Università degli studi Roma Tre - Corso di Laurea in Matematica Tutorato di ST1 - A.A. 2005/2006

Docente: Prof.ssa E. Scoppola - Tutore: Dott. Nazareno Maroni

Soluzioni del tutorato n.11 del 25/5/2006

Esercizio 1. Sia X una osservazione singola dalla densità

$$f(x;\theta) = \theta x^{\theta-1} \mathbb{1}_{(0,1)}(x), \quad \theta > 0$$

- (a) Nel verificare $\begin{cases} \mathbb{H}_0 : \theta \leq 1 \\ \mathbb{H}_1 : \theta > 1 \end{cases}$ determinate la funzione di potenza e l'ampiezza di un test del tipo: si rifiuti \mathbb{H}_0 se e solo se $X \geq \frac{1}{2}$.
- (b) Determinate un test più potente di ampiezza α per $\begin{cases} \mathbb{H}_0 : \theta_0 = 2 \\ \mathbb{H}_1 : \theta_1 = 1 \end{cases}$
- (c) Vedere se esiste un test uniformemente più potente di ampiezza α per $\left\{\begin{array}{l} \mathbb{H}_0: \theta \geq 2\\ \mathbb{H}_1: \theta < 2 \end{array}\right.$, se sì trovarlo.
- (d) Tra tutti i test possibili di rapporto di verosimiglianza per $\begin{cases} \mathbb{H}_0: \theta_0 = 2 \\ \mathbb{H}_1: \theta_1 = 1 \end{cases},$ trovate quel test che minimizza $\alpha + \beta$ dove α e β sono rispettivamente le ampiezze degli errori di I e II tipo.

Esercizio 2. Si denoti con X_1, \ldots, X_n un campione estratto da $f(x; \theta) = \frac{1}{\theta} x^{\frac{1-\theta}{\theta}} \mathbb{1}_{(0,1)}(x)$. Verificate $\begin{cases} \mathbb{H}_0 : \theta \leq \theta_0 \\ \mathbb{H}_1 : \theta > \theta_0 \end{cases}$

- (a) Per un campione di ampiezza n, trovate, se esiste, un test uniformemente più potente (UMP) di ampiezza α .
- (b) Presi $n=2, \theta_0=1, \alpha=0.05$ trovate la funzione di potenza del test UMP.

Esercizio 3. Per verificare $\begin{cases} \mathbb{H}_0: \theta \leq 1 \\ \mathbb{H}_1: \theta > 1 \end{cases}$ sulla base di due osservazioni X_1 e X_2 estratte dalla distribuzione uniforme su $(0,\theta)$, è stato usato usato il seguente test: si rifiuti \mathbb{H}_0 se $X_1+X_2\geq 1$. Determinate la funzione di potenza del test precedente e calcolatene l'ampiezza. [Ricordate che X_1+X_2 ha distribuzione triangolare su $(0,2\theta)$.]

Esercizio 4. Sia X_1, \dots, X_n un campione casuale di ampiezza n estratto da

$$f(x;\theta) = \theta^2 x e^{-\theta x} \mathbb{1}_{(0,+\infty)}(x)$$

Vedere se esiste un test uniformemente più potente di ampiezza α per verificare

$$\begin{cases}
\mathbb{H}_0: \theta \le 1 \\
\mathbb{H}_1: \theta > 1
\end{cases}$$