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ON v -DOMAINS AND STAR OPERATIONS
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Let ∗ be a star operation on an integral domain D. Let f �D� be the set of all nonzero
finitely generated fractional ideals of D. Call D a ∗-Prüfer (respectively, �∗� v�-Prüfer)
domain if �FF−1�∗ = D (respectively, �FvF−1�∗ = D) for all F ∈ f �D�. We establish
that ∗-Prüfer domains (and �∗� v�-Prüfer domains) for various star operations ∗ span
a major portion of the known generalizations of Prüfer domains inside the class of
v-domains. We also use Theorem 6.6 of the Larsen and McCarthy book [30], which
gives several equivalent conditions for an integral domain to be a Prüfer domain, as
a model, and we show which statements of that theorem on Prüfer domains can be
generalized in a natural way and proved for ∗-Prüfer domains, and which cannot be.
We also show that in a ∗-Prüfer domain, each pair of ∗-invertible ∗-ideals admits a
GCD in the set of ∗-invertible ∗-ideals, obtaining a remarkable generalization of a
property holding for the “classical” class of Prüfer v-multiplication domains. We also
link D being ∗-Prüfer (or �∗� v�-Prüfer) with the group Inv∗�D� of ∗-invertible ∗-ideals
(under ∗-multiplication) being lattice-ordered.

Key Words: Completely integrally closed domain; v-Domain; GCD domain; ∗-Invertible ideal;
Prüfer domain; ∗-Prüfer domain; Star operation.

2000 Mathematics Subject Classification: 13A15; 13F05; 13G05.

The so called v-domains (i.e., the integral domains such that every nonzero
finitely generated fractional ideal is v-invertible) include several distinguished classes
of Prüfer-like domains, but not much seems to be known about them. (For a brief
history of v-domains and an annotated list of references on this important class of
domains, see [45]). The aim of this article is to prove new properties of v-domains
in their most general form, using star operations, and to give a unifying pattern in
this body of results. As a consequence, after specializing the star operation to some
relevant cases, we also obtain several properties already known for various classes
of Prüfer-like domains, providing a clear indication how these properties and classes
of domains are related to one another.

Received December 10, 2007; Revised August 6, 2008. Communicated by R. Wiegand.
Address correspondence to Dr. Muhammad Zafrullah, Department of Mathematics, Idaho State

University, Pocatello, ID 83209, USA; E-mail: mzafrullah@usa.net

3018

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Z
a
f
r
u
l
l
a
h
,
 
M
u
h
a
m
m
a
d
]
 
A
t
:
 
1
8
:
5
6
 
2
2
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



ON v-DOMAINS AND STAR OPERATIONS 3019

Let D be an integral domain with quotient field K, and let F�D� denote
the set of nonzero fractional ideals of D. Also, let f �D� �= �A ∈ F�D� �A is
finitely generated� and F v�D� �= �A ∈ F�D� �A = Av� the set of fractional divisorial
ideals, where Av �= �A−1�−1. Let ∗ be a star operation on D. (For a review
of star operations, the reader may consult Gilmer [21, Sections 32 and 34] or
Halter-Koch [23] for a general approach in the language of ideal systems on
monoids.) Call A ∈ F�D� ∗-invertible if �AA−1�∗ = D. We say that D is a completely
integrally closed domain (for short, CICD) if D = D̃ �= �x ∈ K � there exists
0 �= d ∈ D such that dxn ∈ D for all integers n ≥ 1�. It is well known that D is a
completely integrally closed domain if and only if D = �AA−1�v�= �AvA−1�v� for all
A ∈ F�D� [21, Theorem 34.3]; in particular, a CICD is a v-domain.

These days it is customary to take a concept defined or characterized using
the standard v-operation and to ask for domains that are characterized or defined
by replacing the v-operation by a general star operation. It appears that in the case
of CICD’s there are at least two star operation analogues. Let ∗ be a general star
operation on D. Call D a ∗-completely integrally closed domain (for short, ∗-CICD) if
�AA−1�∗ = D for all A ∈ F�D�, and call D a �∗� v�–completely integrally closed domain
(for short, �∗� v�-CICD) if �AvA−1�∗ = D for all A ∈ F�D�. Clearly, a ∗-CICD, or a
�∗� v�-CICD, is a v-domain, since �A∗�v = Av = �Av�∗ for all A ∈ F�D�. Moreover, a
∗-CICD is a �∗� v�-CICD, but not conversely.

Let ∗1� ∗2 be two star operations on D. Recall that ∗1 ≤ ∗2 if A∗1 ⊆ A∗2 for
all A ∈ F�D�. For instance, we have w ≤ t ≤ v, where the t-operation (respectively,
w-operation) is defined by setting At �= ⋃

�Fv �F ⊆ A� F ∈ f �D�� (respectively,
Aw �= ⋂

�ADP �P is a maximal t-ideal of D}) for all A ∈ F�D�; cf. for instance
[21, Theorem 34.1], [40], [5, Section 2], and [15, Sections 3 and 4].

Clearly, if ∗1� ∗2 are two star operations on D with ∗1 ≤ ∗2, then a ∗1-CICD
(respectively, �∗1� v�-CICD) D is a ∗2-CICD (respectively, �∗2� v�-CICD). Recall that
∗ ≤ v for every star operation ∗ on D [21, Theorem 34.1], and hence �AA−1�∗ = D
implies �AA−1�v = D for A ∈ F�D�, i.e., a ∗-invertible ideal is v-invertible. Therefore
a �∗� v�-CICD (and, in particular, a ∗-CICD) is a v-CICD (= CICD). However,
since A ∈ F�D� being ∗-invertible implies A∗ = Av [44, p. 433], a distinction between
∗-CICD’s and �∗� v�-CICD’s appears highly unlikely. But, as we shall see, there is
a marked distinction between them in several cases.

In a preliminary part of this article, we discuss the motivations and the
advantages for studying star operation analogues of CICD’s, we give some
characterizations of �∗� v�-CICD’s, we give interpretations of �∗� v�-CICD’s for
different star operations ∗, we compare them with ∗-CICD’s, and we review results
known for both.

Having dealt with this topic of immediate interest in Section 1, we investigate
in Section 2 the main theme of this article studying a “star operation version” of
v-domains. We call D a ∗-Prüfer domain if every nonzero finitely generated ideal of
D is ∗-invertible (i.e., �FF−1�∗ = D for all F ∈ f �D�), and we call D a �∗� v�-Prüfer
domain if Fv is ∗-invertible (i.e., �FvF−1�∗ = D) for all F ∈ f �D�. Clearly, if ∗1� ∗2
are two star operations on D with ∗1 ≤ ∗2, then a ∗1-Prüfer domain (respectively,
�∗1� v�-Prüfer domain) D is a ∗2-Prüfer domain (respectively, �∗2� v�-Prüfer domain).
Clearly, a ∗-Prüfer domain, or a �∗� v�-Prüfer domain, is a v-domain. Moreover, a
∗-Prüfer domain is a �∗� v�-Prüfer domain, but not conversely.
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3020 ANDERSON ET AL.

These domains have been partially studied in [7] as special cases of rather
general results [7, Theorem 4.1 and Corollary 4.3]. Since the proofs provided in
[7] were sort of dismissive, we provide here direct proofs of some of the relevant
results stated in [7], and we prove some more. We establish in this section that
∗-Prüfer domains (and �∗� v�-Prüfer domains) for various star operations ∗ span
a major portion of the known generalizations of Prüfer domains inside the class
of v-domains. For example, for ∗ = d (i.e., the identity star operation), we get a
d-Prüfer domain which is precisely a Prüfer domain; for ∗ = t, we get a t-Prüfer
domain which is precisely a Prüfer v-multiplication domain (or a PvMD); and of
course for ∗ = v, we get the usual v-domain. In this section, we also use Theorem 6.6
of Larsen and McCarthy [30], which gives several equivalent conditions for an
integral domain to be a Prüfer domain, as a model, and we show which statements
of that theorem on Prüfer domains can be generalized in a natural way and proved
for ∗-Prüfer domains and which cannot be. In particular, we show that D is a
∗-Prüfer domain if and only if ��A ∩ B��A+ B��∗ = �AB�∗ for all A�B ∈ F�D�. This
type of result is known for Prüfer domains [21, Theorem 25.2] and for PvMD’s
[22, Theorem 5], but is definitely not known for v-domains.

The last part of the article deals with a general form of GCD for ∗-Prüfer
domains (in particular, for v-domains) and connections with lattice-ordered abelian
groups. The key fact is that an integral domain D is a ∗-Prüfer domain if and
only if A+ B is ∗-invertible for all ∗-invertible A�B ∈ F�D�. Recall that D is a
GCD domain if for all x� y ∈ D× �= D\�0�, we have GCD�x� y� ∈ D. Now a Bézout
domain D (e.g., a PID) is slightly more than a GCD domain in that for all nonzero
ideals aD and bD, we have a unique ideal dD with aD + bD = dD, where d is
a GCD of a and b. Moreover, note that aD and bD are invertible ideals and
that in a Prüfer domain nonzero finitely generated ideals are invertible. If we
regard, for every pair of integral invertible ideals A and B of a Prüfer domain, the
invertible ideal C �= A+ B as the GCD of A and B, then we find that A�B ⊆ C.
Hence, A1 �= AC−1 ⊆ D and B1 �= BC−1 ⊆ D, and so A = A1C and B = B1C, where
A1 + B1 = D� Thus, in a Prüfer domain, each pair of integral invertible ideals has
a GCD of sorts. In [12, Section 1], the above observations were used to show
that in t-Prüfer domains (= Prüfer v-multiplication domains), each pair of integral
t-invertible t-ideals has a GCD of sorts, generalizing to this setting some aspects of
the GCD theory of Bézout domains. In the general context of ∗-Prüfer domains, we
show that each pair of integral ∗-invertible ∗-ideals has a GCD of sorts. This result
is a slightly bigger jump than the t-Prüfer domain case in that, in a ∗-Prüfer domain,
a ∗-invertible ∗-ideal may not be of finite type.

1. STAR COMPLETELY INTEGRALLY CLOSED DOMAINS

Recall that a ring R is a multiplication ring if for all ideals A and B of
R with A ⊆ B, there exists an ideal C of R such that A = BC (cf. for instance,
[30, Definition 9.12, p. 209]). Clearly, a Dedekind domain is a multiplication ring,
and more precisely, for an integral domain the notions of Dedekind domain and
multiplication ring coincide [30, Theorem 9.13].

Given a star operation ∗ on an integral domain D, it is natural to call
D a ∗-multiplication domain (respectively, �∗� v�-multiplication domain) if for all
A�B ∈ F�D� with A∗ ⊆ B∗ (respectively, A∗ ⊆ Bv), there exists C ∈ F�D� such that

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Z
a
f
r
u
l
l
a
h
,
 
M
u
h
a
m
m
a
d
]
 
A
t
:
 
1
8
:
5
6
 
2
2
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



ON v-DOMAINS AND STAR OPERATIONS 3021

A∗ = �BC�∗ (respectively, A∗ = �BvC�∗). Note that star multiplication domains, and
in particular, divisorial multiplication domains were recently investigated in relation
to Gabriel topologies by Escoriza and Torrecillas [13].

