4 Generalità sulle congruenze polinomiali, Teorema di Lagrange e Teorema di Chevalley

Sia f(X) un polinomio non nullo a coefficienti interi ed n un intero positivo. Ci occuperemo ora della ricerca delle (eventuali) soluzioni della congruenza polinomiale:

$$f(X) \equiv 0 \pmod{n}. \tag{1}$$

Vale in proposito il seguente risultato:

Teorema 4.1. Sia $n = p_1^{e_1} p_2^{e_2} \cdot \ldots \cdot p_r^{e_r}$, con p_i primo, $e_i \ge 1$ ed $r \ge 1$. Le soluzioni della congruenza (1) coincidono con le soluzioni del sistema di congruenze:

$$\begin{cases} f(X) \equiv 0 \pmod{p_i^{e_i}} \\ 1 \leqslant i \leqslant r \,. \end{cases} \tag{2}$$

Dimostrazione. Se \mathring{x} è una soluzione di (1), ovviamente \mathring{x} è anche soluzione di ogni congruenza del sistema (2). Viceversa, se \mathring{x} è soluzione di (2), allora $p_i^{e_i} \mid f(\mathring{x})$ per ogni i, e, poiché $\mathrm{MCD}(p_i^{e_i}, p_j^{e_j}) = 1$ (se $i \neq j$), possiamo concludere che $n = p_1^{e_1} \dots p_r^{e_r} \mid f(\mathring{x})$ (cfr. Esercizio 1.2).

Osservazione 4.2. Supponiamo che, fissato i, con $1 \le i \le r$, $f(X) \equiv 0 \pmod{p_i^{e_i}}$ ammetta s_i soluzioni distinte, che denotiamo con y_{ij_i} $(1 \le j_i \le s_i)$. Posto $s := \prod_{i=1}^r s_i$, al variare di i, $1 \le i \le r$, per ogni scelta di y_{ij_i} con $1 \le j_i \le s_i$ si ottiene un sistema di congruenze lineari del tipo:

$$\begin{cases} X \equiv y_{ij_i} \pmod{p_i^{e_i}} \\ 1 \leqslant i \leqslant r \,. \end{cases}$$

In base al Teorema Cinese dei Resti ed al Teorema 4.1, ciascuno di tali s sistemi di congruenze fornisce una sola soluzione alla congruenza (1) ed è evidente che sistemi diversi forniscono soluzioni incongruenti (modulo n); dunque (2) ammette $s = \prod_{i=1}^{r} s_i$ soluzioni distinte.

Dal precedente ragionamento discende che, se denotiamo con N(f(X), n) il numero delle soluzioni della congruenza (1) e se n = hk con MCD(h, k) = 1, allora:

$$N(f(X), n) = N(f(X), h) \cdot N(f(X), k).$$

Ad esempio le soluzioni della congruenza:

$$X^2 + 3X + 2 \equiv 0 \pmod{6}$$

sono le stesse del sistema di congruenze:

$$\begin{cases} X^2 + 3X + 2 \equiv 0 \pmod{2} \\ X^2 + 3X + 2 \equiv 0 \pmod{3} \end{cases}$$

ovvero:

$$\begin{cases} X^2 + X \equiv 0 \pmod{2} \\ X^2 + 2 \equiv 0 \pmod{3} . \end{cases}$$

La prima congruenza del sistema ha soluzioni $\{y_{11} = 0, y_{12} = 1\} \pmod{2}$, la seconda congruenza ha soluzioni $\{y_{21} = 1, y_{22} = 2\} \pmod{3}$. Le soluzioni dei quattro sistemi seguenti, ottenuti variando $i, 1 \leq i \leq 2$, e $j, 1 \leq j \leq 2$,

$$\begin{cases} X \equiv y_{1i} \pmod{2} \\ X \equiv y_{2j} \pmod{3} \end{cases}$$

sono date da $x = 4, 1, 2, 5 \pmod{6}$. Questi valori di x sono, dunque, tutte le soluzioni della congruenza data (mod 6).

Dalle considerazioni precedenti discende anche che il problema della risoluzione di (2) può essere ricondotto allo studio di due problemi.

I PROBLEMA: Determinare le soluzioni di un sistema di congruenze lineari del tipo:

$$\begin{cases} X \equiv a_i \pmod{m_i} \\ 1 \leqslant i \leqslant r \end{cases}$$

con $a_i \in \mathbb{Z}$ e $MCD(m_i, m_j) = 1$ se $i \neq j$.

 ${\bf II\ PROBLEMA}:$ Determinare le soluzioni di una congruenza polinomiale del tipo:

$$f(X) \equiv 0 \pmod{p^e}$$

con $f(X) \in \mathbb{Z}[X], f(X) \neq 0$, p primo ed $e \geq 1$.

Al I Problema dà completa risposta il Teorema Cinese dei Resti (cfr. Paragrafo 3). Un metodo di approccio al II Problema consiste in un procedimento di tipo induttivo:

II PROBLEMA (A): Determinare le soluzioni di una congruenza polinomiale del tipo:

$$f(X) \equiv 0 \pmod{p}$$

con $f(X) \in \mathbb{Z}[X], f(X) \neq 0$ e p primo.

II PROBLEMA (B): Supponendo di aver determinato le soluzioni di una congruenza polinomiale del tipo:

$$f(X) \equiv 0 \pmod{p^n}$$
,

determinare le soluzioni della congruenza:

$$f(X) \equiv 0 \pmod{p^{n+1}},$$

con $f(X) \in \mathbb{Z}[X], f(X) \neq 0, p$ primo ed $n \geq 1$.

In altri termini, una soluzione di $f(X) \equiv 0 \pmod{p^e}$ per $e \geqslant 2$ è determinata per successive approssimazioni (a meno di potenze di p) a partire dalle soluzioni di $f(X) \equiv 0 \pmod{p}$. L'algoritmo che descriveremo è ispirato al cosiddetto metodo di Newton utilizzato in analisi.

Affrontiamo dapprima il II Problema (B). A tale scopo richiamiamo alcune proprietà formali dei polinomi.

Definizione 4.3. Sia $f(X) = \sum_{i=0}^{m} a_i X^i \in \mathbb{Z}[X]$. Si chiama polinomio derivato di f(X) il polinomio:

$$(f(X))' := a_1 + 2a_2X + \dots + ma_mX^{m-1} = \sum_{i=1}^m ia_iX^{i-1}.$$

Per comodità di notazione il polinomio (f(X))' verrà denotato in seguito anche con f'(X), o semplicemente con f', se non ci saranno pericoli di ambiguità.

In generale, si chiama k-esimo polinomio derivato di f(X) (con $k \ge 1$) il polinomio $f^{(k)} := f^{(k)}(X) := (f^{(k-1)}(X))'$.

Si conviene di porre $f(X) =: f^{(0)}(X)$.

Il seguente risultato è di dimostrazione immediata:

Lemma 4.4. Siano $f, g \in \mathbb{Z}[X]$ ed $a \in \mathbb{Z}$. Allora:

- (a) (f+g)' = f' + g';
- **(b)** (af)' = af';
- (c) (fg)' = f'g + fg'.

Vale, inoltre, il seguente risultato "formale analogo alla formula di Taylor:

Lemma 4.5. Sia $f(X) = \sum_{i=0}^{m} a_i X^i \in \mathbb{Z}[X]$, con $m := \deg(f(X))$. Per ogni $\alpha \in \mathbb{Z}$ si ha:

$$f(X + \alpha) = f(X) + \frac{f'(X)}{1!}\alpha + \frac{f''(X)}{2!}\alpha^2 + \dots + \frac{f^{(m)}(X)}{m!}\alpha^m.$$

Inoltre, per ogni k tale che $0 \le k \le m$, risulta:

$$\frac{f^{(k)}(X)}{k!} \in \mathbb{Z}[X].$$

Dimostrazione. In base al Lemma 4.4 (a), (b) (cioè, per "la proprietà di linearità" della derivazione), è sufficiente limitarsi al caso in cui $f(X) = X^i$. In tal caso, $f^{(k)}(X) = i(i-1) \dots (i-k+1)X^{i-k}$, per ogni k, con $0 \le k \le i$. Si ha allora, in base alla Definizione 4.3 ed alla nota formula del binomio di Newton¹:

$$f(X + \alpha) = (X + \alpha)^i = \sum_{k=0}^i \binom{i}{k} X^{i-k} \alpha^k =$$

$$= \sum_{k=0}^i \frac{i(i-1)\dots(i-k+1)}{k!} X^{i-k} \alpha^k =$$

$$= \sum_{k=0}^i f^{(k)}(X) \frac{1}{k!} \alpha^k.$$

L'ultima affermazione del lemma è ovvia, in quanto, in generale per

$$f(X) = \sum_{i=0}^{m} a_i X^i,$$

risulta:

$$\frac{f^{(k)}(X)}{k!} = \sum_{i=k}^{m} \binom{i}{k} a_i X^{i-k},$$

dove $\binom{i}{k}$, per $0 \leqslant k \leqslant i$, è un intero essendo uguale a $\frac{i!}{k!(i-k)!}$.

