AM3 - Tutorato VIII

Integrazione in \mathbb{R}^n e cambio di variabili

Mercoledì 28 aprile 2004

Teorema 1 (Cambio di Variabili in \mathbb{R}^n). Sia A un sottinsieme di \mathbb{R}^n aperto e misurabile secondo Peano-Jordan; Sia $\Phi \in C^1(A,\mathbb{R})$ iniettiva nell'interno di A, limitata e tale che $\det(J_\Phi) \neq 0$ su A (dove J_Φ denota la matrice Jacobiana di Φ); allora $B = \Phi(A)$ è un aperto misurabile di \mathbb{R}^n e

$$mis_n(B) = \int_A |\det(J_\Phi)| \, dx$$

Inoltre se $f \in \mathcal{R}(B)$ allora $f \circ \Phi \in \mathcal{R}(A)$ e si ha:

$$\int_B f(y) \, dy = \int_A f \circ \Phi(x) \, |\det(J_\Phi)| \, dx$$

Esercizio 1. Sia $A=\{(x,y)\in\mathbb{R}^2:\frac{1}{x}\leq y\leq x^2,\,0\leq x\leq 2\}$, calcolare il seguente integrale doppio

$$\iint_{\Lambda} \frac{x}{u^3} \, dx \, dy$$

Esercizio 2. Sia D la porzione della corona circolare di raggi 1 e 2 contenuta nel primo quadrante, calcolare

$$\iint_D x \, dx \, dy$$

Esercizio 3. Sia B la regione di \mathbb{R}^3 delimitata dalla sfera $x^2+y^2+z^2=1$ e dal cono $z=\sqrt{x^2+y^2}$, calcolare il seguente integrale triplo

$$\iiint_{B} z \left(x^{2} + y^{2}\right) dx dy dz$$

(sugg: una volta ottenuto un integrale di due variabili passare a coordinate polari).

Esercizio 4. Sia T il triangolo di vertici (0,0), (1,0) e (0,-1) calcolare

$$\iint_T \exp\left(\frac{x+y}{x-y}\right) \, dx \, dy$$

(sugg: considerare il cambio di variabili u = x + y e v = x - y).