As usual, for all A�B ∈ F�D�, we denote the fractional ideal �A �K B� �= �x ∈
K � xB ⊆ A� by �A � B� and the ideal �A � B� ∩D by �A �D B�.

Proposition 1.1. Let ∗ be a star operation on an integral domain D. Then:

(a) D is a ∗-CICD if and only if D is a ∗-multiplication domain; and
(b) D is a �∗� v�-CICD if and only if D is a �∗� v�-multiplication domain.

Proof. (a) If D is a ∗-CICD and A∗ ⊆ B∗, then C �= B−1A ∈ F�D� satisfies
�BC�∗ = �BB−1A�∗ = ��BB−1�∗A�∗ = �DA�∗ = A∗.

Conversely, for each A ∈ F�D�, let 0 �= a ∈ A, and so aD ⊆ A∗. By
assumption, there exists C ∈ F�D� such that �AC�∗ = aD, i.e., �Aa−1C�∗ = D.
Note that B �= a−1C ∈ F�D� and a−1C ⊆ �D � A�. Therefore, we conclude that
D = �Aa−1C�∗ ⊆ �AA−1�∗ ⊆ D, i.e., �AA−1�∗ = D.

(b) If D is a �∗� v�-CICD and A∗ ⊆ Bv, then C �= B−1A ∈ F�D� satisfies
�BvC�∗ = �BvB−1A�∗ = ��BvB−1�∗A�∗ = �DA�∗ = A∗.

Conversely, for each A ∈ F�D�, let 0 �= a ∈ A, and so aD ⊆ Av. By assumption,
there exists C ∈ F�D� such that �AvC�∗ = aD, i.e., �Ava−1C�∗ = D. Note that
B �= a−1C ∈ F�D� and a−1C ⊆ �D � Av� = �D � A�. Therefore, we conclude that
D = �Ava−1C�∗ ⊆ �AvA−1�∗ ⊆ D, i.e., �AvA−1�∗ = D. �

Proposition 1.2. Let ∗ be a star operation on an integral domain D. Then D is a
�∗� v�-CICD if and only if �AB�−1 = �A−1B−1�∗ for all A�B ∈ F�D��

Proof. Suppose that D is a �∗� v�-CICD, and consider A�B ∈ F�D�. Then
D = ��AB�v�AB�−1�∗. Multiplying both sides of the above equation by A−1B−1, and
applying ∗, we get:

�A−1B−1�∗ = (
A−1B−1�AB�v�AB�−1

)∗ ⊇ (
A−1B−1AvBv�AB�−1

)∗
= (

�A−1Av��B−1Bv��AB�−1
)∗ ⊇ �A−1Av�∗�B−1Bv�∗��AB�−1�∗

= (
�AB�−1

)∗ = �AB�−1�

For the reverse inclusion, note that A−1B−1 ⊆ �AB�−1, and so �A−1B−1�∗ ⊆
��AB�−1�∗ = �AB�−1.

Conversely, if �AB�−1 = �A−1B−1�∗ for all A�B ∈ F�D�, then in particular
�A−1Av�−1 = �AvA−1�∗ for all A ∈ F�D�. Now, as AvA−1 = A−1Av ⊆ D, we have
D ⊆ �A−1Av�−1 = �AvA−1�∗ ⊆ D. Thus �AvA−1�∗ = D for all A ∈ F�D�; so D is a
�∗� v�-CICD. �

Proposition 1.3. Let ∗ be a star operation on an integral domain D. Then:

(a) If D is a ∗-CICD, then D is a �∗� v�-CICD;
(b) If D is a �∗� v�-CICD, then D is a completely integrally closed domain.
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3022 ANDERSON ET AL.

Proof. From the definition, and from the fact that �Av�−1 = A−1 for all
A ∈ F�D�, it follows immediately that a ∗-CICD is a �∗� v�-CICD. Furthermore,
if we have �AvA−1�∗ = D for all A ∈ F�D�, then �AvA−1�v = D, and so
�AA−1�v = �AvA−1�v = D, i.e., D is a completely integrally closed domain. �

These results are simple and straightforward, but their value is in the
interpretation of the �∗� v�-CICD for different star operations ∗. We shall give
examples of �∗� v�-CICD’s that are not ∗-CICD’s for the same ∗. Most of our
examples come from [7], which provides a lot of quotient-based characterizations
of ∗-CICD’s and of �∗� v�-CICD’s. Since the method of proof in [7] was somewhat
involved, we include direct proofs of these characterizations here.

Proposition 1.4 ([7, Corollary 3.4]). Let ∗ be a star operation on an integral
domain D. Then the following conditions are equivalent:

(i) �A � B�∗ = �AB−1�∗ for all A�B ∈ F�D�;
(ii) �A � B−1�∗ = �AB�∗ for all A�B ∈ F�D�;
(iii) �A∗ � B� = �AB−1�∗ for all A�B ∈ F�D�;
(iv) �A∗ � B−1� = �AB�∗ for all A�B ∈ F�D�;
(v) D is a ∗-CICD;
(vi) D is a CICD and A∗ = Av for all A ∈ F�D�;
(vii) �Av � B−1� = �AvB�∗ for all A�B ∈ F�D�.

Proof. Let us note that (v)⇔(vi) is well known and it is the only part of the proof
directly given in [7, Corollary 3.4 and Proposition 3.2]. For the rest, we use the
following plan: (i) ⇒ (iii) ⇒ (v) ⇒ (i) and (ii) ⇒ (iv) ⇒ (vii) ⇒ (v) ⇒ (ii).

(i) ⇒ (iii). Replace A by A∗ in (i) to get �A∗ � B�∗ = �A∗B−1�∗, and note that
�A∗ � B� is a ∗-ideal and that �A∗B−1�∗ = �AB−1�∗. So �A∗ � B� = �AB−1�∗ for all
A�B ∈ F�D��

(iii) ⇒ (v). Set B = A∗ in (iii) to get �A∗ � A∗� = �A�A∗�−1�∗ = �AA−1�∗.
Noting that D ⊆ �A∗ � A∗� = �AA−1�∗ ⊆ D, we have �AA−1�∗ = D for all A ∈ F�D�.

(v) ⇒ (i). Note that AB−1 ⊆ �A � B�; so �AB−1�∗ ⊆ �A � B�∗. For the reverse
inclusion, let x ∈ �A � B�∗. Then xB ⊆ �A � B�∗B, and so xB∗ ⊆ ��A � B�∗B�∗ =
��A � B�B�∗ ⊆ A∗� This gives xB∗ ⊆ A∗. Multiplying by B−1 on both sides, and
applying ∗, we have �xB∗B−1�∗ ⊆ �A∗B−1�∗ = �AB−1�∗. Invoking (v), we get
x ∈ �AB−1�∗.

(ii) ⇒ (iv). Same as (i) ⇒ (iii).

(iv) ⇒ (vii). Replace A by Av in (iv) to get ��Av�∗ � B−1� = �AvB�∗, and note
that �Av�∗ = Av.

(vii) ⇒ (v). Set A = B−1 in (vii) to get �B−1 � B−1� = �B−1B�∗, and proceed as
in the proof of (iii) ⇒ (v) in order to get �B−1B�∗ = D.

(v) ⇒ (ii). The proof is more or less similar to the proof of (v) ⇒ (i). More
precisely, AB ⊆ �A � B−1�, and so �AB�∗ ⊆ �A � B−1�∗. Conversely, let x ∈ �A � B−1�∗.
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ON v-DOMAINS AND STAR OPERATIONS 3023

Then xB−1 ⊆ �A � B−1�∗B−1, and so x�B−1�∗ ⊆ ��A � B−1�∗B−1�∗ = ��A � B−1�B−1�∗ ⊆
A∗. This gives x�B−1�∗ ⊆ A∗. Multiplying by B on both sides, and applying ∗, we
have �x�B−1�∗B�∗ ⊆ �A∗B�∗ = �AB�∗. Invoking (v), we get x ∈ �AB�∗. �

For the �∗� v�-CICD case, we have the following set of quotient-based
characterizations.

Proposition 1.5 ([7, Corollary 3.5]). Let ∗ be a star operation on an integral domain
D. Then the following conditions are equivalent:

(i) D is a �∗� v�-CICD;
(ii) �Av � B� = �AvB−1�∗ for all A�B ∈ F�D�;
(iii) �Av � B−1� = �AvBv�∗ for all A�B ∈ F�D�;
(iv) �A � B�v = �AvB−1�∗ for all A�B ∈ F�D�;
(v) �A � B−1�∗ = �ABv�∗ for all A�B ∈ F�D�;
(vi) �A∗ � B−1� = �ABv�∗ for all A�B ∈ F�D�.

Proof. (i) ⇒ (ii). Obviously, AvB−1 ⊆ �Av � B�, and so �AvB−1�∗ ⊆ �Av � B�∗ =
�Av � B�. For the reverse inclusion, let x ∈ �Av � B�. Then xB ⊆ Av, and so xBv ⊆ Av.
Multiplying the last equation by B−1, and applying ∗, we get �xBvB−1�∗ ⊆ �AvB−1�∗.
Invoking (i), we have x ∈ �AvB−1�∗, and from this follows �Av � B� ⊆ �AvB−1�∗�

(ii) ⇒ (iii). Replace B by B−1 in �Av � B� = �AvB−1�∗ for all A�B ∈ F�D��

(iii) ⇒ (i). Set B = A−1 in the equality �Av � B−1� = �AvBv�∗ to get �Av � Av� =
�AvA−1�∗. But since D ⊆ �Av � Av� = �AvA−1�∗ ⊆ D, we conclude that �AvA−1�∗ = D
for all A ∈ F�D�, and so D is a �∗� v�-CICD.

(i) ⇒ (iv). Note that AB−1 ⊆ �A � B�. So �AB−1�v ⊆ �A � B�v. This gives
AvB−1 ⊆ �AB−1�v ⊆ �A � B�v, and from this we conclude that �AvB−1�∗ ⊆ �A � B�v.
For the reverse inclusion, let x ∈ �A � B�v. Then xB ⊆ �A � B�vB, and so
xBv ⊆ ��A � B�vB�v = ��A � B�B�v ⊆ Av. This gives xBv ⊆ Av, and on multiplying by
B−1 on both sides, we get xBvB−1 ⊆ AvB−1. Applying ∗ on both sides and invoking
(i), we conclude that x ∈ �AvB−1�∗. This establishes the reverse inclusion.

(iv) ⇒ (i). Set B = A in �A � B�v = �AvB−1�∗ to get �A � A�v = �AvA−1�∗. But
then D ⊆ �A � A�v = �AvA−1�∗ ⊆ D for all A ∈ F�D�. That is, �AvA−1�∗ = D for all
A ∈ F�D�, and this is (i).

(v) ⇒ (vi). This is obvious once we replace A by A∗ and note that
�A∗ � B−1�∗ = �A∗ � B−1��

(vi) ⇒ (i). Set A = B−1 in (vi) to get �B−1 � B−1� = �B−1Bv�∗, which can be
used to conclude that �B−1Bv�∗ = D for all B ∈ F�D�.