Osservazione 4.6. Sia $f(X) \in \mathbb{Z}[X]$ come nel lemma precedente, se calcoliamo tale polinomio in un intero $\mathring{x} \in \mathbb{Z}$ e se poniamo $x := \mathring{x} + \alpha$ allora dal lemma precedente otteniamo la ben nota uguaglianza:

$$f(x) = f(\mathring{x}) + \frac{f'(\mathring{x})}{1!}(x - \mathring{x}) + \frac{f''(\mathring{x})}{2!}(x - \mathring{x})^2 + \dots + \frac{f^{(m)}(\mathring{x})}{m!}(x - \mathring{x})^m.$$

Al Problema II (B) fornisce una risposta completa il seguente teorema:

Teorema 4.7. $Sia\ f(X) \in \mathbb{Z}[X], f(X) \neq 0; \ sia\ p\ un\ primo\ ed\ n \in \mathbb{Z}, n > 0.$ Supponiamo che la congruenza:

$$f(X) \equiv 0 \pmod{p^n} \tag{*_n}$$

$$(\alpha + \beta)^r = \sum_{k=0}^r \binom{r}{k} \alpha^{r-k} \beta^k$$

¹Presi comunque $\alpha, \beta \in \mathbb{Z}[X]$ (ovvero, più generalmente, presi in un qualunque anello con caratteristica 0), si dimostra facilmente per induzione su $r \ge 1$ che:

sia risolubile e che, di questa congruenza, siano note le soluzioni $\{y_1, \ldots, y_r\}$ (mod p^n). Consideriamo la congruenza:

$$f(X) \equiv 0 \pmod{p^{n+1}} \tag{*_{n+1}}$$

Le (eventuali) soluzioni di $(*_{n+1}) \pmod{p^{n+1}}$ sono della forma:

$$x_t := y + tp^n,$$

dove y è una soluzione di $(*_n)$ e $t \in \mathbb{Z}$, $0 \leqslant t \leqslant p-1$. Precisamente si presentano tre casi:

I Caso. Se $f'(y) \not\equiv 0 \pmod{p}$, x_t è soluzione di $(*_{n+1})$ se, e soltanto se, risulta:

 $t \equiv -\frac{f(y)}{p^n} (f'(y))^{p-2} \pmod{p}.$

II Caso. Se $f'(y) \equiv 0 \pmod{p}$ e $f(y) \equiv 0 \pmod{p^{n+1}}$, allora x_t è soluzione di $(*_{n+1})$, per ogni t, con $0 \leqslant t \leqslant p-1$.

III Caso. Se $f'(y) \equiv 0 \pmod{p}$ e $f(y) \not\equiv 0 \pmod{p^{n+1}}$, x_t non è soluzione di $(*_{n+1})$, per nessun valore di t, con $0 \leqslant t \leqslant p-1$.

Consequentemente, la soluzione y di $(*_n)$, $y \in \{y_1, \ldots, y_r\}$, determina:

• nel I Caso, una ed una sola soluzione di $(*_{n+1})$ (mod p^{n+1}), e cioè:

$$x := y - f(y)(f'(y))^{p-2};$$

• nel II Caso, p soluzioni distinte di $(*_{n+1}) \pmod{p^{n+1}}$, e cioè:

$$x_t = y + tp^n$$
, $0 \le t \le p - 1$;

• nel III Caso, nessuna soluzione di $(*_{n+1}) \pmod{p^{n+1}}$.

[Nel I Caso, y è detta soluzione non singolare di $(*_n)$, mentre negli altri casi, y è detta soluzione singolare di $(*_n)$.]

Dimostrazione. Una (eventuale) soluzione di $(*_{n+1})$ è ovviamente soluzione di $(*_n)$ e dunque $x \equiv y \pmod{p^n}$, per un qualche y soluzione di $(*_n)$, cioè $y \in \{y_1, \ldots, y_r\}$, ovvero $x = y + kp^n$, dove k è un intero opportuno. Poiché la soluzione x deve essere determinata $\pmod{p^{n+1}}$, allora dividendo k per p, abbiamo k = qp + t, dove $0 \le t \le p - 1$. Quindi:

$$x = x_t := y + tp^n$$
, $0 \leqslant t \leqslant p - 1$.

Si noti che $f(y) \equiv 0 \pmod{p^n}$, quindi $f(y)/p^n \in \mathbb{Z}$. In base al Lemma 4.5, posto $m := \deg(f(X))$, si ha:

$$f(x_t) = f(y + tp^n) = f(y) + \frac{f'(y)}{1!}tp^n + \dots + \frac{f^{(m)}(y)}{m!}(tp^n)^m.$$

Poiché $n+1 \le 2n < \cdots < n \cdot m$, si ha $0 \equiv p^{2n} \equiv \cdots \equiv p^{nm} \pmod{p^{n+1}}$ e quindi, dall'uguaglianza precedente, si ottiene:

$$f(x_t) \equiv f(y) + f'(y)tp^n \pmod{p^{n+1}}.$$

Pertanto $x_t = y + tp^n$ è soluzione di $(*_n)$ se, e soltanto se, esiste t, con $0 \le t \le p-1$, tale che:

$$0 \equiv f(y) + f'(y)tp^n \pmod{p^{n+1}},$$

ovvero, "cancellando p^n (cfr. Proposizione 1.9):

$$f'(y)t \equiv -\frac{f(y)}{p^n} \pmod{p}.$$

In conclusione, per ogni y soluzione di $(*_n)$, poniamo:

$$a = a(y) := f'(y), \quad b = b(y) := -\frac{f(y)}{p^n}.$$

Allora, per risolvere $(*_{n+1})$ ci siamo ricondotti a discutere della risolubilità della congruenza lineare in una nuova indeterminata (denotata T) con coefficienti a = a(y), b = b(y) che dipendono da y, al variare di y tra le soluzioni di $(*_n)$:

$$aT \equiv b \pmod{p} \tag{\bullet_y}$$

Per tale congruenza (\bullet_u) , distinguiamo tre casi:

I Caso. Se $a \not\equiv 0 \pmod{p}$, per ogni $y \in \{y_1, \dots, y_r\}$, la congruenza lineare (\bullet_y) ha una ed una sola soluzione $t \equiv a^* \cdot b \equiv a^{p-2}b \pmod{p}$.

In tal caso, $x_t = y + p^n t \equiv y - p^n \frac{f(y)}{p^n} (f'(y))^{p-2} = y - f(y) (f'(y))^{p-2}$ (mod p^{n+1}) è l'unica soluzione di $(*_{n+1})$ (mod p^{n+1}) determinata dalla soluzione y di $(*_{n+1})$.

II Caso. Se $a \equiv b \equiv 0 \pmod{p}$, la congruenza (\bullet_y) degenera, cioè è sod-disfatta per ogni t, con $0 \leqslant t \leqslant p-1$.

In tal caso, per ogni $y \in \{y_1, \dots, y_r\}$, le soluzioni distinte di $(*_{n+1})$ (cioè non congruenti modulo p^{n+1}) sono esattamente p, e sono date da:

$$x_t = y + tp^n, \quad 0 \leqslant t \leqslant p - 1.$$

III Caso. Se $a \equiv 0 \pmod{p}$ e $b \not\equiv 0 \pmod{p}$, allora (\bullet_y) non è risolubile. Quindi, $x_t = y + tp^n$ non è mai soluzione di $(*_{n+1})$, comunque si prenda t, con $0 \leqslant t \leqslant p-1$. Cioè, in altri termini, la soluzione $y \in \{y_1, \ldots, y_r\}$ di $(*_n)$ non determina alcuna soluzione di $(*_{n+1})$.

