or Q = M + 

XR[[X]]. Thus the function [ : Spec( T[[X]]) + 02, is given by [ ly7 = 7, 

E(W[Xll) = W[XlIT and ((M + XT[[X]]) = M+ XR[[X]], and is an order- 

preserving bijection. 0 

In particular, with the hypotheses of Lemma 2.4, the two prime ideals 

M + XR[[X]] and M + XT[[X]] h ave the same height in both R[[X]] and T[[X]], 
respectively. Moreover, ht(M + XR[[X]]) = ht(M[[X]]) + 1 when T[[X]] is 

catenarian. 

Lemma 2.5. Suppose that T and D are each SFT-rings. If P, C PI are adjacent 

prime ideals in R[[X]] such that P, fl R s M C P, n R, then either P, = M[[X]) or 
P2 = M + XR[[X]]. 

Proof. Let p, = P, n R s M. Then there exists Q, E Spec(T[[X]]) such that 

Q, r--~ N[XlI = P, and Q, n T = p, [ 18, Corollaire 3.21. Since R is an SFT-ring 

and MC P2 n R, we have M[[X]] C P2 by Proposition 2.1. Suppose that 

M[[X]] q P2. As P, s P2 are adjacent and p, $ M, P, $ZM[[X]] and therefore 

Q, JZM[[X]]. Let f = C a,X’ E Q, - M[[X]]. Then each a, E T; let i,, be the first 

index i 2 1 with a, @M. As a,,) is a unit in T, we may assume that a,,, = 1. Thus 

f = a,, + . . . + a, _,X’“-’ + X’“g, where g is a unit in T[[X]]. Hence fg-’ = (a,, + 
. ..+a ,,,+XilJ~‘jg~’ + X’“E Q,, and as (a,, + .. . + a,,,_,X’“-‘)g-’ E M[[X]], we 

have fg-’ E R[[X]]. Thus fg-’ E Q, f’ R[[X]] = P,, and therefore fg-’ E P2. 
Since (a(, + . . . + ail,_, X’“-‘)gm’ E M[[X]] C P,, we have X’” =fg-’ - (a,, + 
. . . + a,,,_ ,X’“-’ )g-’ E P2, and so XE P,. Therefore, M + XR[[X]] C P,. On the 

other hand, Q, c M + XT[[X]] (because T[[X]] q 1s uasilocal with maximal ideal 
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M + XT[[X]]), and thus P, C M + XR[[X]]. Hence P, 2 M + XR[[X]] c P,, 

whence P, = M + XR[[X]], since P, and P2 are adjacent in R[[X]]. 0 

We can now state the main result of this section. 

Theorem 2.6. Let (T, M, K) be a quasilocal domain with maximal ideal M and 
residue field K, cp : T+ K the natural surjection, and R = cp -l(D), where D is a 
subring of K. Then R[[X]] 1s catenarian if and only if T[[X]] and D[[X]] are each 
catenarian. 

Proof. Suppose that R[[X]] is catenarian. Then D[[X]] = R[[X]] IM[[X]] is 

catenarian. Moreover, R is an SIT-ring since R[[X]] is catenarian. Thus T and D 
are each SFT-rings by Proposition 2.3(l), and hence T[[X]] is catenarian by 

Lemma 2.4. 

Conversely, suppose that T[[X]] and D[[X]] are each catenarian. Then T and 

D are each SFT-rings, and hence R is an SFT-ring. Also, T[[X]] and D[[X]] are 

each LFD, and hence R[[X]] is also LFD (cf. [18, Proposition 3.5(2)] and [14, 

Proposition 2.2 and Theorem 2.41). 

Let P,, C P, C P2 C. . . C P,Y = P be a saturated chain of s + 1 prime ideals of 

R[[X]]. It suffices to show that ht(PIP,) = s. 

(a) If P,, n R = p. 3 M, then M[[X]] C P,, by Proposition 2.1. The chain 

P,,IM[[X] C P,/M[[X]] C . . . C PJM[[X]] . IS a saturated chain of prime ideals 

of R[[X]]IM[[X]] = D[[X]], which is catenarian. As ht(P/M[[X]]) - 

Wf’,,~MKXll) = ht(P/P,,) and ht(P/M[[X]]) = ht(P,,/M[[X]]) + s, we have 

ht(P/P,,) = s. 