(i) ⇒ (v). Clearly, ABv ⊆ �A � B−1�, and so �ABv�∗ ⊆ �A � B−1�∗. For the
reverse inclusion, let x ∈ �A � B−1�∗. Then xB−1 ⊆ �A � B−1�∗B−1. So xB−1 ⊆ ��A �
B−1�∗B−1�∗ = ��A � B−1�B−1�∗ ⊆ A∗. Multiplying both sides of xB−1 ⊆ A∗ by Bv,
we have xB−1Bv ⊆ A∗Bv. Applying ∗, and invoking (i), we conclude that
x ∈ �A∗Bv�∗ = �ABv�∗. �
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3024 ANDERSON ET AL.

Remark 1.6. It is easy to verify that statement (ii) of Proposition 1.5 can be
equivalently stated as in [7, Corollary 3.5 (2)]:

(ii′) �Av � Bv� = �AvB−1�∗ for all A�B ∈ F�D�.

The next result provides a useful characterization of ∗-invertible fractional
ideals and sheds new light on Proposition 1.4.

Proposition 1.7. Let ∗ be a star operation on an integral domain D, and let
H ∈ F�D�. Then H is ∗-invertible if and only if �A � H�∗ = �A∗ � H�∗ = �AH−1�∗ for all
A ∈ F�D�.

Proof. Note that, in general, we have �A � H�∗ ⊆ �A∗ � H�∗ = �A∗ � H� for all
A�H ∈ F�D� [21, p. 406, Exercise 1].

Assume that H is ∗-invertible, and let x ∈ �A∗ � H�. Therefore, xH ⊆ A∗.
Multiplying both sides by H−1, and applying ∗, we get x ∈ �A∗H−1�∗ = �AH−1�∗.
This gives �A∗ � H� ⊆ �AH−1�∗. Next, let y ∈ AH−1. Multiplying both sides by H , we
get yH ⊆ AH−1H ⊆ A, and thus y ∈ �A � H�. So AH−1 ⊆ �A � H�, and consequently
�AH−1�∗ ⊆ �A � H�∗. Putting it all together, we get �A � H�∗ ⊆ �A∗ � H� ⊆ �AH−1�∗ ⊆
�A � H�∗, which establishes the equalities.

Conversely, assume that �A � H�∗ = �AH−1�∗ for all A ∈ F�D�. In particular,
for A = H , we have D ⊆ �H � H�∗ = �HH−1�∗ ⊆ D, and so H is ∗-invertible. �

Remark 1.8. Note that Proposition 1.7 can be also deduced from [23,
Corollary 12.1]. We thank Halter-Koch for pointing out this fact and for informing
us that, using the ideal systems approach on commutative monoids, he has proved
a general result on invertibility [25] that implies the previous Propositions 1.1, 1.4,
1.5, and 1.7.

We next give some examples of ∗-CICD’s.

Example 1.9. Let ∗ be a star operation on an integral domain D.
Case: ∗ = v.
The following properties are equivalent:

(i) D is a v-CICD;
(ii) D is a �v� v�-CICD;
(iii) D is a CICD;
(iv) �AB�−1 = �A−1B−1�v for all A�B ∈ F�D�;
(v) D is a v-multiplication domain.

The previous statement is an immediate consequence of Propositions 1.1, 1.2,
1.3, and the fact that, from the definition of a ∗-CICD, the notions of v-CICD and
CICD coincide. Note that the equivalence (iii)⇔(v) gives back [13, Theorem 3.7
((1) ⇔ (2))].

The case of a star operation of finite character is particularly interesting.
Let ∗ be a star operation on an integral domain D. The operation defined by
A∗f �= ⋃

�F ∗ �F ⊆ A� F ∈ f �D�� for all A ∈ F�D� is a star operation on D, called
the star operation of finite character associated to ∗. When ∗ = ∗f , ∗ is called a star
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operation of finite character. As usual, we denote by t the star operation of finite
character associated to the v–operation, i.e., t �= vf . We have ∗f ≤ ∗ for each star
operation ∗, and hence, as we have already observed in the introduction, a ∗f -CICD
is a ∗-CICD. Note that a ∗f -CICD is a special case of a ∗f -Prüfer domain. It is
obvious from the definitions that the notion of ∗f -Prüfer domain coincides with that
of Prüfer ∗-multiplication domain (for short, P∗MD), i.e., an integral domain such
that �FF−1�∗f = D for all F ∈ f �D� [14, 24, 27].

In order to give better interpretations of ∗f -CICD’s and �∗f � v�-CICD’s, we
start by recalling that an integral domain D is a Dedekind domain (respectively, Krull
domain) if and only if every A ∈ F�D� is invertible (respectively, t-invertible) (see,
e.g., [21, Theorem 37.1] and [28, Theorem 3.2]). Let d be the identity star operation.
Since d ≤ ∗ (respectively, ∗f ≤ t [21, Theorem 34.1 (4)]) for all star operations ∗ on
D, if AA−1 = D (respectively, �AA−1�∗f = D), then also �AA−1�∗ = D (respectively,
�AA−1�t = D). Therefore a Dedekind domain is a ∗-CICD for all star operations ∗
on D and a ∗f -CICD is not just a CICD, but more precisely, it is a Krull domain
such that A∗f = At�= Av� for all A ∈ F�D� (Proposition 1.4 ((v) ⇒ (vi))).

The previous remarks provide a motivation for the following terminology.
Let us call a Krull domain such that A∗f = At for all A ∈ F�D� a ∗-Dedekind
domain. Clearly, a ∗f -CICD coincides with a ∗-Dedekind domain (which is identical
by definition to a ∗f -Dedekind domain), a v-Dedekind domain is just a Krull
domain, and a ∗-Dedekind domain is a particular P∗MD. Next, call a �∗f � v�-CICD
a �∗� v�-Dedekind domain; in other words, a �∗� v�-Dedekind domain is an integral
domain D such that Av is ∗f -invertible for all A ∈ F�D�. Obviously, the notions of
�∗� v�-Dedekind domain and �∗f � v�-Dedekind coincide.

Example 1.10. Let ∗ be a star operation on an integral domain D.
Case: ∗ = d (where d is the identity star operation).
The following properties are equivalent:

(i) D is a d-Dedekind domain (= d-CICD);
(ii) D is a Dedekind domain;
(iii) F v�D� = F�D� and �AB�−1 = A−1B−1 for all A�B ∈ F�D�.

As a matter of fact, a Dedekind domain is an integral domain such that
every nonzero fractional ideal is invertible (cf. for instance [21, Theorem 37.1]). The
equivalence of (ii) and (iii) is in [42, Corollary 1.3] or [6, Theorem 2.8]. Moreover,
from Proposition 1.2, we have that the following properties are equivalent:

(j) D is a �d� v�-Dedekind domain (= �d� v�-CICD);
(jj) D is a pseudo-Dedekind domain (i.e., Av is invertible for all A ∈ F�D�);
(jjj) �AB�−1 = A−1B−1 for all A�B ∈ F�D�.

Note that �d� v�-Dedekind domains were studied under the name of
G(eneralized)-Dedekind domains by Zafrullah in 1986 [42, Theorem 1.1 and
Lemma 1.2] and by Anderson and Kang [6] in 1989 under the name of pseudo-
Dedekind domains used above. These domains include locally factorial Krull
domains (e.g., UFD’s), rank-one valuation domains with complete value group,
the ring of entire functions, and domains whose groups of divisibility are complete
lattice-ordered groups (cf. [42, Theorem 1.10, Example 2.1, Theorem 2.6] and
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[6, Theorem 2.8 ]). If D is a �d� v�-Dedekind domain, then F v�D� coincides with the
group Inv�D� of invertible ideals of D (cf. also Corollary 2.15 (c)); in the special case
where Av is principal for all A ∈ F�D�, the set of nonzero fractional v-ideals F v�D�
forms a group which is isomorphic to the group of divisibility of D (Corollary 2.16).

Example 1.11. Let ∗ be a star operation on an integral domain D.
Case: ∗ = t or ∗ = w.
The following properties are equivalent:

(i) D is a t-Dedekind domain (= t-CICD);
(ii) D is a w-Dedekind domain (= w-CICD);
(iii) D is a Krull domain;
(iv) �AB−1�−1 = �A−1B�t for all A�B ∈ F�D�;
(v) �AB�−1 = �A−1B−1�t and At = Av for all A�B ∈ F�D�.

The following properties are equivalent:

(j) D is a �t� v�-Dedekind domain (= �t� v�-CICD);
(jj) D is a �t� w�-Dedekind domain (= �w� v�-CICD);
(jjj) D is a pre-Krull domain in the sense of [43, Proposition 4.1] (i.e., Av is

t-invertible for all A ∈ F�D�);
(jv) �AB�−1 = �A−1B−1�w = �A−1B−1�t for all A�B ∈ F�D�.

The statements (i)–(iii) and the statements (j)–(jv) are equivalent by
Proposition 1.2 and from the fact that a t-invertible ideal is the same as a
w-invertible ideal [5, Theorem 2.18]. Thus the ∗ = w case coincides with the ∗ = t
case.

(i) ⇔ (iv) holds since (iv) is equivalent to condition (vii) of Proposition 1.4
when ∗ = t.

The fact that (i) implies (v) follows from Propositions 1.2, 1.3, and 1.4
((v) ⇒ (vi)). Conversely, in (v) take B �= A−1; then D ⊆ �AA−1�−1 = �A−1Av�t =
�A−1At�t = �A−1A�t ⊆ D, and hence A is t-invertible for all A ∈ F�D�.

A �t� v�-Dedekind domain D is a particular Prüfer v-multiplication domain (for
short, PvMD) or, equivalently, a t-Prüfer domain since D = �FvF−1�t = �F tF−1�t =
�FF−1�t for all F ∈ f �D�. Therefore, �t� v�-Dedekind domains form a class of
completely integrally closed PvMD’s that contains the Krull domains (and, a
fortiori, all the d-CICD’s and the �d� v�-CICD’s). Furthermore, we will show
(Corollary 2.15) that for a �t� v�-Dedekind domain, the set F v�D� of nonzero
fractional v-ideals of D is a complete lattice-ordered group under t-multiplication.

The following result is a straightforward adaptation of Proposition 1.4.

Proposition 1.12 ([7, Theorem 3.9]). Let ∗ be a star operation on an integral
domain D. Then the following conditions are equivalent:

(i) �A � B�∗f = �AB−1�∗f for all A�B ∈ F�D�;
(ii) �A � B−1�∗f = �AB�∗f for all A�B ∈ F�D�;
(iii) �A∗f � B� = �AB−1�∗f for all A�B ∈ F�D�;
(iv) �A∗f � B−1� = �AB�∗f for all A�B ∈ F�D�;
(v) D is a ∗-Dedekind domain;
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(vi) D is a CICD and A∗f = At for all A ∈ F�D�;
(vii) �Av � B−1� = �AvB�∗f for all A�B ∈ F�D�.

The only difference between the above proposition and Theorem 3.9 of [7]
is that in [7] what is called here a ∗-Dedekind domain is regarded there as a Krull
domain, which is not correct (i.e., condition (8) of [7, Theorem 3.9] is weaker than
the other conditions). For example, if ∗ = d, a ∗-Dedekind domain is a Dedekind
domain (Example 1.10), which is a very special kind of Krull domain. This leads to
the following natural problems.