Vogliamo illustrare il risultato precedente con quattro esempi.

Esempio 4.8. Consideriamo la congruenza:

$$X^4 - 1 \equiv 0 \pmod{25}.$$

Notiamo, innanzitutto, che $X^4-1\equiv 0\pmod 5$, per il "Piccolo Teorema di Fermat, ha quattro soluzioni: $y_1=1,y_2=2,y_3=3,y_4=4$.

Se $f(X) := X^4 - 1$ allora $f'(X) = 4X^3$. Essendo $f'(y_i) \not\equiv 0 \pmod{5}$ per ogni $1 \leqslant i \leqslant 4$, allora ciascuna y_i determina un'unica soluzione di $f(X) \equiv 0 \pmod{25}$ data da:

$$x_i := y_i + \bar{t}_i \cdot 5,$$

dove \bar{t}_i è l'unica soluzione (mod 5) della seguente congruenza lineare nella indeterminata T associata ad y_i (che denotiamo semplicemente con (\bullet_i) invece che con (\bullet_{y_i})):

$$a(y_i)T \equiv b(y_i) \pmod{5}$$

dove $a(y_i):=f'(y_i)$ e $b(y_i):=-\frac{f(y_i)}{5}$, per $1\leqslant i\leqslant 4$. Per $i=1,\ a(1)=4$, b(1)=0, quindi la congruenza:

$$4T \equiv 0 \pmod{5} \tag{\bullet_1}$$

ha come soluzione $\bar{t}_1 = 0$, dunque $x_1 = y_1 = 1 \pmod{25}$.

Per i=2, a(2)=32, b(2)=-3, quindi la congruenza:

$$2T \equiv -3 \pmod{5} \tag{\bullet_2}$$

ha come soluzione $\bar{t}_2 = 1$, dunque $x_2 = 2 + 1 \cdot 5 = 7 \pmod{25}$.

Per i = 3, a(3) = 108, b(3) = -16, quindi la congruenza:

$$3T \equiv -1 \pmod{5} \tag{\bullet_3}$$

ha come soluzione $\bar{t}_3 = 3$, dunque $x_3 = 3 + 3 \cdot 5 = 18 \pmod{25}$.

Per i = 4, a(4) = 256, b(4) = -51, quindi la congruenza:

$$T \equiv -1 \pmod{5} \tag{\bullet_4}$$

ha come soluzione $\bar{t}_4 = -1$, dunque $x_4 = 4 - 5 = -1 \equiv 24 \pmod{25}$.

Può essere utile riassumere il procedimento precedente nella seguente tabella:

	p	n	$p^n \leadsto p^{n+1}$	f(X)	f'(X)
\prod	5	1	$5 \rightsquigarrow 25$	$X^4 - 1$	$4X^3$

$\mod p^n$	$\mod p$			$\mod p^{n+1}$	
y	f'(y)	$\frac{f(y)}{p^n}$	$f'(y)T \equiv \frac{-f(y)}{p^n}$	t	$x_t = y + tp^n$
1	4	0	$4T \equiv 0$	0	1
2	32	3	$2T \equiv -3$	1	7
3	108	16	$3T \equiv -1$	3	18
4	256	51	$T \equiv -1$	4	24

Il precedente esempio può essere generalizzato nella maniera seguente:

Esempio 4.9. Sia p un primo ed e un intero ≥ 1 . La congruenza:

$$f(X) := X^{p-1} - 1 \equiv 0 \pmod{p^e}$$

ha esattamente p-1 soluzioni distinte.

Infatti, se e=1, tale risultato è un'ovvia conseguenza del "Piccolo Teorema di Fermat. Sia $e \ge 2$ e sia y una soluzione di $f(X) \equiv 0 \pmod{p^{e-1}}$. È subito visto che $f'(y) = (p-1)y^{p-2} \not\equiv 0 \pmod{p}$ (essendo $y^{p-1} \equiv 1 \pmod{p}$) e, dunque, si è nel I Caso del Teorema 4.7.

Esempio 4.10. Consideriamo la congruenza:

$$X^{10} - 1 \equiv 0 \pmod{25}$$
.

Notiamo innanzitutto che la congruenza

$$X^{10} - 1 \equiv 0 \pmod{5}$$

ha due soluzioni: $y_1 = 1, y_2 = 4$.

Infatti $X^{10} = (X^4)^2 X^2$, dunque $X^{10} - 1 \equiv (X^4)^2 X^2 - 1 \pmod{5}$. Dal momento che, per il "Piccolo Teorema di Fermat, $x^4 \equiv 1 \pmod{5}$, per ogni x non congruo a 0 (mod 5), allora le soluzioni di $X^{10} - 1 \equiv 0 \pmod{5}$ coincidono con le soluzioni di $X^2 - 1 \equiv 0 \pmod{5}$, che sono appunto $y_1 = 1$ ed $y_2 = 4$ (per maggiori dettagli, cfr. anche la successiva Definizione 4.12 (e)).

Se $f(X) := X^{10} - 1$, allora $f'(X) = 10X^9$ e quindi $f'(y_i) \equiv 0 \pmod{5}$ per i = 1, 2. Inoltre, $f(y_i) \equiv 0 \pmod{25}$, per i = 1, 2 (ciò è ovvio per $y_1 = 1$, per $y_2 = 4$ è subito visto che $4^5 \equiv -1 \pmod{25}$. Infatti, $4^2 \equiv -9 \pmod{25}$, $4^4 \equiv 81 \equiv 6 \pmod{25}$, $4^5 \equiv 24 \equiv -1 \pmod{25}$, dunque $4^{10} \equiv (-1)^2 = 1 \pmod{25}$. Pertanto, y_1 determina le seguenti 5 soluzioni della congruenza data:

$$x_{1,t} := 1 + t \cdot 5$$
, per $0 \le t \le 4$.

Analogamente, y_2 determina le seguenti 5 soluzioni della congruenza data:

$$x_{2,t} := 4 + t \cdot 5$$
, per $0 \le t \le 4$.

In conclusione, la congruenza assegnata ha 10 soluzioni (mod 25). Può essere utile riassumere il procedimento precedente nella seguente tabella:

p	n	$p^n \leadsto p^{n+1}$	f(X)	f'(X)
5	1	$5 \rightsquigarrow 25$	$X^{10} - 1$	$10X^{9}$

$\mod p^n$	$\mod p$				$\mod p^{n+1}$
y	f'(y)	$\frac{f(y)}{p^n}$	$f'(y)T \equiv \frac{-f(y)}{p^n}$	t	$x_t = y + tp^n$
1	0	0	\bigcirc	0, 1, 2, 3, 4	1, 6, 11, 16, 21
4	0	0	\sim	0, 1, 2, 3, 4	4, 9, 14, 19, 24

L'esempio precedente si generalizza nella forma seguente:

Esempio 4.11. Sia p un primo dispari. La congruenza:

$$f(X) = X^{p\frac{p-1}{2}} - 1 \equiv 0 \pmod{p^2}$$
 (*2)

ammette $\frac{p(p-1)}{2}$ soluzioni distinte.

Si verifica preliminarmente che la congruenza $f(X) \equiv 0 \pmod{p}$ ammette esattamente $\frac{p-1}{2}$ soluzioni distinte.

Osserviamo, innanzitutto, che le soluzioni di:

$$f(X) = X^{p\frac{p-1}{2}} - 1 \equiv 0 \pmod{p}$$
 (*1)

sono le stesse di quelle della congruenza:

$$g(X) = X^{\frac{p-1}{2}} - 1 \equiv 0 \pmod{p}$$

dal momento che la congruenza $X^p \equiv X \pmod{p}$ ha come soluzioni tutti gli elementi di un sistema completo di residui (cfr. per maggiori dettagli la successiva Definizione 4.12 (e)).

Mostriamo, poi, che $g(X) \equiv 0 \pmod{p}$ ha esattamente $\frac{p-1}{2}$ soluzioni (mod p). Per questo, abbiamo bisogno del seguente

Lemma 4.12. Sia p un primo dispari. Le due congruenze:

$$X^{\frac{p-1}{2}} - 1 \equiv 0 \pmod{p} \tag{*}$$

$$X^{\frac{p-1}{2}} + 1 \equiv 0 \pmod{p} \tag{**}$$

ammettono ciascuna $\frac{p-1}{2}$ soluzioni distinte (modulo p). L'unione di tali insiemi di soluzioni costituisce un sistema ridotto di residui (modulo p).

