Università degli Studi di Roma Tre

Corso di Studi in Matematica, A.A. 2009/2010

TN1 - Introduzione alla Teoria dei Numeri

21 maggio 2010

Martina Lanini

- 1. Trovare tutti i triangoli pitagorici aventi ipotenusa ≤ 26 .
- 2. Esistono triangoli pitagorici con area pari al loro perimetro? Determinare eventualmente tali triangoli.
- 3. Si risolvano, quando possibile, le seguenti congruenze:
 - (a) $x^7 \equiv 9 \pmod{17}$
 - **(b)** $x^5 \equiv 13 \pmod{21}$
 - (c) $5^x \equiv 7 \pmod{11}$
 - (d) $13^x \equiv 6 \pmod{23}$
- 4. Si determinino i valori del parametro α affinché le seguenti equazioni siano risolubili e se ne calcolino le corrispondenti soluzioni:
 - (a) $x^3 \equiv \alpha \pmod{7}$ $\alpha \in \{1, \dots, 6\}$
 - **(b)** $2x^{11} \equiv \alpha \pmod{13}$ $\alpha \in \{5, 6, 7, 8\}$
 - (c) $4^x \equiv 3\alpha \pmod{5}$ $\alpha \in \{1, \dots, 4\}$
 - (d) $7^x \equiv \alpha \pmod{17}$ $\alpha \in \{11, 12, 13\}$
- 5. Si risolvano, quando possibile, le seguenti congruenze:
 - (a) $3x^2 + x 5 \equiv 0 \pmod{19}$
 - **(b)** $x^2 17x + 10 \equiv 0 \pmod{39}$
 - (c) $2x^2 + x + 41 \equiv 0 \pmod{63}$
- 6. Si determinino i valori del parametro α ($3 \le \alpha \le 8$) affinché le seguenti equazioni siano risolubili e se ne calcolino le corrispondenti soluzioni:
 - (a) $x^2 + \alpha x + 1 \equiv 0 \pmod{15}$
 - (b) $\alpha x^2 + 4x + 1 \equiv 0 \pmod{15}$
 - (c) $x^2 + 4x + \alpha \equiv 0 \pmod{15}$
- 7. Si calcolino i seguenti simboli di Legendre: $\left(\frac{6}{13}\right)$, $\left(\frac{235}{67}\right)$, $\left(\frac{72}{91}\right)$, $\left(\frac{84}{127}\right)$.

- 8. (Appello A, 2006-2007).
 - (a) Determinare per quali interi a, $1 \le a \le 13$, relativamente primi con 14 il seguente simbolo di Jacobi vale 1: $\left(\frac{a}{14}\right)$
 - (b) Determinare per quali interi $a, 1 \le a \le 14$, relativamente primi con 14 la congruenza quadratica $x^2 a \equiv 0 \pmod{14}$ 'e risolubile.
- 9. Sia $F(n) := 2^n + 3$. É una funzione moltiplicativa? Se possibile, si calcolino $F^{-1}(39)$ e f(39) (dove f é la funzione determinata dalla formula di inversione di Möbius).
- 10. (Appello B, 2006-2007). Sia μ la funzione di Moebius:
 - (a) Dimostrare che se n è un intero positivo pari, allora $\mu(n) + \mu(n+1) + \mu(n+2) < 3$.
 - (b) Determinare il più piccolo intero positivo $n \in \mathbb{N}$ tale che $\mu(n) + \mu(n+1) + \mu(n+2) = 3$.
 - (c) Determinare $\sum_{k=1}^{\infty} \mu(k!)$.