Problem 1.13. (a) Prove or disprove: There is a finite character star operation ∗
that admits a ∗-Dedekind domain D such that (1) D is not Dedekind and (2) there
is at least one non-Dedekind Krull domain R such that R is not ∗-Dedekind.

(b) Find an example of a Krull, but not a ∗-Dedekind domain, for some
∗ �= d, i.e., find a Krull domain with a star operation ∗ such that d � ∗f � t (and
so ∗ �= v).

The difficulty of problem (a) lies in the fact that, as soon as we consider
the ∗-operation on a domain D, which is a ∗-Dedekind domain, this operation
becomes the t-operation of the (Krull) domain D, as indicated in (v) ⇔ (vi) of
Proposition 1.12. This problem is important because a positive answer would
entail a procedure for finding finite character operations ∗ that admit ∗-Dedekind
domains, and the existence of ∗-Dedekind domains that answer the problem would
justify deeper study in terms of general ∗-operations. The negative answer, on the
other hand, would give us what we can expect from a general study. That is, we shall
know that a ∗-Dedekind domain is either a Krull domain or a Dedekind domain.

A positive answer to problem (b) follows from Example 5.3 of [16], where the
authors give the construction of a star operation ∗ on a Krull domain such that
d � ∗ = ∗f � t = v.

Let ∗ be a star operation on an integral domain D. Recall that A ∈ F�D� is
called ∗-finite (respectively, strictly ∗-finite) if there exists an F ∈ f �D� (respectively,
F ∈ f �D� and F ⊆ A) such that A∗ = F ∗ [43]. It is well known that if ∗ has finite
character, then the notions of ∗-finite and strictly ∗-finite coincide. Moreover, for
A ∈ F�D�, A is ∗f -invertible if and only if A is ∗-invertible and both A and A−1 are
∗f -finite (for instance [17, Lemma 2.3 and Proposition 2.6], where this subject was
handled in the semistar operation setting).

The characterizations of �t� v�-Dedekind domains (or pre-Krull domains)
given in [43, Proposition 4.1] can be directly translated to the general star operation
case as follows.

Proposition 1.14. Let ∗ be a star operation on an integral domain D. Then the
following conditions are equivalent:

(i) �AB�−1 = �A−1B−1�∗f for all A�B ∈ F�D�;
(ii) A−1 is ∗f -invertible for all A ∈ F�D�;
(iii) D is a �∗� v�-Dedekind domain;
(iv) D is completely integrally closed and �AB�v = �AvBv�∗f for all A�B ∈ F�D�.
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Proof. (i) ⇒ (ii). For all A ∈ F�D�, clearly, we have AvA−1 ⊆ D, and so D ⊆
�AvA−1�−1. Therefore, using (i), we have D ⊆ �AvA−1�−1 = �A−1Av�∗f ⊆ D.

(ii) ⇒ (iii). If A−1 is ∗
f
-invertible, then Av = �A−1�−1 is also ∗f -invertible.

(iii) ⇒ (i). For all A�B ∈ F�D�, we have A−1B−1 ⊆ �AB�−1, and so
�A−1B−1�∗f ⊆ ��AB�−1�∗f = �AB�−1. On the other hand, by assumption, D =
��AB�v�AB�−1�∗f and clearly ��AB�v�AB�−1�∗f ⊇ �AvBv�AB�−1�∗f ; thus D ⊇
�AvBv�AB�−1�∗f . Multiplying both sides by A−1B−1 and applying ∗f , we have
�A−1B−1�∗f ⊇ �AvA−1BvB−1�AB�−1�∗f = ��AB�−1�∗f = �AB�−1. We conclude that
�AB�−1 = �A−1B−1�∗f .

(iii) ⇒ (iv). If �AvA−1�
∗
f = D, then also �AvA−1�t = �AvA−1�v = �AA−1�v = D

for all A ∈ F�D�. Therefore, D is a CICD. For the remainder, since we have
already proved (iii) ⇒ (i), for all A�B ∈ F�D� we have �AB�v = ��AB�−1�−1 =
��A−1B−1�∗f �−1 = �A−1B−1�−1 = ��A−1�−1�B−1�−1�∗f = �AvBv�∗f .

(iv) ⇒ (iii). Since D is a CICD, for all A ∈ F�D�, we have D = �AA−1�v =
�AvA−1�v. By the equality in (iv), we conclude that D = �AvA−1�v = �Av�A−1�v�∗f =
�AvA−1�∗f . �

Obviously, as a �∗f � v�-CICD is a �∗� v�-Dedekind domain, we can rewrite
Proposition 1.5 as a set of quotient-based characterizations of �∗� v�-Dedekind
domains.

Remark 1.15. (a) An integral domain D is called ∗-Noetherian if A is strictly
∗-finite for all A ∈ F�D�. It is known that the following conditions are equivalent:

(i) D is ∗-Noetherian;
(ii) D is ∗f -Noetherian;
(iii) D satisfies the ascending chain condition on ∗-ideals.
For the proof of the previous statement and more details on this subject, cf.
[11, Lemma 3.3 and Proposition 3.5]. Note also that, if D is ∗-Noetherian, then
each ideal of D is ∗-finite, but the converse is false in general (cf. [3, p. 29] and
[20, Example 18]).

From the previous considerations, we easily deduce that a ∗-Dedekind domain
is a ∗-Noetherian domain. Moreover, as observed above, a ∗-Dedekind domain
is a P∗MD. Note that the converse is also true, i.e., the ∗-Dedekind domains
coincide with the ∗-Noetherian P∗MD’s. As a matter of fact, if D is ∗-Noetherian,
then for all A ∈ F�D�, there exists an F ∈ f �D� with F ⊆ A such that F ∗ =
A∗ = A∗f . Hence Fv = �F ∗�v = �A∗�v = Av; thus F−1 = A−1. Therefore, �AA−1�∗f =
�A∗f A−1�∗f = �F ∗f F−1�∗f = �FF−1�∗f . If we assume that D is also a P∗MD, then
�FF−1�∗f = D; hence �AA−1�∗f = D, i.e., D is ∗-Dedekind.

From the previous observations, we can conclude that the notion of ∗-
Dedekind domain, given here, coincides in the star operation case with the notion
considered for semistar operations in [11, Proposition 4.1].

We can summarize some of the previous considerations by saying that the
following notions coincide:

(i) ∗-Dedekind (= ∗f -Dedekind = ∗f -CICD);
(ii) ∗f -multiplication domain;
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(iii) ∗-Noetherian and Prüfer ∗-multiplication domain;
(iv) ∗f -Noetherian and ∗f -Prüfer domain.

(b) Note that Noetherian ideal systems are investigated in [23, Chapter 3]. In
particular, the equivalent statements given in (a) are also proved in [23, Theorem
3.5] in the more general setting of ideal systems on monoids.

Given an ideal system r, r-Dedekind monoids are introduced and studied in
[23, Chapter 23, §3]. However, the notion of ∗-Dedekind domain coincides with
that in [23] in case ∗ = ∗f or in the case of Krull domains, but they are different
in general (e.g., v-Dedekind domains are precisely Krull domains, but v-Dedekind
monoids are just completely integrally closed monoids).

We also note that, using the ideal systems approach on commutative monoids,
Halter-Koch [25] has obtained a general version of Proposition 1.14.

2. STAR PRÜFER DOMAINS

Recall that an integral domain D is a v-domain if each F ∈ f �D� is v-invertible.
We have already introduced a direct generalization of this definition when ∗ is
a star operation on D by saying that D is a ∗-Prüfer domain if every F ∈ f �D�
is ∗-invertible. Since a ∗-invertible ideal is always v-invertible, we observe that a
∗-Prüfer domain is always a v-domain. Note that ∗-Prüfer domains were recently
introduced in the case of semistar operations � under the name of �-domains
[18, Section 2].

If F ∈ f �D� is ∗-invertible, then F ∗ = Fv� Since, in a ∗-Prüfer domain, this
holds for all F ∈ f �D�, we conclude that ∗f = t in a ∗-Prüfer domain.

Next, we can consider a weaker notion: call D a �∗� v�-Prüfer domain if Fv is
∗-invertible for all F ∈ f �D�. It is easy to see that a �∗� v�-Prüfer domain is also a
v-domain and that a ∗-Prüfer domain is a �∗� v�-Prüfer domain. Clearly, if ∗1� ∗2
are two star operations on D and ∗1 ≤ ∗2, then a ∗1-Prüfer domain (respectively,
�∗1� v�-Prüfer domain) D is a ∗2-Prüfer domain (respectively, �∗2� v�-Prüfer domain).

We have already observed that, from the definitions, it follows immediately
that the notions of ∗f -Prüfer domain and P∗MD (or P∗fMD) coincide. Therefore, a
P∗MD is a ∗-Prüfer domain, but the converse is not true since there are v-domains
(= v-Prüfer domains) that are not PvMD’s [26]. Also note that for an ideal system
r on a monoid, the notion of r-Prüfer monoid, for a general r, was introduced in
[23, Chapter 17]. However, most of the results on r-Prüfer monoids in [23] were
proved for r-finitary. Now r-Prüfer monoids for finitary r coincide with ∗-Prüfer
domains only in case ∗ = ∗f . That is, the r-Prüfer monoids studied in [23] were
simply P∗MD’s in ring-theoretic terms.

Example 2.1. Let ∗ be a star operation defined on an integral domain D.
Case: ∗ = d.
Clearly, from the definition, the following notions coincide:

(i) D is a d-Prüfer domain;
(ii) D is a Prüfer domain;
(iii) Each F ∈ f �D� is invertible.
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The following notions coincide.

(i) D is a �d� v�-Prüfer domain;
(ii) D is a generalized GCD (for short, GGCD) domain (i.e., the intersection of two

invertible ideals is invertible);
(iii) Fv is invertible for all F ∈ f �D�.

Generalized GCD domains were introduced in [2], where the previous
equivalence was also proven [2, Theorem 1].

Note that, while a Prüfer domain is a GGCD domain, there are examples of
GGCD domains that are not Prüfer [2, Theorem 2 (2)]. So, while a ∗-Prüfer domain
is a �∗� v�-Prüfer domain, a �∗� v�-Prüfer domain may not be a ∗-Prüfer domain.

Case: ∗ = t or ∗ = w.
The following notions coincide:

(i) D is a t-Prüfer domain;
(ii) D is a �t� v�-Prüfer domain;
(iii) D is a w-Prüfer domain;
(iv) D is a �w� v�-Prüfer domain;
(v) D is Prüfer v-multiplication domain.

Since the maximal t-ideals coincide with the maximal w-ideals, the notions
w-invertible and t-invertible coincide (cf. [5, Theorem 2.18] and [40, Section 5]), thus
(iii) ⇔ (i) ⇒ (ii) ⇔ (iv) and, by definition, (v) coincides with (i). Finally, (ii) ⇒ (v),
since D = �FvF−1�t = �F tF−1�t = �FF−1�t for all F ∈ f �D�.