Dimostrazione. Certamente x=0 non è soluzione nè di (*) nè di (**) e le due congruenze non possono ammettere soluzioni comuni perché p>2. Considerato il sistema ridotto di residui $S^*=\{1,2,\ldots,p-1\}$, basterà allora provare che (almeno) $\frac{p-1}{2}$ elementi di S^* verificano (*) e che (almeno) altrettanti verificano (**).

Osserviamo innanzitutto che gli interi

$$1^2, 2^2, \ldots, \left\lceil \frac{p-1}{2} \right\rceil^2$$

sono primi con p e, a due a due incongruenti (modulo p). Infatti se h, k sono interi tali che $1 \le h, k \le \frac{p-1}{2}$ e $h^2 \equiv k^2 \pmod{p}$, allora, $h^2 - k^2 = (h+k)(h-k) \equiv 0 \pmod{p}$ e quindi, $h \equiv k \pmod{p}$ (da cui h=k), oppure $h\equiv -k \pmod{p}$, cioè $h\equiv p-k \pmod{p}$, e perciò h=p-k, il che è assurdo.

Pertanto è possibile costruire un sistema ridotto di residui (modulo p), diciamo U^* , scegliendo opportunamente altri $\frac{p-1}{2}$ interi, che denotiamo con $t_1, \ldots, t_{\frac{p-1}{2}}$, nella maniera seguente:

$$U^* := \{1^2, 2^2, \dots, \left\lceil \frac{p-1}{2} \right\rceil^2, t_1, \dots, t_{\frac{p-1}{2}} \}.$$

Confrontando S^* con U^* , è chiaro che, per $\frac{p-1}{2}$ elementi $a \in S^*$, risulta $a \equiv h^2 \pmod{p}$ (con $1 \leqslant h \leqslant \frac{p-1}{2}$), mentre për altri $\frac{p-1}{2}$ elementi $a \in S^*$ risulta $a \equiv t_i \pmod{p} \pmod{1} \leqslant i \leqslant \frac{p-1}{2}$.

I Caso: Sia $a \equiv h^2 \pmod{p}$, con $1 \leqslant h \leqslant \frac{p-1}{2}$. Allora $a^{\frac{p-1}{2}} \equiv h^{p-1} \equiv 1 \pmod{p}$ (infatti $p \nmid h$ e, dunque, è applicabile il Teorema 3.1): pertanto a è soluzione di (*).

II Caso: Sia $a \in S^*$ tale che $a \equiv t_i \pmod{p}$. Per ogni $k \in S^*$, l'insieme $T^* := \{k, 2k, \dots, (p-1)k\}$ è ancora un sistema ridotto di residui (modulo p) (cfr. Esercizio 2.10) e, dunque, esiste un unico elemento $k' \in S^*$ tale che $kk' \equiv a \pmod{p}$. L'elemento k' è detto associato di k relativamente ad a (mod p) e, per ipotesi, è distinto da k. Infatti, se fosse k = k', allora $a \equiv k^2 \equiv (p-k)^2 \pmod{p}$ e uno dei due interi k, p-k dovrebbe essere minore o uguale a $\frac{p-1}{2}$. Ciò è escluso, in quanto stiamo supponendo $a \equiv t_i$ $\pmod{p} \pmod{1 \leqslant i \leqslant \frac{p-1}{2}}.$

Allora, fissato $a \in S^*$ con $a \equiv t_i \pmod{p}$, gli elementi di S^* si ripartiscono in due sottoinsiemi (disgiunti) di elementi non associati, cioè:

$$S^*: \{h_1, \dots, h_{\frac{p-1}{2}}\} \sqcup \{h'_1, \dots, h'_{\frac{p-1}{2}}\}$$

in modo che:

$$h_j h'_j \equiv a \pmod{p}, \ 1 \leqslant j \leqslant \frac{p-1}{2}.$$

Ne segue che:

$$(p-1)! = h_1 h'_1 \dots h_{\frac{p-1}{2}} h'_{\frac{p-1}{2}} \equiv \underbrace{a \cdot a \cdot \dots \cdot a}_{(p-1)/2 \text{ volte}} = a^{\frac{p-1}{2}} \pmod{p}$$

e dunque, in base al Teorema di Wilson:

$$(p-1)! \equiv -1 \equiv a^{\frac{p-1}{2}} \pmod{p}.$$

In tal caso, a è soluzione di (**) e la tesi è così dimostrata. Esempio 4.10 (seguito). Abbiamo visto sopra che le soluzioni di $(*_1)$ coincidono con quelle di (*). Sia y una delle $\frac{p-1}{2}$ soluzioni distinte di

$$X^{p\left(\frac{p-1}{2}\right)} - 1 \equiv 0 \pmod{p}.$$

allora: $f'(y) = p\left(\frac{p-1}{2}\right) \cdot y^{p\left(\frac{p-1}{2}\right)-1} \equiv 0 \pmod{p}$. Inoltre, si vede facilmente che $f(y) \equiv 0 \pmod{p^2}$. Infatti $y^{p\left(\frac{p-1}{2}\right)} - 1 = kp$ per qualche k, elevando al quadrato abbiamo che

$$k^{2}p^{2} = (y^{p\left(\frac{p-1}{2}\right)} - 1)^{2} = y^{p(p-1)} + 1 - 2y^{p\left(\frac{p-1}{2}\right)} \tag{\diamondsuit}$$

Inoltre, $\varphi(p^2) = p(p-1)$ e quindi per il Teorema di Euler:

$$z^{p(p-1)} \equiv 1 \pmod{p^2}$$

per ogni z relativamente primo con p^2 . Dunque, per z=y, da (\diamondsuit) abbiamo che:

$$0 \equiv 2 - 2y^{p\left(\frac{p-1}{2}\right)} \pmod{p^2}$$

e dunque che

$$y^{p\left(\frac{p-1}{2}\right)} - 1 \equiv 0 \pmod{p^2}.$$

Dunque siamo nella condizione del II Caso del Teorema 4.7 e ciò permette di concludere quanto enunciato nell'Esempio 4.11.

Veniamo ora al Problema II (A). Non esiste un procedimento teorico generale per determinare se una congruenza del tipo:

$$f(X) \equiv 0 \pmod{p}$$
,

con p primo e $f(X) \in \mathbb{Z}[X]$, ammetta soluzioni e, nel caso affermativo, per calcolarle esplicitamente. Ci limiteremo qui a svolgere semplici considerazioni generali tendenti a semplificare il problema e che, comunque, saranno utili nel seguito per la risoluzione delle congruenze quadratiche (modulo p), cioè congruenze del tipo $f(X) \equiv 0 \pmod{p}$, dove $f(X) \in \mathbb{Z}[X]$ e deg(f) = 2.

Cominciamo con la seguente definizione che estende ai polinomi a coefficienti in \mathbb{Z} la nozione di congruenza (mod n):

Definizione 4.13. Sia $n \in \mathbb{Z}, n > 0$ e siano

$$f = \sum_{i=0}^{r} a_i X^i, \quad g = \sum_{j=0}^{s} b_j X^j \in \mathbb{Z}[X].$$

(a) Si dice che il polinomio f è identicamente congruo a zero modulo n (in simboli, $f(X) \equiv_X 0 \pmod{n}$) se $a_i \equiv 0 \pmod{n}$ preso comunque $1 \leqslant i \leqslant r$.

- (b) Si dice che f è identicamente congruo a g modulo n (e si scrive $f \equiv_X g \pmod{n}$) se f g è identicamente congruo a zero modulo n (cioè se risulta $a_i \equiv b_i \pmod{n}$, per ogni i tale che $0 \leqslant i \leqslant \min(r, s)$ e se ad esempio $r = \min(r, s) < s$ allora $b_j \equiv 0 \pmod{n}$, per ogni j, con $r + 1 \leqslant j \leqslant s$).
- (c) Se $f(X) \not\equiv_X 0 \pmod{n}$, si chiama grado di f modulo n (e si scrive $\deg_n(f)$) il massimo intero m tale che $a_m \not\equiv 0 \pmod{n}$.
- (d) Si dice che f divide g modulo n (e si scrive $f \mid g \pmod{n}$) se esiste $h \in \mathbb{Z}[X]$ tale che $fh \equiv_X g \pmod{n}$.
- (e) Si dice inoltre che f(X) è equivalente a g(X) modulo n, (in simboli $f(X) \sim g(X) \pmod{n}$) se, per ogni $a \in \mathbb{Z}$, $f(a) \equiv g(a) \pmod{n}$.

