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Abstract

In [7] Jacques Féjoz completed and gave the details of Michel Herman’s proof of “Arnold’s
theorem” on the stability of planetary systems. This result provided the existence of ���
maximal invariant tori for the planetary �����	��
 -body problem, with �	�� , in a neighborhood
of Keplerian circular and coplanar movements, under the hypothesis that the masses of the
planets are sufficiently small with respect to the mass of the “Sun”. In this thesis we prove
an analogous result in analytic class, i.e., we prove, under the same hypotheses listed above,
the existence of real-analytic maximal invariant tori for the planetary ��������
 -body problem.
The proof is based on the cited article by J.Fejoz and on a 2001 paper by H. Rüßmann.
First, we prove a general quantitative theorem about existence of maximal KAM tori for
nearly-integrable Hamiltonian systems near elliptic lower dimensional tori. Then, using [7],
we obtain a set of initial data, in the phase space of the Hamiltonian model for a planetary
system, with strictly positive Lebesgue measure, leading to quasi-periodic motions with �������
frequencies.

The thesis ends with three appendices. In appendices A and B we give a complete and
detailed proof of Kolmogorov’s original 1954 KAM theorem and we discuss a classical issue
related to it and concerning the measure of invariant tori. In appendix C we briefly review
Rüßmann’s theory, contained in [16], about lower dimensional elliptic invariant tori for nearly-
integrable Hamiltonian systems.

1 Introduction

The planetary ��������
 -body problem ( ���� ) has always been one of the most relevant and
discussed problem in the history of mathematics and physics. Nevertheless, it can be simply
described by � planets and one star (considered as point masses) moving in the space under
the effect of gravitational attraction. In 1963 it seemed that a theoretic solution to the stability
of such motions had been finally found by V. I. Arnold. In [2] the Russian mathematician
formulated a general result about existence of maximal invariant tori for the ��������
 -body
problem in a neighborhood of Keplerian circular and coplanar movements. Actually, Arnold
proved his statement only in the case of the planar three-body problem giving indications on
how to generalize his approach to the general case; however, nobody has still succeeded in
implementing Arnold’s suggestions.

It is in [7] that a proof of Arnold’s theorem appeared for the first time in his generality.
In the cited article, J. Féjoz has completed and exposed Herman’s work on the matter. In
particular, in [7], the following result is established: there exists a positive measure set of
phase space points, in the Hamiltonian model for the spatial planetary ��������
 -body problem,
belonging to quasi-periodic motions with ������� frequencies and laying on ��� Lagrangian
(maximal) tori 1. In this thesis we prove the existence of such quasi-periodic motions in the
analytic case.

Let ��� be the mass of the “Sun”, �	�! #"#"#"$ %��& the masses of the � planets and '(�*)�',+-)
.#.#. )/',& the semi major axes of the ellipses described by the planets. Then, if 0�1/2314�
denotes the highest 57698 -planet/Star mass ratio, the main result proved in this thesis can be
formulated as follows:

Theorem 1 (Arnold’s theorem on planetary motions in the real-analytic case). For all
values of masses ���: %�;�� #"#"#"$ %��& and semi major axes '(�	)<',+=) .#.#. )<',&�)<0 , there

1Actually, in [2] V.I. Arnold announced a somewhat stronger result: “If the masses, eccentricities and inclinations
of the planets are sufficiently small, then for the majority of initial conditions the true motion is conditionally periodic
and differs little from Lagrangian motion with suitable initial conditions throughout an infinite interval of time >@?BAC A=? ”.
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exists a real number 2 ��) 0 such that, for all 0�1 2;1 2 � , the flow of the spatial plane-
tary Hamiltonian system possesses a strictly positive measure set of phase space points, in a
neighborhood of circular and coplanar Keplerian tori with semi major axes �9' �� ',+� #"#"#"# ',& 
 ,
leading to quasi-periodic motions with ������� frequencies. Furthermore, such quasi-periodic
motions lay on �9����� ��
 -dimensional real-analytic Lagrangian tori.

The proof of this theorem is based on two main results. The first is a theorem by H.
Rüßmann, contained in [16], about existence of Lagrangian analytic KAM tori for nearly-
integrable Hamiltonian systems 2. A central role in Rüßmann’s theorem is played by the non-
degeneracy assumption made, which is exactly the non-degeneration in the sense of Rüßmann
(definition 1) of the frequency application of the unperturbed Hamiltonian. Indeed, as it is
well-known, the spatial planetary many-body problem is degenerate in the classical sense,
i.e., it does not satisfy the non-degeneracy condition indicated by A.N. Kolmogorov in his
1954 theorem.