Case: ∗ = v.
From the definitions, we immediately have that the following notions coincide:

(i) D is a v-Prüfer domain;
(ii) D is a �v� v�-Prüfer domain;
(iii) D is a v-domain.

Once we know that a Prüfer domain is just a special case of a ∗-Prüfer domain
(and, in particular, of a �∗� v�-Prüfer domain) we would like to see what ideal-
theoretic characterizations of Prüfer domains can be translated to the framework of
∗-Prüfer and �∗� v�-Prüfer domains. Here we point out some.

Theorem 2.2. Let ∗ be a star operation defined on an integral domain D. Then the
following properties are equivalent:

(i) D is a ∗-Prüfer domain;
(ii) Every (nonzero) two generated ideal of D is ∗-invertible;

(iiif ) ��F ∩G��F +G��∗ = �FG�∗ for all F�G ∈ f �D�;
(iiiF ) ��A ∩ B��A+ B��∗ = �AB�∗ for all A�B ∈ F�D�;
(ivf ) �F�G∗ ∩H∗��∗ = �FG�∗ ∩ �FH�∗ for all F�G�H ∈ f �D�;
(ivfF ) �F�A∗ ∩ B∗��∗ = �FA�∗ ∩ �FB�∗ for all F ∈ f �D� and A�B ∈ F�D�;
(v) If A�B ∈ F�D� are ∗-invertible, then A ∩ B and A+ B are ∗-invertible;
(vi) If A�B ∈ F�D� are ∗-invertible, then A+ B is ∗-invertible.
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Proof. The proof of (i) ⇔ (ii) follows from the reduction argument used in
[33, Lemma 2.6] for showing that an integral domain is a v-domain if and only if
every (nonzero) two generated ideal is v-invertible. For the sake of completeness,
we give some details of the proof of (ii) ⇒ (i). Let F ∈ f �D�; we want to show
that F is ∗-invertible. We use induction on the number of generators of F . Let
F �= �x1� x2� � � � � xn� xn+1�D with n ≥ 2, and set I �= x1D, J �= �x2� x3� � � � � xn�D, and
H �= xn+1D. Then F�IH + IJ + JH� = �J +H��H + I��I + J�. Note that each of the
factors on the right is generated by k ≤ n elements, and so is ∗-invertible by the
induction hypothesis. This forces the factors on the left (and hence, in particular, F )
to be ∗-invertible. (Note that this method of proof is essentially that used originally
by Prüfer in [37, p. 7] to show that D is a Prüfer domain if and only if every
(nonzero) two generated ideal of D is invertible.)

(i) ⇒ (iiif ). ��F ∩G��F +G��∗ ⊆ �FG�∗ holds for all F�G ∈ f �D�.
For the reverse containment, let x ∈ FG. Then xG−1 ⊆ FGG−1 ⊆ F and

xF−1 ⊆ F−1FG ⊆ G. This gives x�F−1 ∩G−1� ⊆ F ∩G. But F−1 ∩G−1 = �F +G�−1.
So we have x�F +G�−1 ⊆ F ∩G. Multiplying both sides by F +G and applying ∗,
we get x ∈ ��F ∩G��F +G��∗. This gives �FG�∗ ⊆ ��F ∩G��F +G��∗.

(iiif ) ⇒ (ii) is obvious because ��F ∩G��F +G��∗ = �FG�∗ for all F�G ∈
f �D� implies that in particular ��xD ∩ yD��xD + yD��∗ = xyD for all nonzero
x� y ∈ D, which forces every (nonzero) two generated ideal of D to be ∗-invertible.

(iiif ) ⇒ (iiiF ) Obviously, ��A ∩ B��A+ B��∗ ⊆ �AB�∗ holds for all
A�B ∈ F�D�. For the reverse containment, it is enough to show that AB ⊆
��A ∩ B��A+ B��∗. For this, let x ∈ AB. Then x ∈ FG, where F and G are finitely
generated with F ⊆ A and G ⊆ B. But then, by (iiif ), x ∈ �FG�∗ = ��F ∩G�
�F +G��∗ ⊆ ��A ∩ B��A+ B��∗. Thus AB ⊆ ��A ∩ B��A+ B��∗.

(iiiF ) ⇒ (iiif ) and (ivfF ) ⇒ (ivf ) are trivial.

(i) ⇒ (ivfF ). Obviously, �F�A∗ ∩ B∗��∗ ⊆ �FA�∗ ∩ �FB�∗. For the reverse
containment, note that F is ∗-invertible. Now consider �F−1��FA�∗ ∩ �FB�∗��∗ ⊆
�F−1�FA�∗ ∩ F−1�FB�∗�∗ ⊆ �F−1�FA��∗ ∩ �F−1�FB��∗ = A∗ ∩ B∗. So the inclusion
�F−1��FA�∗ ∩ �FB�∗��∗ ⊆ A∗ ∩ B∗ gives, on multiplying by F and applying ∗ on both
sides, the reverse containment.

(ivf ) ⇒ (ii). Let F �= �a� b�, G �= � 1
a
� and H �= � 1

b
�, where a and b are

two nonzero elements of D. Then, by assumption, we have ��a� b��� 1
a
� ∩ � 1

b
���∗ =

�� 1
a
��a� b��∗ ∩ �� 1

b
��a� b��∗. On the other hand, it is easy to see that �a� b��a� b�−1 =

�a� b��� 1
a
� ∩ � 1

b
��. Therefore, D ⊇ ��a� b��a� b�−1�∗ = �� 1

a
��a� b��∗ ∩ �� 1

b
��a� b��∗ ⊇ D,

and so we conclude that ��a� b��a� b�−1�∗ = D.

(v) ⇒ (vi) ⇒ (ii) are obvious (for the last implication note that a nonzero
principal ideal is (∗-)invertible).

(iiiF ) ⇒ (v). Since A�B ∈ F�D� are ∗-invertible if and only if AB is ∗-
invertible, the conclusion follows from the equality ��A ∩ B��A+ B��∗ = �AB�∗. �

Remark 2.3. Let D be a ∗-Prüfer domain. If we assume that ∗ has finite character
(hence, D is a P∗MD), then (as we observed above) A ∈ F�D� is ∗-invertible
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if and only if A is (strictly) ∗-finite. In this case, (vi) of Theorem 2.2 reduces
to “the sum of two ∗-finite ideals is ∗-finite”. (This is a trivial statement since
�F ∗ +G∗�∗ = �F +G�∗ for all F�G ∈ f �D�, [21, Proposition 32.2].)

However, if ∗ does not have finite character, a ∗-invertible ideal need not
be strictly ∗-finite. In fact (for D a ∗-Prüfer domain), each ∗-invertible ideal is
strictly ∗-finite precisely when D is a ∗f -Prüfer domain (= P∗MD). (If F ∈ f �D� is
∗-invertible, then F−1 is ∗-invertible, and so there exists G ∈ f �D� such that G ⊆ F−1

and F−1 = �F−1�∗ = G∗. Therefore, D = �FF−1�∗ = �F�F−1�∗�∗ = �FG∗�∗ = �FG�∗ =
�FG�∗f = �FF−1�∗f ⊆ D; hence �FF−1�∗f = D.)

It is natural to ask whether it is possible to remove from statement (ivf F ) of
the previous theorem the condition that F is finitely generated. We do not have
a complete answer to this question; however, we have an interesting alternative
described in the following proposition. Recall that a star operation ∗ is called stable
(or, distributes over finite intersections) if �A ∩ B�∗ = A∗ ∩ B∗ for all A�B ∈ F�D�
(cf. [15, p. 174] and [4]). A star operation induced by a defining family of quotient
rings of D is stable (cf. for instance [4, Proposition 2.2]).

Proposition 2.4. Let ∗ be a star operation defined on an integral domain D. Then the
following properties are equivalent:

(i) D is a ∗-Prüfer domain and ∗ is a stable star operation on D;
(iv) �C�A ∩ B��∗ = �C�A∗ ∩ B∗��∗ = �CA�∗ ∩ �CB�∗ for all A�B�C ∈ F�D�.

Proof. (i) ⇒ (iv). As seen above, in general, we have �C�A∗ ∩ B∗��∗ ⊆ �CA�∗ ∩
�CB�∗. Moreover, since ∗ is stable, �C�A ∩ B��∗ = �C�A ∩ B�∗�∗ = �C�A∗ ∩ B∗��∗.
For the reverse containment, it is sufficient to show that CA ∩ CB ⊆ �C�A ∩ B��∗.
For this, let x ∈ CA ∩ CB. Then, in particular, there is an F ∈ f �D� such that
x ∈ FA ∩ FB and F ⊆ C. So x ∈ �FA ∩ FB�∗ = �FA�∗ ∩ �FB�∗ = �F�A∗ ∩ B∗��∗ (the
last equality holds by Theorem 2.2 ((i) ⇒ (ivfF ))). Again, by the stability of ∗,
we have �F�A∗ ∩ B∗��∗ = �F�A ∩ B��∗. Thus we conclude that x ∈ �FA ∩ FB�∗ =
�F�A ∩ B��∗ ⊆ �C�A ∩ B��∗.

(iv) ⇒ (i). From �C�A ∩ B��∗ = �CA�∗ ∩ �CB�∗ for all A�B�C ∈ F�D�, by
setting C = D, we deduce that ∗ is stable. Moreover, as in the proof of Theorem
2.2 ((ivf ) ⇒ (ii)), taking C �= �a� b�, A �= � 1

a
�, and B �= � 1

b
�, where a and b are two

nonzero elements of D, we obtain that ��a� b��a� b�−1�∗ = D. �

As we have already observed, the notions of ∗f -Prüfer domain and P∗MD (or
P∗fMD) coincide; moreover, for a P∗MD the operation ∗f is stable [14, Theorem
3.1]. Furthermore, a ∗-CICD is a particular ∗-Prüfer domain, and for a ∗-CICD the
operation ∗ is stable [4, Theorem 2.8]. Therefore, in order to find an example of a
∗-Prüfer domain for which ∗ is not stable, we have to consider the case of a ∗-Prüfer
domain, not a ∗-CICD, with a star operation ∗ that is not of finite character. In
case ∗ = v, it is known that D is a v-domain if and only if D is integrally closed and
v distributes over finite intersections of finitely generated ideals (cf. [31, Theorem
1(2) and Theorem 2] or [4, Theorem 2.8]). Very recently, Mimouni has given an
explicit example of a two-dimensional Prüfer domain (hence a v-domain, but not a
(v–)CICD) with v not stable [32, Example 3.1].
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Proposition 2.5. Let ∗ be a star operation defined on an integral domain D. If D is
a ∗-Prüfer domain, then:
(1) �FG�−1 = �F−1G−1�∗ for all F�G ∈ f �D�;
(2) If A�B ∈ F�D� are ∗-invertible, then A ∩ B is ∗-invertible;
(3) ∗ is an a.b. star operation (i.e., �FA�∗ ⊆ �FB�∗ implies that A∗ ⊆ B∗ for all

F ∈ f �D� and A�B ∈ F�D�). In particular, D is an integrally closed domain
[21, Corollary 32.8].

