TN1 - Introduzione alla teoria dei numeri - A.A. 2009/2010 Prova di Esame, Appello X, Settembre 2010

MATRICOLA (o,	altro identificativo personale):
COGNOME:	NOME:

ESERCIZIO 1. (a) Determinare per quali valori di a, con $0 \le a \le 16$, la seguente congruenza esponenziale (in una indeterminata X)

$$4^X \equiv a \pmod{17}$$

è risolubile.

(b) Per ciascuno dei valori di a, con $0 \le a \le 16$, per i quali la congruenza precedente è risolubile determinare tutte le soluzioni (mod 16).

ESERCIZIO 2. (a) Dare una dimostrazione completa del seguente Criterio di Euler (utilizzando l'esistenza di una radice primitiva): Sia a un intero non nullo e sia p un intero primo dispari tale che $\mathrm{MCD}(a,p)=1$. Allora, a è un residuo quadratico modulo p se e soltanto se $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$. **(b)** Utilizzando **(a)**, determinare tutti i residui quadratici (mod 17).

- (c) Trovare tutte le eventuali soluzioni della congruenza $X^2 \equiv 13 \pmod{17}$.

ESERCIZIO 3. Determinare tutte le eventuali soluzioni della congruenza polinomiale:

$$X^5 + 3X^3 + X^2 - 93 \equiv 0 \pmod{120} (= 2^3 \cdot 3 \cdot 5)$$
).

ESERCIZIO 4. (a) Dimostrare che un intero primo dispari p si può scrivere come somma di due quadrati di interi se e soltanto se $p \equiv 1 \pmod{4}$.

(b) Determinare (spiegando il metodo seguito) tutti gli eventuali interi positivi $a,\ b$ tali che

$$61 = a^2 + b^2.$$

 ${\bf ESERCIZIO~5.}~~({\bf a})$ Dimostrare il seguente Teorema di Lagrange:

 $Sia\ p\ un\ numero\ primo\ e\ sia$

$$f(X) := a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 \in \mathbb{Z}[X] \text{ con } p \nmid a_n,$$

allora la congruenza $f(X) \equiv 0 \pmod{p}$ ha al più n soluzioni (incongrue) mod p.

(b) Determinare per quali valori di d, $1 \le d \le 22$

$$X^d - 1 \equiv 0 \pmod{23}$$

ha esattamente d soluzioni (incongrue) mod 23.

(c) Determinare esplicitamente le soluzioni di $X^d - 1 \equiv 0 \pmod{23}$, per d = 10 e d = 11.

ESERCIZIO 6. (a) Dimostrare per ogni $n \geq 1$ la seguente formula:

$$n = \sum_{d|n} \sigma(d) \cdot \mu\left(\frac{n}{d}\right).$$

(b) Calcolare il valore di

$$\sum_{1 \le k \le 6} \sigma(k)$$

(spiegando il metodo utilizzato).

Soluzioni

ESERCIZIO 1

Per i seguenti valori di $0 \le a \le 16$ la congruenza è risolubile ed ha le soluzioni sotto indicate:

```
per a=1, le soluzioni (mod 16) sono date da x=0,4,8,12; per a=4, le soluzioni (mod 16) sono date da x=1,5,9,13; per a=16, le soluzioni (mod 16) sono date da x=2,6,10,14; per a=13, le soluzioni (mod 16) sono date da x=3,7,11,15.
```

ESERCIZIO 2

- **(b)** $a = 1, 2, 4, 8, 9, 13, 15, 16 \pmod{17}$.
- (c) $x = 8,9 \pmod{17}$.

ESERCIZIO 3

 $x = 3, 23, 33, 53, 63, 83, 93, 113 \pmod{120}$.

ESERCIZIO 4

(b) (a,b) = (5,6), (6,5).

ESERCIZIO 5

- **(b)** $d = 1, 2, 11, 22 \pmod{23}$.
- (c) Per ciascun valore di d sopra elencato vengono date sotto le soluzioni:

$$d = 1 \mapsto x = 1;$$

 $d=2\mapsto x=1,22;$

 $d = 11 \mapsto x = 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18;$

 $d=22\mapsto 1\leq x\leq 22.$

ESERCIZIO 6

(b) 33.

Lo svolgimento degli "esercizi teorici" è contenuto nelle dispense.