Se $f(X) \sim g(X) \pmod{n}$, allora le congruenze:

$$f(X) \equiv 0 \pmod{n}$$
 e $g(X) \equiv 0 \pmod{n}$

hanno le stesse soluzioni (modulo n).

Osservazione 4.14. (1) Si consideri l'omomorfismo suriettivo tra anelli di polinomi:

$$\bar{\varphi}_n : \mathbb{Z}[X] \longrightarrow (\mathbb{Z}/n\mathbb{Z})[X], \ f \mapsto \bar{f},$$

che estende in modo naturale l'omomorfismo canonico suriettivo

$$\varphi_n: \mathbb{Z} \longrightarrow (\mathbb{Z}/n\mathbb{Z}),$$

(cioè $\bar{\varphi}_n$ è così definito:

per ogni $f := \sum_{i=0}^m a_i X^i \in \mathbb{Z}[X], \ \overline{\varphi}_n(f) = \overline{f} := \sum_{i=0}^m \overline{a}_i X^i, \text{ con } \overline{a}_i := a_i + n\mathbb{Z} =: \varphi_n(a)).$

È del tutto evidente che:

- (a') $f \equiv_X 0 \pmod{n} \iff \bar{f} = 0 \pmod{\mathbb{Z}/n\mathbb{Z}}[X];$
- (b') $f \equiv_X g \pmod{n} \iff \bar{f} = \bar{g} \pmod{\mathbb{Z}/n\mathbb{Z}[X]};$
- (c') $\deg_n(f) = \deg(\bar{f});$
- (d') $f \mid g \pmod{n} \iff \bar{f} \mid \bar{g} \pmod{\mathbb{Z}/n\mathbb{Z}}[X]$.
- (2) Si noti che, per ogni intero $n \ge 0$, se $f \equiv_X g \pmod{n}$, allora $\deg_n(f) = \deg_n(g)$. Si noti, inoltre, che se p è un numero primo e $f, g \in \mathbb{Z}[X]$ sono due polinomi non identicamente congrui a $0 \pmod{p}$, allora $\deg_p(fg) = \deg_p(f) + \deg_p(g)$. Una uguaglianza di tale tipo in generale non vale (mod n), se n non è un primo: ad esempio se f = 2X 1, g = 2X + 1 e se n = 4, allora $\deg_n(fg) = 0$ mentre $\deg_n(f) = \deg_n(g) = 1$.

Proposizione 4.15. Siano $a, n \in \mathbb{Z}, n > 0$ ed $f, g \in \mathbb{Z}[X]$. Risulta:

- (a) $(X a) \mid f \pmod{n}$ se, e soltanto se, $f(a) \equiv 0 \pmod{n}$.
- **(b)** Se $f \equiv_X g \pmod{n}$, allora $f \sim g \pmod{n}$. In particolare, quindi, le congruenze:

$$f(X) \equiv 0 \pmod{n}$$
 $e \quad g(X) \equiv 0 \pmod{n}$

hanno le stesse soluzioni.

Dimostrazione. Semplice esercizio.

Osservazione 4.16. La prima affermazione della Proposizione 4.15 (b) non si inverte, in generale. Ad esempio posto f(X) = X, $g(X) = X^p$ con p primo, si ha che $f \not\equiv_X g \pmod{p}$ (cfr. Definizione 4.13 (b)), mentre $f(a) \equiv g(a) \pmod{p}$, per ogni $a \in \mathbb{Z}$, cioè $f \sim g \pmod{p}$ (cfr. Corollario 3.2).

Corollario 4.17. Sia $n \in \mathbb{Z}, n > 0$, e sia $f := \sum_{i=0}^{m} a_i X^i \in \mathbb{Z}[X]$. Posto $\hat{f}(X) := \sum_{i=0}^{m} \hat{a}_i X^i$ con $a_i \equiv \hat{a}_i \pmod{n}, 0 \leqslant \hat{a}_i \leqslant n-1$ e $0 \leqslant i \leqslant m$, allora $\deg_n(f) = \deg(\hat{f})$ ed inoltre:

$$f(X) \equiv_X \hat{f}(X) \pmod{n}$$
.

Corollario 4.18. Sia p primo ed $f(X) \in \mathbb{Z}[X]$. Esiste un polinomio $\widetilde{f}(X) \in \mathbb{Z}[X]$ di grado $\leqslant p-1$, eventualmente uguale al polinomio nullo, tale che:

$$f(X) \sim \widetilde{f}(X) \pmod{p}$$
.

Dimostrazione. Sia $f(X) := \sum_{i=0}^{m} a_i X^i$ con $m := \deg_p(f(X))$. Se $m \leq p-1$, si pone $\widetilde{f} := f$. Se invece $m \geq p$, si pone:

$$\widetilde{f} := \sum_{i=0}^{p-1} a_i X^i + \sum_{j=p}^m a_j X^{r_j},$$

dove r_j , con $1 \leqslant r_j \leqslant p-1$, è il "resto del seguente "tipo particolare" di divisione di j per p-1:

$$j = q_j(p-1) + r_j$$
, (con $p \le j \le m$).

In altri termini sostituiamo X^p con X, essendo $X^p \sim X$, X^{p+1} con X^2 , essendo $X^{p+1} \sim X^2$, etc.. Utilizzando il "Piccolo Teorema di Fermat, si verifica subito che:

$$f(a) - \widetilde{f}(a) \equiv 0 \pmod{p}$$
 per ogni $a \in \mathbb{Z}$ e da ciò segue la tesi. \square

Per illustrare il Corollario 4.18, si noti che se p è un primo dispari e $f(X):=X^{p\left(\frac{p-1}{2}\right)}-1$ allora $\widetilde{f}(X)=X^{\frac{p-1}{2}}-1$. Abbiamo già notato sopra (Esempio 4.11) che:

$$f(X) \sim \widetilde{f}(X) \pmod{p}$$
.

Teorema 4.19. (Teorema di Lagrange)

Sia p un primo ed $f \in \mathbb{Z}[X]$ tale che $\deg_p(f) = m \geqslant 1$. La congruenza:

$$f(X) \equiv 0 \pmod{p}$$

ammette al più m soluzioni distinte (cioè incongruenti modulo p).

Dimostrazione. Si procede per induzione su $m \ge 1$.

Se m = 1, allora $f(X) \equiv a_0 + a_1 X \equiv 0 \pmod{p}$, con $MCD(a_1, p) = 1$. In tal caso è ben noto (cfr. Lemma 2.3) che la congruenza ammette un'unica soluzione (modulo p).

Sia $m \ge 2$ ed assumiamo che il teorema sia vero per ogni polinomio di grado positivo $\le m-1$ (modulo p). Se la congruenza in esame non ha soluzioni, la tesi è ovvia; se viceversa $a \in \mathbb{Z}$ ne è una soluzione, si divide f(X) per X-a ottenendo un polinomio $g(X) \in \mathbb{Z}[X]$ tale che:

$$f(X) = (X - a)q(X) + f(a).$$

Da ciò segue che $f(X) \equiv_X (X - a)q(X) \pmod{p}$ e pertanto le congruenze:

$$f(X) \equiv 0 \pmod{p}$$
 e $(X - a)q(X) \equiv 0 \pmod{p}$

hanno lo stesso insieme di soluzioni (mod p). Se ora $b \in \mathbb{Z}$ è un'altra soluzione della prima congruenza e se $b \not\equiv a \pmod{p}$, allora $(b-a)q(b) \equiv 0 \pmod{p}$ e quindi, essendo p primo, $q(b) \equiv 0 \pmod{p}$.

Tenendo presente che $\deg_p(q) \leq m-1$, la tesi discende immediatamente dalla ipotesi induttiva applicata alla congruenza $q(X) \equiv 0 \pmod{p}$.