Proof. (1). If F�G ∈ f �D�, then in particular G−1 is ∗-invertible. By
Proposition 1.7, �F−1G−1�∗ = �F−1 � G�∗. The conclusion follows from the fact that
�F−1 � G�∗ = ��D � F� � G�∗ = �D � FG�∗ = ��FG�−1�∗ = �FG�−1.

That (2) holds was already observed in Theorem 2.2 ((i) ⇒ (v)).

(3). The proof is straightforward; multiply both sides of the relation �FA�∗ ⊆
�FB�∗ by F−1 and apply the ∗-operation. �

Remark 2.6. (a) To see that statement (1) of Proposition 2.5 does not
characterize ∗-Prüfer domains, recall that an integral domain D is a pre-Schreier
domain if for all nonzero x� y� z ∈ D, x � yz implies that x = rs, where r � y and
s�z. Pre-Schreier domains are a generalization of GCD domains (cf. [9] and [10,
Theorem 1]). It is well known that a pre-Schreier domain satisfies (each of) the
following equivalent properties.

(�) For all 0 �= ai� bj ∈ D, with 1 ≤ i ≤ n, 1 ≤ j ≤ m:

( ⋂
1≤i≤n

�ai�
)( ⋂

1≤j≤m

�bj�
)
= ⋂

1≤i≤n�1≤j≤m

�aibj��

(�) �FG�−1 = F−1G−1 for all F�G ∈ f �D�.

(Cf. [41, Corollary 1.7] and [42, Proposition 1.6]; note that an integral domain
satisfying these two equivalent conditions was called a ∗-domain by Zafrullah in
[41]). Now there do exist pre-Schreier domains that are not integrally closed [41,
p. 1918]. Combining this piece of information with the fact that a ∗-Prüfer domain is
integrally closed (Proposition 2.5 (3)), we easily conclude that �FG�−1 = �F−1G−1�∗

for all F�G ∈ f �D� does not imply that D is a ∗-Prüfer domain.

(b) Statement (2) of Proposition 2.5 does not characterize ∗-Prüfer domains.
For example, in a generalized GCD domain (Example 2.1), we have that
A ∩ B is (d)-invertible for all (d-)invertible A�B ∈ F�D�. However, a generalized
GCD domain may not be a d-Prüfer domain (= Prüfer domain, Example 2.1)
[2, Theorem 2 (2)]. (It may also be noted that for a mere pair of ideals F�G ∈ f �D�,
the fact that F ∩G is ∗-invertible does not mean that F and G are both ∗-invertible.
For instance, let k be a field and X� Y two indeterminates over k. Take D �= k	X� Y
,
F �= �X� Y� and G �= �X�, then �X� Y� ∩ �X� is principal, but �X� Y� is not invertible.)

(c) Statement (3) of Proposition 2.5 does not characterize ∗-Prüfer domains
(cf. [18, Example 1 (2), p. 150]). It is easy to show that an integral domain D
is integrally closed if and only if there is an a.b. star operation ∗ defined on D.
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(The proof depends upon the fact that if D is integrally closed, then D is expressible
as an intersection of valuation overrings of D [21, Theorems 19.8, 32.5 and Corollary
32.8].) Therefore, an integrally closed domain may not be a ∗-Prüfer domain for any
star operation ∗ since there are integrally closed domains that are not v-domains
(e.g., [21, p. 429, Exercise 2]).

Bearing in mind Proposition 2.5 (1), we next give more precise relations among
the notions coming into play.

Proposition 2.7. Let ∗ be a star operation defined on an integral domain D, and
consider the following statements:

(a) D is a ∗-Prüfer domain;
(b) �AF�−1 = �A−1F−1�∗ for all A ∈ F�D� and F ∈ f �D�;
(c) D is a �∗� v�-Prüfer domain.
Then (a) ⇒ (b) ⇔ (c).

Proof. (a) ⇒ (b). Let A ∈ F�D�, F ∈ f �D�, and let x ∈ A−1F−1. Then xF ⊆
A−1F−1F ⊆ A−1, and so xAF ⊆ A−1A ⊆ D. Therefore, A−1F−1 ⊆ �AF�−1. On the
other hand, �AF�−1 is a v-ideal (and so, in particular, a ∗-ideal); thus we
have �A−1F−1�∗ ⊆ ��AF�−1�∗ = �AF�−1. Conversely, let y ∈ �AF�−1. Then yAF ⊆
�AF�−1AF ⊆ D, so yF ⊆ A−1. Multiplying both sides by F−1, applying ∗� and noting
that F ∈ f �D�� we get y ∈ y�FF−1�∗ ⊆ �A−1F−1�∗.

(b)⇒(c). Let F ∈ f �D�, and set A �= F−1. Then D ⊆ �F−1F�−1 = �AF�−1 =
�A−1F−1�∗ = �FvF−1�∗ ⊆ D, and so D is a �∗� v�-Prüfer domain.

(c)⇒(b). Let x ∈ �AF�−1. We have xAF ⊆ D; so xF ⊆ A−1, and hence
xFv = �xF�v ⊆ �A−1�v = A−1. Therefore, xFvF−1 ⊆ A−1F−1. Since �FvF−1�∗ = D, we
conclude that �AF�−1 ⊆ �A−1F−1�∗. The reverse containment is straightforward since
��AF�−1�∗ = �AF�−1. �

Note that we already observed that there are �d� v�-Prüfer domains that are
not d-Prüfer domains (= Prüfer domains, Example 2.1), and so (c) of Proposition
2.7 does not imply (a). We will see later (Theorem 2.11 (c)) that (c) and (a) are
equivalent under an additional condition.

For ∗-Prüfer domains, we have the following set of quotient-based
characterizations.

Theorem 2.8. Let ∗ be a star operation defined on an integral domain D. Then the
following conditions are equivalent:

(i) D is a ∗-Prüfer domain;
(ii) For all A ∈ F�D� and F ∈ f �D�, A ⊆ F ∗ implies A∗ = �BF�∗ for some B ∈ F�D�;
(iii) �A � F�∗ = �A∗ � F� = �AF−1�∗ for all A ∈ F�D� and F ∈ f �D�;
(iv) �A � F−1�∗ = �A∗ � F−1� = �AF�∗ for all A ∈ F�D� and F ∈ f �D�;
(v) �F � A�∗ = �F ∗ � A� = �FA−1�∗ for all A ∈ F�D� and F ∈ f �D�;
(vi) �F � A�v = �Fv � A� = �FA−1�∗ for all A ∈ F�D� and F ∈ f �D�;
(vii) �Fv � A−1� = �FAv�∗ for all A ∈ F�D� and F ∈ f �D�;
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(viii) ��A+ B� � F�∗ = ��A � F�+ �B � F��∗ for all A�B ∈ F�D� and F ∈ f �D�;
(ix) �A � �F ∩G��∗ = ��A � F�+ �A � G��∗ for all A ∈ F�D� and F�G ∈ f ∗�D� �=

�H ∈ f �D� �H = H∗�;
(x) ���a� �D �b��+ ��b� �D �a���∗ = D for all nonzero a� b ∈ D.

Proof. (i) ⇒ (ii). Set B �= �AF−1�∗. Then clearly �BF�∗ = ��AF−1�∗F�∗ =
�A�FF−1�∗�∗ = A∗.

(ii) ⇒ (i). We show that every F ∈ f �D� is ∗-invertible. For this, let 0 �=
x ∈ F ∗, and set A �= �x�. Then by assumption, there is a B ∈ F�D� such that
�x� = �x�∗ = A∗ = �BF�∗, and so D = ��x−1B�F�∗, which is equivalent to F being ∗-
invertible.

(i) ⇒ (iii) follows from Proposition 1.7, since in the present situation F ∈
f �D� is ∗-invertible.

(i) ⇒ (iv). This implication can be proven in a similar fashion as (i) ⇒ (iii)
using the fact that if F is ∗-invertible, then so is F−1.

(i) ⇒ (v). Clearly, �F � A�∗ ⊆ �F ∗ � A�. Let x ∈ �F ∗ � A�. Then xA ⊆ F ∗; so
xAF−1 ⊆ F ∗F−1 ⊆ �F ∗F−1�∗ = D, which gives xF−1 ⊆ A−1. Now multiplying both
sides by F and applying ∗, we get x ∈ �FA−1�∗. Next, to show that �FA−1�∗ ⊆ �F �
A�∗� let y ∈ FA−1. Then yA ⊆ FA−1A ⊆ F , which gives y ∈ �F � A�, and so FA−1 ⊆
�F � A�, which leads to �FA−1�∗ ⊆ �F � A�∗. Now we have shown that �F � A�∗ ⊆ �F ∗ �
A� ⊆ �FA−1�∗ ⊆ �F � A�∗, which establishes the equalities.

(i) ⇒ (vi). By the proof of (i) ⇒ (v), �F � A�v ⊆ �F ∗ � A�v = �F ∗ � A� ⊆
�FA−1�∗ ⊆ �F � A�∗ ⊆ �F � A�v. This gives the required equations.

(i) ⇒ (vii). If we insert A−1 for A in (vi), then we get (vii).
Next we will show that each of the conditions (iii), (iv), (v), (vi), and (vii)

implies that F is ∗-invertible for all F ∈ f �D�.

(iii) ⇒ (i). In �A∗ � F� = �AF−1�∗, set A = F for F ∈ f �D�. We have �F ∗ �
F� = �FF−1�∗. Now note that D ⊆ �F ∗ � F� = �FF−1�∗ ⊆ D.

(iv) ⇒ (i). In �A∗ � F−1� = �AF�∗, set A = F−1 for F ∈ f �D�.

(v) ⇒ (i). In �F ∗ � A� = �FA−1�∗, set A = F for F ∈ f �D�.

(vi) ⇒ (i). In �Fv � A� = �FA−1�∗, set A = F for F ∈ f �D�.

(vii) ⇒ (i). In �Fv � A−1� = �FAv�∗, set A = F−1 for F ∈ f �D�.

(iii) ⇒ (viii). Applying (iii), we have

��A+ B� � F�∗ = ��A+ B�F−1�∗ = ��AF−1�∗ + �BF−1�∗�∗

= ��A � F�∗ + �B � F�∗�∗ = ��A � F�+ �B � F��∗�

(viii) ⇒ (i). Let 0 �= a� b ∈ D. Set A �= �a�, B �= �b�, and F �= �a� b�. Then

D ⊆ ��a� b� � �a� b��∗ = ���a� � �a� b��+ ��b� � �a� b���∗

= ���a� � �a� b��∗ + ��b� � �a� b��∗�∗
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3036 ANDERSON ET AL.

= ��a�a� b�−1�∗ + �b�a� b�−1�∗�∗ = �a�a� b�−1 + b�a� b�−1�∗

= ��a� b��a� b�−1�∗ ⊆ D�

which forces ��a� b��a� b�−1�∗ = D. The conclusion follows from Theorem 2.2
((i) ⇔ (ii)).

(i) ⇒ (ix). For all A ∈ F�D� and F�G ∈ f �D�, note that ��A � F�+ �A �
G��∗ = ��A � F�∗ + �A � G�∗�∗; moreover, �A � F�∗ = �AF−1�∗ and �A � G�∗ =
�AG−1�∗ by (i) ⇒ (iii). Therefore, ��A � F�+ �A � G��∗ = ��AF−1�∗ + �AG−1�∗�∗ =
�AF−1 + AG−1�∗ = �A�F−1 +G−1��∗.