(b) Suppose that P,, II R = p,,jZ’M, and thus PO r$ M (cf. [14, Theorem 2.41). If 

P c7 R g M, then by [18, Proposition 3.31 there is a saturated chain P;, C Pi C 

. . . C Pi of prime ideals of T[[X]] such that PI f’ R[[X]] = P, for each integer 

0 i i I s and ht(P/P,,) = ht(P:/P;,). As T[[X]] is catenarian, ht(P,i/P;,) = s and 

thus ht(P/P,,) = s. 

Without loss of generality, either P fl R JYM or P n R = M. Then M C P n R. 
Choose i,, with 0 5 i,, I s - 1 such that P,,, n R s M and M C Pi,,+, fl R. Since the 

primes Pi,, C P,,). , are adjacent, Lemma 2.5 gives that P,o+, is either M[[X]] or 

M + XR[[X]]. In particular, M[[X]] C P,,,,,. Thus in the catenarian ring D[[X]] = 
R[[X]] IM[[X]], we have ht(P~M[[Xll) - W’i,,., /M[[XlI) = W’/P,,,+, > = 
s - h - 1. On the other hand, every chain which realizes the height of the 

prime P passes through either M[[X]] or M + XR[[X]] by Lemma 2.5. As 

ht(M + XR[[X]]) = ht(M[[X]]) + 1 by the remark after Lemma 2.4, we have 

ht(P) - ht(P,,,+,) = s - i,, - 1. The ring T[[X]] is catenarian and since P,,,+, is either 

M[[X]] or M + XR[[X]], we have ht(P,,,+, /PO) = ht(P,,,+, > - WP,,) = 4, + 1 by 
Lemma 2.4. Thus ht(P) - ht(P,,) = ht(P) - ht(P,o+,) + ht(P,,+,) - ht(P,,)= 

(s-i,,-l)+(i,,+l)=s. 0 
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3. Catenarity of R[[X,, . . . , X,]] 

When the number of indeterminates over R is greater than one, the assertion in 

Theorem 2.6 is no longer true, as the next two examples show. The first is 

quasilocal; the second, not semi-quasilocal. 

Example 3.1. Let V= k(Y) + Zk(Y)[Z],,, = k(Y) + M, where k is a field, and Y 

and Z are indeterminates over k. Let R = k[ Y],,, + M = D + M. The rings V and 

D = WI,., are Noetherian valuation rings. Thus, for each integer II 2 1, the 

rings V[[X, , . . . , X,,]] and D[[X, , . . . , X,,]] are Cohen-Macaulay and, hence, 

catenarian. Note that R is a ‘discrete’ valuation ring of dimension 2 since k(Y) 

is the quotient field of D. Since R is an SFT-ring by Proposition 2.3(l), 

R[[X,, > x,,ll . IS catenarian if and only if II = 1 [7, 231. Thus, for each integer 

~12 2, the rings V[[X,, . , X,,]] and D[[X,, . . . , X,,]] are each catenarian, but 

R[[X,, . , X,,]] is not catenarian. 

Example 3.2. Let V= Q + YQ[[Y]] = Q[[Y]] and R = z + YQ[[ Y]]. Of course, 

the rings V[[X,, , X,]] and .??[[X,, , X,,]] are Cohen-Macaulay and, 

hence, catenarian for each integer II P 1. Note that R is a two-dimensional Bkzout 

domain since i? is a PID with quotient field Q. Since R is an SFT-ring by 

Proposition 2.3(l), R[[X,, , X,,]] . IS catenarian if and only if y1 = 1 [7, 231. 

Thus, for each integer y1 P 2, the rings V[[X,, . . , X,,]] and .??[[X,, . . , X,,]] are 

each catenarian, but R[[X,, . . . , X,,]] is not catenarian. 

Despite the above examples, Theorem 2.6 can, in some cases, be extended to 

more indeterminates by imposing additional conditions on the rings T and D. For 

example, see Theorem 3.4 below. 

