Esercizi. Assegnazione 7 (ultima; 24/5/07)

Es 20 Sia ℓ^2 lo spazio di Hilbert (reale) delle successioni $x = \{x_n : n \ge 1\}$ tali che $||x||_2^2 = (x, x) = \sum_{n \ge 1} x_n^2 < \infty$.

(i) Si costruisca un operatore compatto autoaggiunto T il cui spettro sia $\sigma(T) = \{(-1)^n/n : n \ge 1\} \cup \{0\}$.

(ii) Si costruisca un operatore autoaggiunto e limitato T il cui spettro sia $\sigma(T) = \{1 - (1/n) : n \ge 1\} \cup \{1\}$ e si dimostri che non è compatto esibendo una successione limitata $\{x^{(n)}\} \subset \ell^2$ tale che $Tx^{(n)}$ non ammetta sottosuccessioni convergenti.

Sia H uno spazio di Hilbert (reale) separabile con prodotto scalare (\cdot, \cdot) e base ortonormale $\{e_n\}$; sia $\{\lambda_n\}$ una successione limitata di numeri reali e sia

$$T: x \in H \to Tx = \sum_{n>1} \lambda_n(e_n, x)e_n$$
.

- (iii) Si dimostri che T è un operatore autoaggiunto limitato e che $\sigma(T) = \overline{\{\lambda_n\}}$.
- (iv) Per quali $\{\lambda_n\}$ T è a rango finito? Per quali $\{\lambda_n\}$ T è compatto?

Es 21 Sia $\Sigma \subset \mathbb{R}^3$ una varietà compatta immersa in \mathbb{R}^3 . Si dimostri che esiste un atlante finito $\{(U_i, \Phi_i)\}, U_i \subset \mathbb{R}^2$ e Φ_i inclusione regolare, per cui esistono c_1, c_2 e δ_0 tali che

$$c_1 |u - v| \le |\Phi_i(u) - \Phi_i(v)| \le c_2 |u - v|, \quad \forall u, v \in U_i, |u - v| \le \delta_0.$$

Trovare valori di c_1 e c_2 nel caso Σ si il bordo di un ellissoide di semiassi $a \ge b \ge c > 0$ e nel caso caso in cui Σ sia il toro ottenuto ruotando il cerchio $\{x_1 = 0, (x_2 - 2)^2 + x_3^2 = 1\}$ attorno all'asse delle x_3 .

Es 22 Con le notazioni e definizioni del file

http://www.mat.uniroma3.it/users/chierchia/AM6_06_07/Dirichlet0607.pdf pagina 11, si dimostri che se

$$\partial_{\nu}v(x_0\pm) = \lim_{t>0, t\to 0} \frac{v(x_0\pm t\nu(x_0)) - v(x_0\pm)}{\pm t}$$

(dove $v(x_0\pm)$ denota il limite di v(y) per $y\to x_0$, rispettivamente, dall'esterno e dall'interno di D) allora $\partial_{\nu}v(x_0+)=\partial_{\nu}v(x_0-)$. Si dimostri, poi, che $v\equiv 0$ in \overline{D}^c .