Since D is a ∗-Prüfer domain, F and G are ∗-invertible, and thus F−1 and G−1

are also ∗-invertible. Therefore, F ∩G and F−1 +G−1 are ∗-invertible by Theorem
2.2 ((i) ⇒ (v)). Moreover, since a ∗-invertible ∗-ideal is a v-invertible v-ideal [8,
Proposition 3.1], for F�G ∈ f ∗�D�, we have in particular F = F ∗ = Fv, G = G∗ =
Gv, and �F−1 +G−1�∗ = �F−1 +G−1�v. On the other hand, �F−1 +G−1�−1 = �D �
�F−1 +G−1�� = �D � F−1� ∩ �D � G−1� = Fv ∩Gv = F ∩G. Therefore, �A�F−1 +
G−1��∗ = �A�F−1 +G−1�∗�∗ = �A�F−1 +G−1�v�∗ = �A��F−1 +G−1�−1�−1�∗ = �A�F ∩
G�−1�∗. Since F ∩G is ∗-invertible, by Proposition 1.7 we have �A�F ∩G�−1�∗ =
�A � �F ∩G��∗. Then, putting it all together, we conclude that (ix) holds, i.e.,
��A � F�+ �A � G��∗ = �A � �F ∩G��∗.

(ix) ⇒ (x). Let 0 �= a� b ∈ D, and set A �= �a� ∩ �b�, F �= �a�, G �= �b�. By
assumption, we have

�D ⊆����a� ∩ �b�� � ��a� ∩ �b���∗ = ����a� ∩ �b�� � �a��+ ���a� ∩ �b�� � �b���∗�

On the other hand,

����a� ∩ �b�� � �a��+ ���a� ∩ �b�� � �b���∗ = ����a� ∩ �b��a−1�+ ���a� ∩ �b��b−1��∗

= ���b� �D �a��+ ��a� �D �b���∗ ⊆ D�

Therefore, we conclude that (x) holds.

(x) ⇒ (i). Note that

��a� b��a� b�−1�∗ = �a�a� b�−1 + b�a� b�−1�∗

= �a���a� ∩ �b���ab�−1�+ b���a� ∩ �b���ab�−1��∗

= ����a� ∩ �b��b−1�+ ���a� ∩ �b��a−1��∗

= ���a� �D �b��+ ��b� �D �a���∗�

and apply Theorem 2.2 ((ii) ⇒ (i)).

Remark 2.9. (1) Note that from the proof of Theorem 2.8 it follows easily that
the following conditions are equivalent to each of the conditions (i)–(x):

(iii′) �A � F�∗ = �AF−1�∗ for all A ∈ F�D� and F ∈ f �D�;
(iii′′) �A∗ � F� = �AF−1�∗ for all A ∈ F�D� and F ∈ f �D�;
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ON v-DOMAINS AND STAR OPERATIONS 3037

(iv′) �A � F−1�∗ = �AF�∗ for all A ∈ F�D� and F ∈ f �D�;
(iv′′) �A∗ � F−1� = �AF�∗ for all A ∈ F�D� and F ∈ f �D�;
(v′) �F � A�∗ = �FA−1�∗ for all A ∈ F�D� and F ∈ f �D�;
(v′′) �F ∗ � A� = �FA−1�∗ for all A ∈ F�D� and F ∈ f �D�;
(vi′) �F � A�v = �FA−1�∗ for all A ∈ F�D� and F ∈ f �D�;
(vi′′) �Fv � A� = �FA−1�∗ for all A ∈ F�D� and F ∈ f �D�.

As a by-product, we obtain a direct proof of [7, Corollary 4.3].

(2) In analogy with the equivalence (i) ⇔ (ii) of Theorem 2.8, it is
straightforward to prove the following “multiplication-type” characterizations of the
“Prüfer-like” classes of integral domains introduced above:

(a) The following properties are equivalent:

(i) D is a ∗-Prüfer domain;
(ii) If F�G ∈ f �D� and F ∗ ⊆ G∗, then F ∗ = �GB�∗ for some B ∈ F�D�.

(b) The following properties are equivalent:

(j) D is a �∗� v�-Prüfer domain;
(jj) If F�G ∈ f �D� and F ∗ ⊆ Gv, then F ∗ = �GB�∗ for some B ∈ F�D�.

(c) The following properties are equivalent:

(if ) D is a ∗f -Prüfer domain (= P∗MD);
(iif ) If F�G ∈ f �D� and F ∗ ⊆ G∗, then F ∗ = �GH�∗ for some H ∈ f �D�.

(d) The following properties are equivalent:

(jf ) D is a �∗f � v�-Prüfer domain;
(jjf ) If F�G ∈ f �D� and F ∗ ⊆ Gv, then F ∗ = �GH�∗ for some H ∈ f �D�.

Remark 2.10. Referring to Theorem 6.6 in [30], which provides several
characterizations of Prüfer domains, we can summarize that conditions (2), (5),
(6), (7), (8), and (9) of that theorem have been modified in a canonical way
(see, respectively, conditions (ii), (ivf ) & (ivf F ), (iiif ) & (iiiF ) of Theorem 2.2 and
conditions (ii), (viii), (ix) of Theorem 2.8) in order to obtain characterizations of
∗-Prüfer domains.

We have also observed that condition (3) (of [30, Theorem 6.6]) extends in
a natural way to “∗ is an a.b. star operation”, and we have just seen that D

being ∗-Prüfer implies that ∗ is an a.b. star operation on D, but not conversely
(Proposition 2.5 (3) and Remark 2.6 (c)).

Moreover, there is no natural modification of condition (4) (of [30, Theorem
6.6]) which can provide a characterization of ∗-Prüfer domains: take, for instance,
a one-dimensional quasi-local CICD (hence, v-domain) which is not a valuation
domain [34, 35, 38]. We were unable to find an appropriate modification of
condition (10) (of Theorem 6.6 in [30]) leading to a characterization of ∗-Prüfer
domains.
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Theorem 2.11. Let D be an integral domain with quotient field K, let ∗ be a star
operation on D, and let Inv∗�D� be the group of ∗-invertible ∗-ideals of D under
∗-multiplication (defined by A ∗ B �= �AB�∗ for all A�B ∈ Inv∗�D�).

(a) D is a ∗-Prüfer domain if and only if Inv∗�D� is a lattice-ordered abelian group
under the relation A ≤ B defined by A ⊇ B for A�B ∈ Inv∗�D� with sup�A� B� =
A ∩ B and inf�A� B� = �A+ B�∗ = �A+ B�v for all A�B ∈ Inv∗�D�.

(b) If Inv∗�D� is a lattice-ordered abelian group (under the relation ≤ defined above),
then sup�A� B� = A ∩ B and inf�A� B� = �A+ B�v for all A�B ∈ Inv∗�D�. In this
situation, D is a �∗� v�-Prüfer domain.

(c) D is a ∗-Prüfer domain if and only if D is a �∗� v�-Prüfer domain and �A+ B�∗ =
�A+ B�v for all A�B ∈ Inv∗�D�.

Proof. That Inv∗�D� is an abelian group was observed in [8, p. 812]. That Inv∗�D�
is a partially ordered group (under the partial ordered defined above) is easy to see
because for A�B ∈ Inv∗�D� and for any nonzero fractional ideal X, A ⊇ B implies
XA ⊇ XB and hence �XA�∗ ⊇ �XB�∗� Thus, in particular, for all X�A�B ∈ Inv∗�D�,
A ≤ B implies X ∗ A = �XA�∗ ≤ �XB�∗ = X ∗ B. So the relation ≤ is compatible with
group multiplication, and hence Inv∗�D� is a partially ordered group [19, p. 61
and 107].

(a) Now suppose that D is a ∗-Prüfer domain. By Theorem 2.2 ((i) ⇒ (iiiF )),
A ∩ B�= �A ∩ B�∗� and �A+ B�∗ both belong to Inv∗�D�� whenever A�B ∈ Inv∗�D�.
Therefore, it is straightforward to verify that A ∩ B = sup�A� B� and �A+ B�∗ =
inf�A� B� for A�B ∈ Inv∗�D�. Thus Inv∗�D� is a lattice-ordered group [19, p. 107].
Note also that, since a ∗-invertible ∗-ideal is a v-ideal [29, Corollaire 1, p. 24],
�A+ B�∗ = ��A+ B�∗�v = �A+ B�v. Therefore, inf�A� B� = �A+ B�∗ = �A+ B�v for
A�B ∈ Inv∗�D�.

Conversely, suppose that Inv∗�D� is a lattice-ordered group (under ≤
defined above) and that inf�A� B� = �A+ B�∗ for A�B ∈ Inv∗�D�. In particular,
inf�aD� bD� = �aD + bD�∗ ∈ Inv∗�D� for all 0 �= a� b ∈ D; hence every two
generated nonzero ideal is ∗-invertible, and thus D is a ∗-Prüfer domain by Theorem
2.2 ((ii) ⇒ (i)).

(b) We start by showing that under the present assumption inf�A� B� =
�A+ B�v for A�B ∈ Inv∗�D�. Since inf�A� B� ∈ Inv∗�D� and, as we observed
above, every ∗-invertible ∗-ideal is a v-ideal, clearly inf�A� B� ⊇ �A+ B�v. For
the reverse containment, for all H ∈ Inv∗�D� such that H ⊇ A and H ⊇ B, we
have that H ⊇ inf�A� B�. Since Inv∗�D� contains all principal fractional ideals, in
particular, we have

⋂
�zD � 0 �= z ∈ K� zD ⊇ A and zD ⊇ B� ⊇ ⋂

�H ∈ Inv∗�D� �H ⊇
A and H ⊇ B� ⊇ inf�A� B�. Since

⋂
�zD � 0 �= z ∈ K� zD ⊇ A and zD ⊇ B� = �A+

B�v, we conclude that inf�A� B� = �A+ B�v.
Next we show that sup�A� B� = A ∩ B for all A�B ∈ Inv∗�D�. It is easy

to verify that �sup�A� B�A−1B−1�∗ = sup�A−1� B−1� and that sup�A−1� B−1� =
�inf�A� B��−1 since, for all A�B ∈ Inv∗�D�, A−1� B−1 ∈ Inv∗�D� and A ≤ B if and only
if A−1 ≥ B−1. Therefore, we have �sup�A� B� inf�A� B��∗ = �AB�∗ or, equivalently,
�sup�A� B� inf�A� B�A−1B−1�∗ = D for all A�B ∈ Inv∗�D�. Replacing inf�A� B� by
�A+ B�v and applying the v-operation on both sides, we have �sup�A� B��A+
B�vA−1B−1�v = ��sup�A� B��A+ B�vA−1B−1�∗�v = D. So D = �sup�A� B��A+ B�vA−1
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B−1�v = �sup�A� B��A+ B�A−1B−1�v = �sup�A� B��B−1 + A−1��v, forcing sup�A� B�
= �B−1 + A−1�−1 = Av ∩ Bv = A ∩ B (since A and B are v-ideals, as observed above).