Corollario 4.20. Siano f, p ed m come nel Teorema 4.19 e sia \tilde{f} in $\mathbb{Z}[X]$ come nel Corollario 4.18 (cioè $f \sim \tilde{f} \pmod{p}$ e $\deg_p(\tilde{f}) \leqslant p-1$), allora la congruenza $f(X) \equiv 0 \pmod{p}$ ha al più \tilde{m} soluzioni distinte \pmod{p} , dove $\tilde{m} := \deg_p(\tilde{f}) \leqslant \deg_p(f)$.

Dimostrazione. Semplice conseguenza del Teorema 4.19, applicato ad \widetilde{f} , dal momento che le congruenze

$$f(X) \equiv 0 \pmod{p}$$
 e $\widetilde{f}(X) \equiv 0 \pmod{p}$

hanno le stesse soluzioni (modulo p).

Esempio 4.21. Sia p=3, $f(X)=X^5+X+1$. Allora $\deg_3(f)=5$, $X^5\sim X^3\sim X\pmod 3$, quindi $\widetilde f:=X+X+1=2X+1$. Pertanto le soluzioni della congruenza $X^5+X+1\equiv 0\pmod 3$ sono al più tante quante le soluzioni di $2X+1\equiv 0\pmod 3$, cioè una. Precisamente, $\widetilde f(X)\equiv 0\pmod 3$ (e $f(X)\equiv 0\pmod 3$) hanno un'unica soluzione, che è data da $x\equiv 1\pmod 3$.

Osservazione 4.22. Il Teorema di Lagrange non vale, in generale, per congruenze modulo un intero non primo. Ad esempio, la congruenza:

$$X^2 - 1 \equiv 0 \pmod{8}$$

ammette quattro soluzioni distinte (e cioè 1, 3, 5, 7), pur essendo il polinomio di secondo grado, $\deg_8(X^2 - 1) = 2$. Per un'estensione di questo esempio rinviamo al successivo Esercizio 4.4.

Corollario 4.23. Conservando le notazioni ed ipotesi del Teorema 4.19 e denotando con a_1, a_2, \ldots, a_t ($0 \le t \le m$) le soluzioni distinte di $f(X) \equiv 0$ (mod p), si ha:

$$f(X) \equiv_X g(X)(X - a_1)^{e_1} (X - a_2)^{e_2} \cdot \dots \cdot (X - a_t)^{e_t} \pmod{p}$$

dove e_1, e_2, \ldots, e_t sono interi positivi tali che $\sum_{i=1}^t e_i \leq m$ e dove g(X) in $\mathbb{Z}[X]$, $\deg_p(g) \geq 0$ e la congruenza $g(X) \equiv 0 \pmod{p}$ non è risolubile.

Dimostrazione. Basta iterare l'argomentazione usata nella dimostrazione del Teorema 4.19. \Box

Proposizione 4.24. Sia p primo, $f \in \mathbb{Z}[X]$ e t il numero delle soluzioni distinte della congruenza:

$$f(X) \equiv 0 \pmod{p}$$
.

Risulta:

$$t = \deg_p(f) \iff f \mid (X^p - X) \pmod{p}.$$

Dimostrazione. Notiamo innanzitutto che, per il Corollario 4.23,

$$X^p - X \equiv_X X(X-1)(X-2) \cdot \dots \cdot (X-(p-1)) \pmod{p}$$

 (\Rightarrow) Se $t = \deg_p(f)$, allora per il Corollario 4.23

$$f(X) \equiv_X (X - a_1)(X - a_2) \cdot \dots \cdot (X - a_t) \pmod{p}$$

con $\{a_1, a_2, \dots, a_t\} \subseteq \{0, 1, \dots, p-1\}.$

Dunque è ovvio che $f(X) \mid (X^p - X) \pmod{p}$.

(\Leftarrow) Se $f(X)g(X) \equiv_X X^p - X \pmod{p}$ per un qualche $g(X) \in \mathbb{Z}[X]$, allora per l'Osservazione 4.13 (2) $\deg_p(f(X)g(X)) = \deg_p(f(X)) + \deg_p(g(X)) = \deg_p(X^p - X) = p$ ed inoltre le seguenti congruenze:

$$X^{p} - X \equiv 0 \pmod{p}$$

$$f(X)g(X) \equiv 0 \pmod{p} \tag{*_{fq}}$$

hanno le stesse soluzioni. Poiché la prima congruenza ha p soluzioni, anche la seconda congruenza deve avere p soluzioni.

Osserviamo che le soluzioni della congruenza $(*_{fg})$ sono le soluzioni di almeno una delle seguenti due congruenze:

$$f(X) \equiv 0 \pmod{p} \tag{*_f}$$

$$g(X) \equiv 0 \pmod{p}. \tag{*_q}$$

Per il Teorema di Lagrange $(*_f)$ ha al più $\deg_p(f)$ soluzioni e $(*_g)$ ha al più $\deg_p(g)$ soluzioni, quindi $(*_{fg})$ ha al più $\deg_p(f(X)) + \deg_p(g(X)) = p$ soluzioni. Pertanto, affinché accada che $(*_{fg})$ abbia esattamente p soluzioni distinte, deve accadere che tanto $(*_f)$ quanto $(*_g)$ abbiano ciascuna il massimo numero di soluzioni distinte possibili e cioè, rispettivamente, $\deg_p(f)$ e $\deg_p(g)$ (inoltre, le soluzioni di $(*_f)$ debbono essere distinte da quelle di $(*_g)$). \square

Osservazione 4.25. (1) Utilizzando la definizione di divisibilità di polinomi (mod n) si definisce facilmente anche un MCD di due polinomi $f, g \in \mathbb{Z}[X]$ (mod n) essendo un polinomio $h \in \mathbb{Z}[X]$ che verifica le seguenti due proprietà:

- $h \mid f \in h \mid g \pmod{n}$;
- $h' \mid f \in h' \mid g \pmod{n} \Rightarrow h' \mid h \pmod{n}$.

È subito visto che se esiste un MCD (mod n) di due polinomi f, g questo è "essenzialmente unico" a meno di congruenze (mod n) ed è denotato brevemente con $MCD_n(f,g)$. Se poi n=p è un numero primo, allora si dimostra che, presi comunque due polinomi non identicamente congrui a $0 \pmod{p}$, esiste sempre $MCD_p(f,g)$.

(2) La Proposizione 4.23 è un semplice corollario del seguente risultato più generale:

Siano p, f(X) e t come nella Proposizione 4.24. Sia $h \in \mathbb{Z}[X]$ il massimo comun divisore dei polinomi f e $X^p - X$ (mod p). Risulta allora:

$$t = \deg_p(h)$$
.

Dimostrazione. Con le notazioni del Corollario 4.23, ricordiamo che possiamo scrivere $f \equiv_X g \cdot (X - a_1)^{e_1} \cdot (X - a_2)^{e_2} \cdot \cdots \cdot (X - a_t)^{e_t}$ ed inoltre $X^p - X \equiv_X X(X - 1) \cdot \cdots \cdot (X - (p - 1)) \pmod{p}$ (cfr. Corollario 3.2). Da ciò segue facilmente che $\mathrm{MCD}_p(f, X^p - X)$ esiste ed è dato da $h := (X - a_1)(X - a_2) \cdot \cdots \cdot (X - a_t)$ e dunque che $\deg_p(h) = t$.

Terminiamo questo paragrafo con un teorema dimostrato da C. Chevalley e che riguarda polinomi in più indeterminate.

Sia $f \in \mathbb{Z}[X_1, \dots, X_r]$, dunque possiamo rappresentare f nella maniera seguente:

$$f = \sum_{0 \leqslant i_1, \dots, i_r \leqslant t} a_{i_1, i_2, \dots, i_r} X_1^{i_1} X_2^{i_2} \dots X_r^{i_r},$$

con $a_{i_1, i_2, ..., i_r} \in \mathbb{Z} \text{ e } i_1, i_2, ..., i_r \geqslant 0.$

Poniamo, per semplicità di notazione, $f = \sum_{i} a_{i} X^{i}$, dove $i := (i_{1}, \ldots, i_{r})$ è un multi-indice e $X^{i} := X_{1}^{i_{1}} X_{2}^{i_{2}} \ldots X_{r}^{i_{r}}$. L'intero $i_{1} + i_{2} + \cdots + i_{r}$ si chiama grado (complessivo) del monomio $a_{i_{1},i_{2},\ldots,i_{r}} X_{1}^{i_{1}} X_{2}^{i_{2}} \ldots X_{r}^{i_{r}}$. Il massimo dei gradi dei monomi del polinomio f si dice grado (complessivo) di f e viene denotato con $\deg(f)$. Se $n \geq 0$ si denota con $\deg_{n}(f)$ il massimo dei gradi (complessivi), $i_{1} + i_{2} + \cdots + i_{r}$, dei monomi del polinomio f per i quali $a_{i_{1},i_{2},\ldots,i_{r}} \not\equiv 0 \pmod{n}$.

