Esonero 1 - 8/11/2010

N.B. • Indicare in cima all'elaborato: nome, cognome, data di nascita, n. matricola (o n. documento).

- Il punteggio totale è in centesimi; il punteggio di ogni singolo esercizio è indicato tra parentesi quadrate.
- È vietato: parlare, scambiarsi informazioni; consultare testi, appunti, etc.; l'uso del cellulare, calcolatrici, etc.
- Le risposte vanno sempre motivate chiaramente e sinteticamente!
- Risposte senza giustificazioni non danno punteggio.
- Attenzione: è obbligatorio svolgere il primo esercizio.

Es 1 [Pt. 25] (i) Enunciare tutti gli assiomi dei numeri reali dove compare la relazione '\!\!\!\!

- (ii) Dire se è corretto il seguente enunciato: $(ab)^{-1} = a^{-1}b^{-1}, \forall a, b \in \mathbb{R}$. Eventualmente correggere l'enunciato e dimostrarlo (indicando in ogni passaggio gli assiomi usati).
- (iii) Dire cosa significa $\lim a_n = -\infty$. Dimostrare che se se $\lim a_n = -\infty$ (e $a_n \neq 0$) allora $\lim 1/a_n = 0.$
- (iv) Definire $\mathbb N$ e dimostrare il "principio di induzione".
- (v) Dimostrare che l'estremo superiore dell'insieme $\{1-\frac{1}{n}:n\in\mathbb{N}\}$ è 1.

Es 2 [Pt. 20] Trovare il sup e l'inf di $A = \{x \in \mathbb{R} : \sqrt{x^2 - 3} \le 1 - x\}$ e $B = \{-2^n + 2n : n \in \mathbb{N}\}$

Es 3 [Pt. 10] Dimostrare che la successione $a_n = \left(1 + \frac{1}{2n}\right)^n$ è crescente. Qual è il suo limite?

Es 4 [Pt 15] Sia $a_n = \frac{\sqrt{n-1}}{2n^2 + \sqrt{157}}$. Calcolare $L = \lim a_n$. Trovare un $N \in \mathbb{N}$ tale che $|a_n - L| < \infty$ 10^{-10} , per ogni $n \ge N$.

Es 5 [Pt. 30] Calcolare i limiti delle seguenti successioni:

(i)
$$\frac{(n+1)(n-5)}{\sqrt{2}n^2-5}$$
, (ii) $\frac{2^n-(\sqrt{5})^n}{n^{20}+(4/3)^n}$, (iii) $(\sqrt[n]{n}-1)^n$,

(ii)
$$\frac{2^n - (\sqrt{5})^n}{n^{20} + (4/3)^n}$$

(iii)
$$(\sqrt[n]{n}-1)^n$$

(iv)
$$\sqrt{n}(\sqrt{n+6} - \sqrt{n+2})$$

(v)
$$n^2 \frac{n!}{n^n}$$
,

(iv)
$$\sqrt{n}(\sqrt{n+6} - \sqrt{n+2})$$
, (v) $n^2 \frac{n!}{n^n}$, (vi) $\left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n}\right)^n$.