Lemma 3.3 (Girolami [16, Lemma 2.31). If 

B-D 
IL’ 

is a pullback of commutative rings, then so is 

NW1 2 CNXII 
-, 
v I I G 

BNXII --$7+ D[[Xll . 0 

We remark that the above lemma is also true for power series rings in any finite 

number of indeterminates. 
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Theorem 3.4. Let (T, M, K) be a quasilocal domain with maximal ideal M and 
residue field K, cp : T+ K the natural surjection, and R = p-‘(k), where k is a 
subfield of K. Suppose the contraction map Spec(K[[X, , . . , X,]]) -+ 

Spec(k[[X,, . . , X,,]]) is a homeomorphism for each integer n 2 1. (This holds if 
char(k) = p > 0 and K”? C k for some integer e 2 1.) Then the contraction map 

Spec(T[[X, , . . . , K II> + Sr=UW, ) . . . , X,,]]) is a homeomorphism. 

Proof. The diagram 

NX,, . . . > X,11- 

I 

mx,, . . . 7 &II 

1 
G 

k[[X, > . . . , X,11 - K[[X,, 3 Xnll 

is a pullback, where (PIT = cp and Cp(X,) = X,. Let A = k([X,, ,X,]] and 

B=K[[X,,..., X,]]. (If KP’ C k, then B PC C A, and hence the contraction 

map Spec(Z3) -+ Spec(A) is a homeomorphism by [l, Theorem 2.11.) On 

the other hand, R[[X,, . . . , X,,]] = T[[X,, . . , X,,]] X, A and, according to 

114, Theorem 2.41, Spec(R[[X,, . . . , X,z]]) is homeomorphic to 

Spec(T[[X,, . , X,]]) LlSprc(Rj Spec(A). As Spec(A) and Spec(B) are canonical- 

ly homeomorphic, 

Spec(T[[X,, . . . , X,11> &,eccRj $=(A) = Spec(T[[X,, . , X,,]]) 

(see [13, Chapter 6, 6-l]). 0 

Corollary 3.5. With the same hypotheses as in Theorem 3.4, we have for any 
integer n 2 1 that R[[X,, . . . , X,]] is catenarian if and only if T[ [X, , . . , X,,]] is 
catenarian. 0 

Example 3.6. For each integer m 2 1, there is an m-dimensional non-Noetherian 

integral domain R such that (i) R[[X,, . , X,,]] is catenarian for all integers 

n 2 1, and (ii) dim(R[[X,, . . . , X,,]]) = n + m. 

Proof. Let k C K be fields of characteristic p > 0 such that K” C k and 

m. Let 

[K: k]= 

and 

T= K[[Y,, . . . , Y,,,]] = K + (Y,, . . , Y,,>K[[Y,, . . . , Y,,,ll 

R=k+(Y,,. . . , Y,)K[[Y,, > YJI. 

Then, by integrality, dim(R) = dim(T) = m. It is clear (cf. [2, Corollary 3.291) 
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that R is not Noetherian, and that dim(R[[X,, . . , &II> = 
dim( T[[X,, . , X,,]]) = n + m = n + dim(R) since T[[X,, . . , X,,]] is integral 

over R[[X,, . . , X,,]]. The ring T[[X,, . . . , X,,]] is catenarian for each integer 

II 2 1, whence R[[X, , , X,,]] IS catenarian for each integer ~12 1 by Corollary 

3.5. 0 

4. Field extensions inducing formal power series rings with homeomorphic 

spectra 

The parenthetical assertion in Theorem 3.4 suggests the following definition 

and question. We shall say that a field extension k C K satisfies (*) in case that the 

canonical map Spec(K[[X,, . . . , X,,]])-Spec(k[[X,, . , X,,]]) is a homeomor- 

phism for each integer n Z- 1. How can we characterize the field extensions that 

satisfy (*)? According to Theorem 3.4, if k C K is a purely inseparable extension 

of fields of characteristic p > 0 and is of finite exponent, then k C K satisfies (*). 