Definizione 4.26. Sia $f := \sum_{i} a_{i} X^{i} \in \mathbb{Z}[X_{1}, X_{2}, \dots, X_{r}]$ e sia $n \geq 0$. Diremo che il polinomio f è identicamente congruo a zero (modulo n), in simboli $f \equiv_{\mathbf{X}} 0 \pmod{n}$, se $a_{i} \equiv 0 \pmod{n}$ per ciascun multi-indice i. Se $f, g \in \mathbb{Z}[X_{1}, X_{2}, \dots, X_{r}]$, diremo che f è identicamente congruo a g (modulo n), in simboli $f \equiv_{\mathbf{X}} g \pmod{n}$, se $f - g \equiv_{\mathbf{X}} 0 \pmod{n}$.

Diremo che f è equivalente a g (modulo n), in simboli $f \sim g \pmod{n}$, se preso comunque $(a_1, \ldots, a_r) \in \mathbb{Z}^r$,

$$f(a_1, \dots, a_r) \equiv g(a_1, \dots, a_r) \pmod{n}$$

È ovvio che, se $f \equiv_{\mathbf{X}} g \pmod{n}$, allora $\deg_n(f) = \deg_n(g)$. Inoltre:

$$f \equiv_{\mathbf{X}} g \pmod{n} \Rightarrow f \sim g \pmod{n}$$
.

Abbiamo già osservato per polinomi in una indeterminata che non è vero il viceversa.

Proposizione 4.27. Sia $f \in \mathbb{Z}[X_1, X_2, \dots, X_r]$, sia m il grado complessivo di f e sia p un numero primo.

Esiste un polinomio $\widetilde{f} \in \mathbb{Z}[X_1, X_2, \dots, X_r]$, eventualmente nullo, con il grado di \widetilde{f} in ciascuna indeterminata $\leq p-1$, tale che

$$f \sim \widetilde{f} \pmod{p}$$
.

Dimostrazione. Per ogni $k \ge p-1$, si consideri una divisione con il "resto di k rispetto a (p-1), del "tipo particolare" seguente:

$$k = q \cdot (p-1) + r \quad \text{con } 1 \leqslant r \leqslant p-1.$$

È ovvio che, per ogni $1 \le i \le r$, se $k = q \cdot (p-1) + r$ allora:

$$X_i^k \sim X_i^r \pmod{p}$$
.

Applicando questa "trasformazione ad ogni indeterminata X_i ed ad ogni esponente $\geqslant p-1$, si ottiene un polinomio \widetilde{f} che soddisfa alla proprietà enunciata.

Proposizione 4.28. Siano $f, g \in \mathbb{Z}[X_1, X_2, \dots, X_r]$ sia p un primo fissato e siano $\widetilde{f}, \widetilde{g} \in \mathbb{Z}[X_1, X_2, \dots, X_r]$ come nella Proposizione 4.27.

$$\widetilde{f} \sim \widetilde{g} \pmod{p} \iff \widetilde{f} \equiv_{\boldsymbol{X}} \widetilde{g} \pmod{p}$$

Dimostrazione. (\Rightarrow) Passando al polinomio f-g, basta dimostrare che se $h \in \mathbb{Z}[X_1, X_2, \dots, X_r]$, con grado di $h \leq p-1$ in ogni indeterminata, allora:

$$h \sim 0 \pmod{p} \Rightarrow h \equiv_{\mathbf{X}} 0 \pmod{p}$$
.

Si proceda per induzione sul numero delle indeterminate r.

Se r = 1, un polinomio di grado $\leq p - 1$ con p radici distinte deve essere identicamente congruo a zero (modulo p) per il Teorema di Lagrange. Sia $(x_2, \ldots, x_r) \in \mathbb{Z}^{r-1}$, poniamo:

$$w(X_1) := h(X_1, x_2, \dots, x_r) = \sum_{j=0}^{p-1} h_j(x_2, \dots, x_r) X_1^j \in \mathbb{Z}[X_1].$$

Riapplicando il Teorema di Lagrange a $w(X_1)$ abbiamo che:

$$w \equiv_{X_1} 0 \pmod{p}$$
, cioè $h_i \sim 0 \pmod{p}$, per ogni j.

Dunque, per ipotesi induttiva, h_j è identicamente congruo a 0 (modulo p) per ogni j, e quindi $h \equiv_{\mathbf{X}} 0 \pmod{p}$.

$$(\Leftarrow)$$
 È banale.

Nel 1935 E. Artin congetturò che una congruenza polinomiale priva di termine noto (modulo p), con p primo, ha sempre una soluzione non banale se il numero delle indeterminate del polinomio è maggiore del grado (complessivo) del polinomio. Ad esempio, se $a,b,c\in\mathbb{Z}$, con $abc\not\equiv 0$ (mod p),

$$aX^2 + bY^2 + cZ^2 \equiv 0 \pmod{p}$$

ha sempre almeno una soluzione non banale. Tale congettura fu dimostrata nel 1936 da C. Chevalley.

Teorema 4.29. (C. Chevalley)

Sia p un primo e siano $f, g \in \mathbb{Z}[X_1, X_2, \dots, X_r]$ due polinomi ciascuno con grado (complessivo) $\leq r - 1$.

(a) Se la congruenza

$$f(X_1, X_2, \dots, X_r) \equiv 0 \pmod{p} \tag{3}$$

è risolubile, allora ha almeno due soluzioni.

(b) Se g è un polinomio privo di termine noto (ad esempio un polinomio omogeneo non costante), allora la congruenza

$$q(X_1, X_2, \dots, X_r) \equiv 0 \pmod{p} \tag{4}$$

ha sempre una soluzione non banale.

Dimostrazione. (b) segue immediatamente da (a), in quanto la congruenza (4) possiede sempre la soluzione banale $(0,0,\ldots,0)$.

(a) Supponiamo che (3) possieda un'unica soluzione:

$$(a_1, a_2, \ldots, a_r) \pmod{p}$$
.

Consideriamo il polinomio

$$h(X_1, X_2, \dots, X_r) := 1 - f(X_1, X_2, \dots, X_r)^{p-1}$$

Siano $x_1, x_2 \dots, x_r \in \mathbb{Z}$, è ovvio che:

$$h(x_1, ..., x_r) \equiv \begin{cases} 1 \pmod{p}, & \text{se } x_i \equiv a_i \pmod{p}, \text{ per ogni } i \\ 0 \pmod{p}, & \text{altrimenti }. \end{cases}$$

Sia \widetilde{h} un polinomio di grado $\leqslant p-1$ in ciascuna indeterminata tale che $h \sim \widetilde{h}$ (mod p) (cfr. Proposizione 4.27).

Si consideri, poi, il seguente polinomio:

$$h^*(X_1, X_2, \dots, X_r) := \prod_{i=1}^r (1 - (X_i - a_i)^{p-1})$$

È subito visto che $h^* \sim h \pmod{p}$ e dunque $h^* \sim \widetilde{h} \pmod{p}$. Quindi, per la Proposizione 4.28, $h^* \equiv_{\boldsymbol{X}} \widetilde{h} \pmod{p}$. Questo è impossibile perchè $\deg_p(h^*) = (p-1) \cdot r$, mentre $\deg_p(\widetilde{h}) \leqslant \deg_p(h) = (p-1) \deg_p(f) < (p-1) \cdot r$. Pertanto la congruenza (3) non può possedere un'unica soluzione.

