AL410 (ex-AL3) - Algebra Commutativa - A.A. 2010/2011 Valutazione "in itinere" – Prima Prova

AVVERTENZE: Svolgere il tema, utilizzando al più 3 facciate di un foglio protocollo e scrivendo in modo chiaro e conciso (nel punteggio si terrà conto della leggibilità del testo elaborato).

TEMA: Anelli di frazioni, localizzazioni ed anellli locali: enunciare i principali risultati, dando di alcuni di essi le dimostrazioni.

ESERCIZI. (1) Sia $A := \mathbb{Z}/12\mathbb{Z}$ e sia $f := [2]_{12}$ (= $2 + 12\mathbb{Z}$) $\in A$. Si ponga $S := \{f^n \mid n \geq 0\}$. Descrivere gli elementi dell'anello delle frazioni $S^{-1}A$ e lo spettro primo di tale anello.

(2) Sia K un campo, X una indeterminata su K e sia A:=K[X]. Dato un insieme finito $\{\alpha_1,\alpha_2,...,\alpha_n\}\subseteq K$ sia

$$S := \{ f \in K[X] \mid f(\alpha_i) \neq 0, \text{ per ogni } 1 \leq i \leq n \}.$$

Descrivere l'anello delle frazioni $S^{-1}A$ e lo spettro primo dell'anello di $S^{-1}A$.

- (3) Sia A := K[X] e sia $I := \bigcap \{(X \alpha) \mid \alpha \in K\}$. Determinare il generatore dell'ideale principale I in ciacuno dei seguenti casi:
 - (a) K è un campo infinito; (b) $K = \mathbb{Z}/p\mathbb{Z}$, dove p è un numero primo.
 - (4) Sia A un anello e X una indeterminata su A.
- **(4.a)** Mostrare che $f \in A[X]$ è un divisore dello zero in A[X] se e soltanto se esista $a \in A$, $a \neq 0$, in modo tale che $af = 0 \in A[X]$.
- (4.b) Caratterizzare in funzione dei suoi coefficienti quando $f \in A[X]$ è invertibile in A[X].
- (4.c) Caratterizzare in funzione dei suoi coefficienti quando $f \in A[X]$ è nilpotente in A[X].
- (4.d) Mostare, o confutare con un controesempio, che per ogni anello A il nilradicale (cioè, l'ideale formato dagli elementi nilpotenti) di A[X] coincide con il suo radicale di Jacobson.

Soluzioni ----

SOLUZIONI

Soluzione Esercizio 1. Sia $\varphi: R \to S^{-1}R$ l'omomorfismo canonico. Si vede che $[3]_{12}$ è in Ker (φ) (essendo $[3]_{12} \cdot [4]_{12} = [0]_{12}$ con $[4]_{12} \in S$). Anzi precisamente $[3]_{12}R = \text{Ker}(\varphi)$ (essendo $[3]_{12}R$ un ideale massimale in R). Quindi $\mathbb{Z}/3\mathbb{Z} \cong (\mathbb{Z}/12\mathbb{Z})/(3\mathbb{Z}/12\mathbb{Z}) \subseteq S^{-1}R$.

Inoltre, per le proprietà degli anelli di frazioni $S^{-1}R$ ha un unico ideale primo (=massimale) $S^{-1}[3]_{12} := [3]_{12}S^{-1}R$ che è l'unico dei due soli ideali primi di R (che sono $[2]_{12}R$ e $[3]_{12}R$) che è disgiunto da S e quindi "sopravvive" in $S^{-1}R$. Una verifica diretta mostra anche facilmente che $S^{-1}R$ è un anello ridotto (anche se R non lo è). Da ciò si può concludere che $\mathbb{Z}/3\mathbb{Z} \cong S^{-1}R$.

Soluzione Esercizio 2. $\Sigma^{-1}A = \{f/g \mid f, g \in K[X], g \notin \bigcup_i (X - \alpha_i)\}$. Da ciò segue che $\operatorname{Spec}(\Sigma^{-1}A) = \{\Sigma^{-1}(X - \alpha_i) \mid 1 \leq i \leq n\}$.

Soluzione Esercizio 3. (a)
$$I=(0);$$
 (b) $I=(X^p-X)=(X(X-\overline{1})(X-\overline{2})\cdot\ldots\cdot(X-\overline{p-1})).$

Soluzione Esercizio 4. (a) Per la parte non banale, sia $g \in A[X]$, di grado m minimo tale che fg = 0. Si procede per induzione su m. Il caso m = 0 è l'ipotesi attuale. Se $m \ge 1$ e se a_n è il coefficiente direttore di f, allora $a_n b_m = 0$. Pertanto $b_m f$ (se non nullo) è un polinomio divisore dello zero di grado minore di quello di f. Si conclude per induzione.

- (b, c) $f = a_0 + a_1 X + ... + a_n X^n$ è invertibile [rispettivamente, nilpotente] se e soltanto se a_0 è invertibile ed a_i è nilpotente per ogni $i \ge 1$ [rispettivamente, a_k è nilpotente per ogni $k \ge 0$]. Le verifiche sono semplici.
- (d) Basta osservare che se $f \in \text{Jac}(A[X])$, allora ad esempio 1 + Xf è invertibile e quindi tutti i coefficienti del polinomio Xf (e quindi di f) sono nilpotenti (per (b)). La conclusione segue da (c).