Our main interest in this section is to study the possible validity of the converse of 

this result. We show in Corollary 4.7 that if k $ K satisfies (*), then k C K is 

purely inseparable. This leads, in Corollary 4.8, to a satisfactory answer to the 

above question in case K is a finitely generated field extension of k; and, in 

Corollary 4.9, to a new characterization of purely inseparable field extensions of 

finite exponent. For motivational purposes, we begin this section by treating 

analogous questions in the simpler context of polynomial rings. Throughout, for 

an extension A C B of rings, Spec(B) + Spec(A) always denotes the canonical 

contraction map. 

Proposition 4.1. For a field extension k C K, the following conditions are equiv- 

alent: 

(1) Spec(K[X,, . . . , X,,])-, Spec(k[X,, . . . , X,,]) is a homeomorphism for 

each integer n 2 1; 

(2) Spec(K[X,, . , X,,])+Spec(k[X,, . , X,,]) is a homeomorphism for 

some integer n 2 1; 

(3) Spec(K[X])+ Spec(k[X]) is an injection; 

(4) k C K is purely inseparable. 

Proof. (1) + (2) Trivial. 

(2)+(3) This is an easy consequence of the following observation (cf. [12, 

proof of (iii) 3 (i) in Theorem 2.11). If A C B are commutative rings and 

Spec(B[X])+ Spec(A[X]) IS an injection, then so is Spec(B)* Spec(A). 

(3) 3 (4) This is established in the proof of [22, Theorem 31. 

(4) + (1) Assume (4). Then Spec( K) + Spec(k) is radiciel, in the sense of [17]. 

However, radiciel is a universal property [17]. Thus, for each integer n 2 1, 

Spec(K[X,, . , X,,])+ Spec(k[X,, . . , X,,l> IS also radiciel, and hence injec- 
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tive. This canonical continuous map is also closed and surjective, since 

K[X,, . , X,,] is integral over k[X,, . . , X,,], and hence is a 

homeomorphism. 0 

Remark 4.2. The literature provides means for alternate proofs of much of 

Proposition 4.1. For instance, [12, Theorem 2.11 shows that (3) is equivalent to 

Spec(K)+ Spec(k) being radiciel, which is clearly equivalent to (4). Also, the 

interested reader can develop arguments based on the concept of weak normaliza- 

tion, in the sense of [4]. 

We now turn to the context of formal power series rings. Lemma 4.3 collects 

some useful observations. According to its part (b), a one-variable condition is far 

from enough to characterize (*): contrast the situation in condition (3) of 

Proposition 4.1 for polynomial rings. The impact of a two-variable condition on 

formal power series rings is quite different; see Theorem 4.6 below. 

Lemma 4.3. (a) If k C K are fields and II P 1 is an integer, then the canonical 

function Spec(K[[X,, . . . , X,,]])-$ Spec(k[[X,, . . , X,,]]) is continuous and sur- 
jective. 

(b) Ifk C K are$elds, then Spec(K[[X]])--,Spec(k[[X]]) is a homeomorphism. 
(c) Let k C F C K be a tower of fields and n 2 1 an integer. Then 

a : Spec(K[[X,, . . , X,,]]>- Spec(F[[X,, . . . , X,,]]) 

and 

p : Spec(F[[X,, . , X,,ll>- Spec(k[[X,, . . 3 X,,ll) 

are homeomorphisms if and only if 

pa : Spec(K[[X,, . . . ) X,,ll>+ Spec(kNK 7 . 1 JLll> 

is a homeomorphism. Hence k C K satisfies (*) if and only if k C F and F C K each 
satisfy (*). 

Proof. (a) Continuity is standard [8, Proposition 13, p. 1011. Moreover, 

K[[X,, . . . , X,]] is faithfully flat over k[[X,, . ,X,,]] (cf. [8, Exercise 17(b), p. 

250]), whence surjectivity follows. 

(b) Put B = K[[X]] and A = k[[X]]; and let (Y : Spec(B)-+Spec(A) be the 

canonical map. Since a(0) = 0 and CZ(XB) = XA, we see that (Y is a bijection. As 

the closed sets of Spec(B) (resp., Spec(A)) are Spec(B) (resp., Spec(A)), {XB} 

(resp., {XA}), and 0, the above definition of (Y shows that a is a closed map. 

