AM4-Esercitazione 9

A.A.2003-2004

Prof. Luigi Chierchia, Dott. Laura Di Gregorio 27 novembre 2003

Esercizio 1

- a) Siano p,q>1 tali che $\frac{1}{p}+\frac{1}{q}=1$. Dimostrare che $\forall s,t\geq 0$ si ha $st\leq \frac{s^p}{p}+\frac{t^q}{q}$.
- b) Dimostrare che $\forall a_i, b_i \geq 0$ tali che $\sum_{i=1}^n a_i^p = 1 = \sum_{i=1}^n b_i^q$ si ha $\sum_{i=1}^n a_i b_i \leq 1$ e dedurre la disuguaglianza di Hölder per $x, y \in \mathbb{C}^n$:

$$\sum_{i=1}^{n} |x_i y_i| \le |x|_p |y|_q.$$

c) Dimostrare la disuguaglianza di Minkowski per la norma
 $|\cdot|_p$:

$$|x+y|_p \le |x|_p + |y|_p$$

Esercizio 2

Dimostrare che:

- a) $\|\cdot\|_p$ è una seminorma su $\mathcal{R}(E)$ con E rettangolo limitato non degenere di \mathbb{R}^n e $\mathcal{R}(E) = \{$ funzioni integrabili secondo Riemann su $E\}$;
- b) $\|\cdot\|_p$ è una seminorma su $\mathcal{R}_p(E) \ \forall p \geq 1;$

- c) se f è integrabile secondo Riemann su E, rettangolo di \mathbb{R}^n e $\int_E |f|=0$ allora f=0 su $E\setminus Q$ con Q di misura nulla;
- d) $f \in \mathcal{R}_p(E)$ e $\int_E |f| = 0$ allora f = 0 su $E \setminus Q$ con Q di misura nulla.