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Poincaré Conjecture

In its original form, the Poincaré conjecture states that every simply connected
closed three-manifold is homeomorphic to the three-sphere (in a topologist's
sense) , where a three-sphere is simply a generalization of the usual sphere to
one dimension higher. More colloquially, the conjecture says that the
three-sphere is the only type of bounded three-dimensional space possible that
contains no holes. This conjecture was first proposed in 1904 by H. Poincaré 
(Poincaré 1953, pp. 486 and 498), and subsequently generalized to the conjecture
that every compact -manifold is homotopy-equivalent to the -sphere iff it is
homeomorphic to the -sphere. The generalized statement reduces to the original
conjecture for .

The Poincaré conjecture has proved a thorny problem ever since it was first
proposed, and its study has led not only to many false proofs, but also to a 
deepening in the understanding of the topology of manifolds (Milnor). One of the
first incorrect proofs was due to Poincaré himself (1953, p. 370), stated four years
prior to formulation of his conjecture, and to which Poincaré subsequently found a
counterexample. In 1934, Whitehead (1962, pp. 21-50) proposed another 
incorrect proof, then discovered a counterexample (the Whitehead link) to his 
own theorem.

The  case of the generalized conjecture is trivial, the  case is classical 
(and was known to 19th century mathematicians),  (the original conjecture)
appears to have been proved by recent work by G. Perelman (although the proof
has not yet been fully verified),  was proved by Freedman (1982) (for which
he was awarded the 1986 Fields medal),  was demonstrated by Zeeman
(1961),  was established by Stallings (1962), and  was shown by Smale
in 1961 (although Smale subsequently extended his proof to include all ).

The Clay Mathematics Institute included the conjecture on its list of $1 million prize 
problems. In April 2002, M. J. Dunwoody produced a five-page paper that 
purports to prove the conjecture. However, Dunwoody's manuscript was quickly
found to be fundamentally flawed (Weisstein 2002). A much more promising result
has been reported by Perelman (2002, 2003; Robinson 2003). Perelman's work
appears to establish a more general result known as the Thurston's
geometrization conjecture, from which the Poincaré conjecture immediately
follows (Weisstein 2003). Mathematicians familiar with Perelman's work describe 
it as well thought-out and expect that it will be difficult to locate any substantial
mistakes (Robinson 2003, Collins 2004). In fact, Collins (2004) goes so far as to
state, "everyone expects [that] Perelman's proof is correct."

SEE ALSO: Compact Manifold, Freedman Theorem, Homeomorphic, Homotopy, 
Hypersphere, Manifold, Property P, Simply Connected, Smale Theorem, Sphere, 
Stallings-Zeeman Theorem, Thurston Elliptization Conjecture, Thurston's 
Geometrization Conjecture, Topology, Whitehead Link. [Pages Linking Here]
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