Hence, by (a), (Y is a homeomorphism. 
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(c) The ‘only if’ assertion holds since any composition of homeomorphisms is a 

homeomorphism. Conversely, suppose that pa is a homeomorphism. It follows 

that Pa is an injection, and so CJ is an injection. But, by (a), both CY and p are 

surjective. Hence, (Y is a bijection, and thus so is (@)a -’ = p. Since (Y is 

continuous and surjective and Pa is open, we see that p is open and, hence, a 

homeomorphism. Hence, so is p ‘( pa) = a. In view of the definition of property 

(*), the final assertion now follows by universal quantification on ~1. 0 

Remark 4.4. Condition (3) in Proposition 4.1 showed, in that result’s context, 

that the topological condition being studied there could be characterized without 

topology, i.e., set-theoretically. One might ask if the same is true for the property 

(*). Theorem 4.6 and Corollaries 4.8 and 4.9 provide some positive evidence. 

Meanwhile, in this regard, we note, by the above proof, the validity of the 

analogue of Lemma 4.3(c) in which ‘homeomorphism’ is replaced throughout with 

‘injection’. 

It is convenient next to introduce some notation. If (T : A+ B is a homo- 

morphism of commutative rings and II 2 1 is an integer, we let 6 = 6, denote the 

ring-homomorphism A[[X,, . . . , X,,]]+ B[[X,, . . . , X,,]] defined by 

6 
t 
2 a ,,...,,, Xv . . . X> = c o(a ,,...,,, >X’,’ . . . X> , a, ,...,, / E A . 

The 0 construction will be very useful in the proof of our main result. For the 

sake of clarity, we next isolate that fragment of the argument. As usual, if F C G 

are fields, then Gal(G/F) will denote the group of F-algebra automophisms of G. 

Lemma 4.5. (a) Let F C G be fields, (Y E G - F, (T E Gal(G/F) such that a(a) # 

cr, and n 22 an integer. Put A = F[[X,, . . , X,,]] and B = G[[X,, . . , X,,]]. 

Then X, + CYX, and X, + (OX? are nonassociated irreducible elements of the 

unique factorization domain B and (X, + aXI)B n A = (X, + a(c-u)X,)B n A. 

Hence Spec(B) -+ Spec(A) is not an injection. 

(b) If k C K is a Galois field extension and Spec( K[[X, , X2]]) + 

Spec(k([X,, X2]]) is an injection, then K = k. 

Proof. (a) Since B is a power series ring in a finite number of variables over a 

field, it is a unique factorization domain (cf. [8, Proposition 8, p. 5111 and [8, 

Corollary 3, p. 5331). Of course, neither Y = X, + ax, nor 2 = X, + a(cr)X, is a 

unit of B, since their constant terms are not units of G. We show next that Y is 

irreducible in B; the proof for Z is similar and hence omitted. Consider any 

factorization Y = b,b, in B. By an easy order argument, at least one of the b, has 

a unit constant coefficient. Thus, b, is a unit of B; therefore, Y is irreducible, as 

asserted. 
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Suppose that Y and 2 were associates in B. Then Y = UZ for some unit u E B. 

Equating coefficients of X,, we see that the constant term of u must be 1. Then, 

equating coefficients of X2, we have (T(LY) = (Y. 1 = (Y, a contradiction. Thus, Y 

and Z are nonassociated in B. 
By the above work, we know that YB and ZB are distinct prime ideals of B. It 

remains only to show that YB fl A C ZB fl A; for then the reverse inclusion 

would follow by replacing (a, g) with (a(a), a-‘). To this end, consider h E 
YB n A. Write h = Yf, for some f E B, and apply the ring-homomorphism (T. 

Since h E A, G(h) = h; also, a(Y) = Z. Thus 

h = 6(h) = 6(Y)6( f) = Z6( f) E ZB n A , 

as desired. 