In order to show that D is a �∗� v�-Prüfer domain, we start by showing that
if F is a nonzero two generated ideal of D, then Fv is ∗-invertible. Let F �= aD +
bD, with a� b ∈ D and ab �= 0. We know that abD = �inf�aD� bD� sup�aD� bD��∗ =
��aD ∩ bD��aD + bD�v�∗, and thus D = ��b−1D ∩ a−1D��aD + bD�v�∗, i.e., �aD +
bD�v is ∗-invertible. The general case can be obtained by induction. Let F be a
nonzero ideal of D generated by n ≥ 2 elements and let c ∈ D\F . By the previous
arguments, we have that the ideal F + cD, generated by �n+ 1� elements, is such
that �F + cD�v = inf�F� cD� ∈ Inv∗�D�.

(c) The “only if part” follows immediately from (a) and (b). For the “if part”,
let D be a �∗� v�-Prüfer domain and let F �= aD + bD, where 0 �= a� b ∈ D. Since
aD� bD ∈ Inv∗�D�, by assumption Fv = �aD + bD�v = �aD + bD�∗ = F ∗. Therefore
D = �FvF−1�∗ = �F ∗F−1�∗ = �FF−1�∗. The conclusion is an immediate consequence
of Theorem 2.2 ((ii) ⇒ (i)). �

With the proof of Theorem 2.11, we have amply established the existence of a
sort of GCD in Inv∗�D� for each pair of elements of Inv∗�D� when D is a ∗-Prüfer
domain. However, the results are in terms of inf and sup of elements of the lattice-
ordered group Inv∗�D�� We now establish the existence of the (∗-invertible ∗-ideal)
GCD of ∗-invertible integral ∗-ideals using purely ring-theoretic means.

Before we do that, let us note that old masters such as van der Waerden
regarded an integral ideal A of an integral domain D as a divisor of another ideal B
of D if A ⊇ B, extending the well-known property that, for 0 �= a� b ∈ D, aD ⊇ bD
if and only if a � b. In turn, the ideal B could be termed as a multiple of the ideal
A. Now, given two integral ideals A�B of D, the ideal A+ B has the property that
A+ B is a divisor of A and B and any common divisor C of A and B contains A and
B, and hence A+ B� In other words, any common divisor of A and B is a divisor
of A+ B. Thus A+ B fitted the bill as the greatest common divisor of A and B. In
a similar fashion A ∩ B was regarded as the least common multiple of A and B [39,
Vol. 2, p. 119].

Now the trouble with this approach is that it is too general and so can only
work in a very strict environment such as a PID or a Dedekind domain, the kind
of rings the “ancients” worked with. Besides, there were other ways of looking at
GCD’s, such as generalizations of the GCD of two integers, which is an integer.
Also, if we are dealing with ���∗�D�, the set of integral ∗-ideals of D, and we want the
GCD of two ∗-ideals A�B ∈ ���∗�D� to belong to ���∗�D�, then in general A+ B would
not deliver the “greatest common divisor” in ���∗�D�, in the language of van der
Waerden. So to find the GCD of A�B ∈ ���∗�D� inside ���∗�D�, we need to consider
�A+ B�∗, which may be a proper divisor of A+ B. In other words, we need GCD’s
from a pre-assigned set. Of course, we also need our GCD to be something like
the GCD in Prüfer domains that we defined in the introduction. Having established
what we want, we state a GCD-type characterization of ∗-Prüfer domains.

Proposition 2.12. Let D be an integral domain, ∗ a star operation on D, and let
Inv∗����D� be the set of integral ∗-invertible ∗-ideals of D.

Assume that D is a ∗–Prüfer domain. If A�B ∈ Inv∗����D�, then there is a unique
ideal C �= �A+ B�∗ ∈ Inv∗����D� such that A = �A1C�

∗, B = �B1C�
∗, where �A1 +
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B1�
∗ = D. Conversely, if D is an integral domain such that for all A�B ∈ Inv∗����D�, there

is a unique ideal C ∈ Inv∗����D� such that A = �A1C�
∗, B = �B1C�

∗, where �A1 + B1�
∗ =

D, then D is a ∗-Prüfer domain.

Proof. Let us first note that if I is an integral ∗-invertible ∗-ideal of a ∗-Prüfer
domain D and J is an ideal contained in I , then J ∗ = �IH�∗ for some integral ideal H
of D. This follows since J ⊆ I implies JI−1 =� H ⊆ D. Now, multiplying both sides
of the equality JI−1 = H by I , and applying ∗, we get J ∗ = �IH�∗.

Next, let C �= �A+ B�∗. Since D is a ∗–Prüfer domain, C is ∗-invertible
(Theorem 2.2 ((i) ⇒ (vi)). Now as A�B ⊆ C, we have �C−1A�∗ =� A1 ⊆ D and
�C−1B�∗ =� B1 ⊆ D so that A = A∗ = �CA1�

∗ and B = B∗ = �CB1�
∗. Now C =

��CA1�
∗ + �CB1�

∗�∗ = �C�A1 + B1��
∗. Multiplying both sides of the equality C =

�C�A1 + B1��
∗ by C−1, and applying ∗, we get �A1 + B1�

∗ = D.
The proof of the converse entails showing that for all A�B ∈ Inv∗����D�,

�A+ B�∗ ∈ Inv∗����D� (Theorem 2.2 (ii) ⇒ (i))). By assumption, we have �A+ B�∗ =
��CA1�

∗ + �CB1�
∗�∗ = �C�A1 + B1�

∗�∗ = C∗ = C ∈ Inv∗����D�. �

As a consequence of Theorem 2.11, we have the following corollary.

Corollary 2.13. Let D be an integral domain.

(a) D is a v-domain (respectively, a PvMD, a generalized GCD domain) if and only if
Invv�D� (respectively, Invt�D�, Inv�D�) is a lattice-ordered abelian group (under
≤ defined in Theorem 2.11).

(b) Assume that Inv�D� is lattice-ordered and that A+ B = �A+ B�v for all A�B ∈
Inv�D�. Then D is a Prüfer domain and, clearly, Inv�D� = f �D�.

Proof. (a) The “if part” is a consequence of Theorem 2.11 (b) and Example 2.1.
The “only if part” for v-domains and PvMD’s follows from Theorem 2.11 (a) (and
from Example 2.1). If D is a generalized GCD domain (= �d� v�-Prüfer domain),
then it is well known that Inv�D� is lattice-ordered and Inv�D� = �Fv �F ∈ f �D�� [2,
Theorem 1((1) ⇒ (4))].

(b) is an easy consequence of Theorem 2.11 (c). �

Remark 2.14. The “PvMD part” of Corollary 2.13 gives back a classical characte-
rization of these domains (see, e.g., [29, p. 55], [22, p. 717] and [44, Proposition 2.4]).
As we mentioned above, the “GGCD part” is well known [2]. On the other hand,
the “v-domain part” is new.

Corollary 2.15. Let D be an integral domain.

(a) Assume that D is a CICD. Then D is a v-domain with F v�D� = Invv�D�, and
moreover, F v�D� is a complete lattice-ordered abelian group (under the order ≤
defined by I ≤ J �⇔ I ⊇ J for all I� J ∈ F v�D�).

(b) Assume that D is a �t� v�-Dedekind domain (Example 1.11). Then D is a completely
integrally closed PvMD with F v�D� = Invt�D�, and moreover, F v�D� is a complete
lattice-ordered abelian group (under the order ≤ defined above).
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(c) Assume that D is a pseudo-Dedekind domain (i.e., a �d� v�-Dedekind domain,
Example 1.10). Then D is a generalized GCD domain (i.e., a �d� v�-Prüfer domain,
Example 2.1) with F v�D� = Inv�D�, and moreover, F v�D� is a complete lattice-
ordered abelian group (under the order ≤ defined above).

Proof. (a) Since a CICD (= v-CICD, by Example 1.9) is a v-domain, Invv�D�
is a lattice-ordered group from Corollary 2.13. For the completeness, recall that a
lattice-ordered group G is said to be complete if every nonempty subset of G that is
bounded from below has a greatest lower bound (or, equivalently, if every nonempty
subset of G that is bounded from above has a least upper bound). Note that when
D is completely integrally closed, the lattice-ordered group Invv�D� coincides with
F v�D�. Let �A� � � ∈ �� be a nonempty collection of ideals in Invv�D� bounded
below in Invv�D�, that is, there is J ∈ Invv�D� such that A� ≥ J for all � ∈ �. In
other words, A� ⊆ J for all � ∈ �. Then

∑
� A� ⊆ J , and hence �

∑
� A�t�

v ⊆ Jv = J .
This gives A� ⊆ �

∑
� A��

v ⊆ J , which translates (in �Invv�D��≤�) to A� ≥ �
∑

� A��
v ≥

J . Since �
∑

� A��
v ∈ F v�D� = Invv�D�, we conclude that �

∑
A��

v is a lower bound
and, more precisely, it is easy to verify that �

∑
A��

v is in fact the greatest lower
bound of �A� � � ∈ ��.

(b) In this case, it is clear that F v�D� = Invt�D�. Since “t-invertible” implies
“v-invertible”, we have that F v�D� = Invv�D��=Invt�D��, and thus D is completely
integrally closed. Moreover a �t� v�-CICD is a particular �t� v�-Prüfer domain, which
is a PvMD (Example 2.1). We conclude by (a).

(c) The proof is similar: in this case, F v�D� = Inv�D� and hence, in
particular, F v�D� = Invv�D� = Inv�D�. �

Note that the converse of part (c) of the previous corollary is also true. In fact,
it is known that an integral domain is pseudo-Dedekind if and only if Inv�D� is a
complete lattice-ordered abelian group [6, Theorem 2.8].

Corollary 2.16. Let D be an integral domain with quotient field K. Assume that D is a
pseudo-principal domain (i.e, Av is principal for all A ∈ F�D�). ThenD is a GCD domain
such that F v�D� is isomorphic to the group of divisibility of D. Moreover, F v�D� is a
complete lattice-ordered abelian group (under the order≤ defined by I ≤ J if I ⊇ J).

Proof. Recall that the group of divisibility of D is the multiplicative abelian
group G�D� �= K×/��D�, where K× �= K\�0� and ��D� is the group of units of
D, endowed with a partial order defined by x��D� ≤ y��D� if yx−1 ∈ D. It is easy
to see that the group of divisibility of D is canonically isomorphic to Prin�D� �=
�zD � 0 �= z ∈ K� with a partial order ≤ defined by xD ≤ yD if xD ⊇ yD [21, p. 172].

Since a GCD domain is characterized by the fact that Fv is principal for
all F ∈ f �D� (cf. for instance [36, Proposition 1.19] or [1, Remark 2.2]), it is
straightforward from the assumption that D is a GCD domain and F v�D� =
Prin�D�, with identical definitions of partial order.

Next, for every nonempty subset ��� of principal fractional ideals of D bounded
below under ≤, let A be the fractional ideal of D generated by the ideals in ��� .
Then Av is principal by assumption, and Av ⊇ sD for all sD ∈ ��� . Thus Av ≤ sD (in
�F v�D��≤�� for all sD ∈ ��� . It is routine to show that the principal fractional ideal
Av is in fact the greatest lower bound of the family ��� . �
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