4. Esercizi e Complementi

- **4.1.** Siano p un primo ed e, d due interi positivi. Mostrare che:
- (a) Se la congruenza $f(X) \equiv 0 \pmod{p}$ ammette s soluzioni distinte e tutte non singolari, lo stesso è vero per la congruenza $f(X) \equiv 0 \pmod{p^e}$, per ogni $e \geqslant 1$.
- (b) Se $d \mid (p-1)$, la congruenza $X^d 1 \equiv 0 \pmod{p^e}$ ha esattamente d soluzioni per ogni $e \geqslant 1$.

Suggerimento. (a). Sia y una soluzione non singolare della congruenza

$$f(X) \equiv 0 \pmod{p^n} \tag{*_n}$$

e sia $x = y + \bar{t}p^n$ l'unica soluzione della congruenza

$$f(X) \equiv 0 \pmod{p^{n+1}} \tag{*_{n+1}}$$

con $1 \le n \le e-1$. Utilizzando il Lemma 4.5 per il polinomio f'(X) calcolato in x, abbiamo che

$$f'(x) = f'(y) + \bar{t} p^n f''(y) + \dots \equiv f'(y) \pmod{p}$$
.

- (b). Se $y^d \equiv 1 \pmod{p}$, allora $dy^{d-1} \not\equiv 0 \pmod{p}$. L'asserto discende da (a) e dalla Proposizione 4.24 (cfr. anche il successivo Lemma ??).
- **4.2.** (a) Verificare le seguenti congruenze polinomiali modulo un primo p dispari:
- (1) $X^{p-1} 1 \equiv_X (X 1)(X 2) \cdot \ldots \cdot [X (p-1)] \pmod{p}$;
- (2) $X^{p-2} + X^{p-3} + \dots + X + 1 \equiv_X (X 2)(X 3) \cdot \dots \cdot [X (p-1)] \pmod{p}$.
- (b) Utilizzando la (1) di (a), ridimostrare il Teorema di Wilson.
- [Suggerimento. (a)(1) Si osservi che $(X k) \mid (X^{p-1} 1) \pmod{p}$, per ogni $k \ (1 \le k \le p 1)$.
- (2) segue da (1) e dal fatto che $X^{p-1} 1 = (X 1)(X^{p-2} + X^{p-3} + \dots + X + 1)$.
- **(b)** Basta porre X = p in (1).
- **4.3.** Sia $f(X) \in \mathbb{Z}[X]$ con $\deg(f) \geqslant 1$. Dimostrare che esistono infiniti primi p tali che la congruenza $f(X) \equiv 0 \pmod{p}$ è risolubile.

[Suggerimento. Se $f(X) = a_0 + a_1 X + \cdots + a_n X^n$, allora $f(a_0 X) = a_0 (1 + Xg(X))$, con $g(X) \in \mathbb{Z}[X]$.

Questa osservazione permette di ricondurci al caso in cui $a_0 = 1$ ovvero f(X) = 1 + Xg(X). Supponiamo, per assurdo, che $f(X) \equiv 0$ sia risolubile soltanto (mod p_i) per i = 1, 2, ..., t. Poniamo $N := p_1 p_2 p_t$. Dal momento che $\lim_{x \to +\infty} |f(x)| = +\infty$, è ovviamente possibile trovare h >> 0 in modo tale che, per $M := N^h$, $|f(M)| \neq 1$. Poiché f(M) = 1 + Mg(M), allora deve essere MCD(f(M), M) = 1. Pertanto se $p \mid M$ allora $p \nmid f(M)$ e quindi perveniamo ad un assurdo.]

4.4. Mostrare che, per ogni s > 0, esiste un intero N > 0 tale che la congruenza $X^2 \equiv 1 \pmod{N}$ ha più di s soluzioni.

[Suggerimento. Se p è un primo dispari, $X^2 \equiv 1 \pmod{p}$ ha le due soluzioni 1, p-1. Quindi, se p_1, p_2, \ldots, p_r sono primi distinti, $X^2 \equiv 1 \pmod{p_1 p_2 \cdot \ldots \cdot p_r}$ ha esattamente 2^r soluzioni distinte. Basta trovare r tale che $2^r > s$ e porre $N = p_1 p_2 \cdot \ldots \cdot p_r$.

4.5. Verificare che il Corollario 4.18 non è più valido se si sostituiscono p e p-1 rispettivamente con n e $\varphi(n)$ (con $n \in \mathbb{Z}, n \ge 2$).

[Suggerimento. Si scelga, ad esempio, n = 4 e $f(X) = X^3 - X$.]

4.6. Siano p, f(X) e t definiti come nella Proposizione 4.24.

Posto $F := MCD(f, X^p - X)$, massimo comun divisore calcolato in $\mathbb{Z}[X]$, è vero che $t = \deg_p(F)$?

[Suggerimento. La risposta è negativa: si ponga p=5 ed $f(X)=(X+2)(X+1)^2$ da cui t=2 e F(X)=X+1, perché

$$X^{5} - X = X(X^{4} - 1) =$$

$$= X(X^{2} - 1)(X^{2} + 1) =$$

$$= X(X + 1)(X - 1)(X^{2} + 1).$$

4.7. (Teorema di Warning) Sia $f \in \mathbb{Z}[X_1, \ldots, X_r]$, con $\deg(f) < r$, e sia p un numero primo. La congruenza $f \equiv 0 \pmod{p}$ ha un numero di soluzioni (in \mathbb{Z}^r) divisibile per p.

[Suggerimento. Seguire un'argomentazione simile a quella utilizzata per dimostrare il Teorema di Chevalley. Precisamente se $\mathbf{a}_i = (a_{i1}, a_{i2}, \dots, a_{ir})$, per $i = 1, 2, \dots, s$, sono le soluzioni della congruenza data, considerare il polinomio:

$$h^*(X_1, X_2, \dots, X_r) := \sum_{i=1}^s \prod_{j=1}^r (1 - (X_j - a_{ij})^{p-1}).$$

4.8. Determinare le soluzioni della congruenza:

$$f(X) := X^2 + X + 7 \equiv 0 \pmod{27}$$
.

[Soluzione. La congruenza:

$$X^2 + X + 7 \equiv 0 \pmod{3} \tag{*1}$$

ha un'unica soluzione $y \equiv 1 \pmod{3}$.

Consideriamo la congruenza:

$$X^2 + X + 7 \equiv 0 \pmod{3^2}.$$
 (*2)

Osserviamo che f'(X)=2X+1, quindi $f'(y)\equiv 0\pmod 3$. Inoltre, $f(1)\equiv 0\pmod 9$, dunque gli elementi $y_1=1,\ y_2=1+3=4,\ y_3=1+2\cdot 3=7$ sono le soluzioni di $(*_2)$.

Per calcolare le soluzioni della congruenza data:

$$X^2 + X + 7 \equiv 0 \pmod{3^3} \tag{*_3}$$

osserviamo che:

$$f'(y_1) = 3 \equiv 0 \pmod{3}$$
 $f(y_1) = 9 \equiv 9 \pmod{27}$
 $f'(y_2) = 9 \equiv 0 \pmod{3}$ $f(y_2) = 27 \equiv 0 \pmod{27}$
 $f'(y_3) = 15 \equiv 0 \pmod{3}$ $f(y_3) = 63 \equiv 9 \pmod{27}$.

Quindi, y_1 non determina soluzioni di $(*_3)$ (cioè non esiste nessuna soluzione t della congruenza

$$3T \equiv -\frac{9}{9} = -1 \pmod{3} \tag{\bullet_1}$$

e quindi nessun intero $x=y_1+t\cdot 3^2$ è tale che $f(x)\equiv 0\pmod{27}$). Mentre, y_2 determina tre soluzioni di $(*_3)$ date da:

$$x_{2,1} = y_2 + 0 \cdot 3^2 = 4$$
, $x_{2,2} = y_2 + 1 \cdot 3^2 = 13$, $x_{2,3} = y_2 + 2 \cdot 3^2 = 22 \pmod{27}$

(dal momento che la congruenza

$$9T \equiv -\frac{27}{9} = -3 \pmod{3} \tag{\bullet_2}$$

è risolubile per $t = 0, 1, 2 \pmod{3}$).

Infine, y_3 non determina soluzioni di $(*_3)$ (in quanto la congruenza

$$15T \equiv -\frac{63}{9} = -7 \equiv -1 \pmod{3} \tag{\bullet_3}$$

non è risolubile).

In definitiva, le soluzioni della congruenza assegnata sono: $x=4,13,22\pmod{27}$.]