(b) In view of the hypothesis that Spec(K[[X,, XJ])+Spec(k[[X,, X,]]) is 

injective, we derive from (a), with (F, G, n) = (k, K, Z), that there does not exist 

(Y E K - k, u E Gal(K/k) such that a(a) # (Y. Since k C K is Galois, this means 

that K - k = 8, whence K = k. 0 

We can now give the main result of this section. Recall that, by convention, 

k C k is purely inseparable of finite exponent, for any field k, regardless of its 

characteristic. 

Theorem 4.6. Let k C K be fields such that Spec(K[[X,, . . . , X,,]])+ 

Spec(k[[X,, . . , X,,]]) is an injection for some integer n 2 2. Then k C K is purely 

inseparable. 

Proof. We begin with an observation motivated by the proof of Proposition 4.1. If 

AC B are commutative rings and Spec(B[[X]])+Spec(A[[X]]) is an injection, 

then so is Spec(B)+ Spec(A). (The underlying point is that if Q E Spec(B), then 

(Q, X) n A[[X]] = (Q n A, X).) It follows that we may suppose that n = 2. 

Suppose the assertion fails because the field extension k C K is not algebraic. 

Choose X E K such that X is transcendental over k. By Remark 4.4 (and the 

hypothesis), Spec(k(X)[[X,, X2]])+ Spec(k[[X,, X,]]) is an injection. Consider 

the (linear fractional transformation) u E Gal(k(X)lk) such that V(X) = X-‘. 

Since U(X) # X, we can apply Lemma 4.5(a), with (F, G, n) = (k, k(X), 2), to 

obtain a contradiction. Hence, K is algebraic over k. 
Let L be the intermediate field between k and K consisting of all the elements 

of K which are separable over k. A standard consequence of the algebraicity of 

k C K is the pure inseparability of L C K. Hence, it suffices to show that L = k. 
By Remark 4.4 (and the hypothesis), Spec(L[[X,, X,1])+ Spec(k[[X,, X,]]) is an 

injection. Thus, without loss of generality, K = L; i.e., K is separable over k, and 

we must show that K = k. 
Consider N, the normal closure of K/k. Suppose the assertion fails. Then K # k 
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and, a fortiori, N# k. Since N is Galois over k, Lemma 4.5(b) yields 

that Spec(N[[X,, XJ- Spec(k[[X,, X,]]) is not an injection. Indeed, there 

exist LuEN-k and aEGal(N/k) such that (T(Q) # (Y, and I= 

(X, + LYX*)N[[X,, X,]], .Z = (X, + a(a)X,)N[[X,, XJ] are distinct prime ideals 

satisfying I n k[[X,, X,]] = J fl k[[X,, XJ. The hypothesis leads to N # K and, 

by Lemma 4.5(a), we can arrange (Y E K - k and a(~) E N - K. The hypothesis 

also leads to I f’ K[[X,, X,]] = J n K[[X,, X,]]. 

We claim that I fl K[[X,, X,]] = (X, + ax,) K[[X,, X,]]. Indeed, it is plain that 

Z n K]]X, Y x211 contains the height 1 prime ideal generated by the irreducible 

element X, + (YX~. If equality failed, Z fl K[[X, , XJ would be the maximal ideal 

of the two-dimensional local ring K[[X,, X,]], whence X, ,X, E Z and Z = 

(X, > X,)N[[X, 3 X,ll~ contradicting ht(Z) = 1. Thus, the claim is established. 

It follows that J n K[[X,, X,]] = (X, + aX?)K[[X,, X,]]. In particular, X, + 

ax, E J = (X, + a(cu)X,)N[[X,, X,]]. As in the second paragraph of the proof of 

Lemma 4.5(a), analyzing the constant term of (X, + (YX~)(X, + IT((Y)X~))’ leads 

to a contradiction. 0 

Corollary 4.7. Zf a field extension k C K satisfies (*), then k C K is purely 
inseparable. 

Proof. By hypothesis, Spec(K[[X,, X,1])+ Spec(k[[X,, X,]]) is a homeomor- 

phism and, hence, an injection. Application of Theorem 4.6 completes the 

proof. 0 

Corollary 4.8. For a finitely generated field extension k C K, the following condi- 
tions are equivalent: 

(1) k C K satisfies (*), i.e., Spec(K[[X,, . . , X,,]])-Spec(k[[X,, . . , X,,]]) is 
a homeomorphism for each integer n 2 1; 

(2) Spec(K]]X,, . . , X,,]])+ Spec(k[[X,, . . , X,]]) is an injection for some 
integer n 2 2; 

(3) k C K is purely inseparable (necessarily of finite exponent). 

Proof. It is trivial that (1) 3 (2). Theorem 4.6 gives that (2) + (3); and the 

parenthetical assertion in Theorem 3.4 yields (3) 3 (l), since any finitely gener- 

ated purely inseparable field extension is finite-dimensional and, hence, of finite 

exponent. q 

Corollary 4.9. For afield extension k C K, the following conditions are equivalent: 

(1) Spec(K[[X,, . , X,,]])+ Spec(A) is a homeomorphism for each integer 
n P 1 and for each ring A such that k[[X,, . . . , X,,]] C A C K[[X,, . . . , XIz]]. 

(2) There exists an integer n 2 2 such that Spec(K[[X,, , X,]])+ Spec(A) is 
a bijection for each ring A such that k[[X, , . . , X,,]] C A C K[[X, , . . , X,,]]. 

(3) k C K is purely inseparable of finite exponent. 
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Proof. (3) + (1) Without loss of generality, char(k) = p > 0 and K”’ C k for some 

integer e 2 1. As in the proof of Theorem 3.4, K[[X,, . . , X,,]]“” C A and an 

appeal to [l, Theorem 2.11 yields (1). 

(l)+(2) Trivial. 

(2) + (3) Assume (2). By Theorem 4.6, k C K is purely inseparable. Without 

loss of generality, K # k. According to [15, Corollary 3.41, in order to prove (3), 

it suffices to show that E = K[[X,, . . , X,,]] is integral over D = 

k[[X,, . . , X,,]]. Hence, by a well-known consequence of Zariski’s Main 

Theorem (cf. [ll, Remark 2.5]), it suffices to show that R C S satisfies the 

incomparable and lying-over properties for any rings R, S such that D C R C S C 

E. This, in turn, follows from (2), since Spec(S)+Spec(R), viewed as the 

composite of the bijections Spec(S) + Spec( E) and Spec( E) + Spec( R), is itself 

bijective. 0 

Remark 4.10. (a) Apart from the case of a finitely generated field extension 

treated in Corollary 4.8, we have not settled the question whether a (necessarily 

purely inseparable) field extension that satisfies (*) must be of finite exponent. In 

view of the above methods, it seems that the following question should be studied 

further. If fields k C K are such that Spec(K[[X,, X,]])+Spec(k[[X,, XJ]) is an 

injection, is Spec(K[[X,, X,1])+ Spec(A) a surjection for each ring A between 

k[[X,, X,1] and K[[X,, X,11? A n a ffi rmative answer to this question would assure 

that (*) implies finite exponent; a negative answer, would, in our opinion, make it 

unlikely that (*) implies finite exponent. 

(b) Let k C K be a field extension. For each integer II 2 1, consider the 

canonical ring-homomorphisms 

P,, : k[[X,, . . . , X,11+ K@‘, k[[X,, . . . , X,11 3 

r,,:K@Ak[[X,,..., YJl+ K[[X,, . . Xnll 1 

and 

a,, = r,,oP,, : k[[X,> . 1 Xnll- K[[X,, . , Y,ll 

If k C K satisfies (*), then K is purely inseparable over k by Corollary 4.7; it then 

follows that Spec( K) + Spec(k) is a universal homeomorphism (cf. [17, 12]), so 

that Spec( /3,,) is a homeomorphism for each n. Hence, if k C K satisfies (*), then 

Spec(y,,) is a homeomorphism for each IZ. Conversely, if k C K is purely insepar- 

able and S?ec( y,,) is a homeomorphism for each II, then we see, similarly, that 

k C K satisfies (*). In general, k C K satisfies (*) if and only if Spec( p,,) and 

Spec(y,,) are homeomorphisms for each n. 
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