The other important result we are going to use is contained in the last chapter of [7].
There, J. Féjoz proves the non-degeneracy in the sense of Rüßmann of the planetary frequency
application on an open and dense subset of the secular space having full Lebesgue measure3.

In this summary, we first discuss briefly Rüßmann’s theorem on maximal KAM invariant
tori, underlining and explaining some slight differences between his original result and the one
we will use for our purpose. Then, we consider a properly degenerate Hamiltonian function4

in the same form of the planetary Hamiltonian expressed in Poincaré coordinates. Next, we
perform some conformally symplectic transformations in order to remove the perturbation
to a sufficiently high order and reduce our system to a degenerate case of that considered by
Rüßmann. The scheme adopted is a classical one and is very similar to the scheme adopted by
M. Herman in the first part of his general KAM theorem5. At this point we apply Rüßmann’s
theorem establishing a general KAM theorem for analytic properly degenerate Hamiltonians.
Finally, using Fejoz and Herman’s results we are able to conclude the proof of theorem 1.

2 Degenerate maximal tori theorem (après Rüßmann)

2.1 Rüßmann’s theorem on analytic maximal KAM tori

Definition 1 (Rüßmann non-degeneracy condition). Let
�

a non-void open connected set
in � & , a real-analytic function ��� ������ #"#"#"# ��	�-
�
 � ���� � is called non-degenerate if
for any ��� �! #"#"#"$ ����-
���� ����� 0��

� ��� � � .#.#. �������	� ���0
or equivalently if and only if the range ! � � 
 of ! does not lie in any ���B����
 -dimensional
linear subspace of � � . We call � degenerate if it is not non-degenerate.

As a simple consequence of analycity and non-degeneration, we are allowed to define the
two following quantities:

2We remark that, in the cited paper, Rüßmann proves a much more general result concerning the existence of lower
dimensional tori, both elliptic and hyperbolic; however in our thesis we use his result only in the special case of maximal
tori (which is "$#&%'#)( with respect to Rüßmann’s notation).

3This statement is not totally correct since the non-degeneracy of a slight modification of the planetary frequency
application is proved. For detail see section 3.2.

4That is an Hamiltonian whose integrable part does not depend upon all the action variables.
5Refer to [9] or [7] for a complete proof of this very elegant and general theorem made in the *,+ setting.
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Definition 2. Let ����� & be a compact set,
��� � & a domain containing � and ��
�� �� �� � � a real-analytic and non-degenerate function. Let � &	� � 
 � � � � � & 
�
 ��
 + � � � ,

we define  �,���  �� 
 ����� , the index of non-degeneracy of � with respect to � , as the first
integer such that �


 � ��� ������������ �"!$#	% �'&$(�*),+�).-$/
000 1 + 
 2��! ��*�3� 
�4*
 + 000 )�065 (1)�

�
�
���  �� 
 is called amount of non-degeneracy of � with respect to � .

We are now ready to formulate a qualitative version of Rüßmann’s theorem

Theorem 2 (Rüßmann’s theorem for maximal tori). Let 7 be an open connected set of � &
and 8 & the usual � -dimensional torus � &:9 $;=< & , consider a real-analytic Hamiltonian

> �3?  �� 
 �A@ �3� 
 ��B3�3?  �� 

defined for �3?  �� 
��C8 &ED 7 endowed with the standard symplectic form F��HGIF�? .

Let � be any non-empty compact subset of 7 with positive n-dimensional Lebesgue mea-
sure and fix 0 1 2KJ 1 meas &L� . Let M be an open set on which

>
can be holomorphically

extended such that 8ON D �P�QM .
Assume that the frequency application � 
 �SR�@ is non-degenerate in the sense of Rüß-

mann on 7 and let T be any integer greater than index of non-degeneracy of � with respect
to � .

Then, for any fixed U�) �VT , there exist 2 � )�0 and W	) 0 depending on 2KJ: ��  ��  �T  
�
 XM3 �U

such that for 
 BY
 Z\[ 2 � the following is true: there exist a compact set ]^�_� with
meas &	] ) meas &L� �=2XJ and a bi-lipschitz mapping

` 
(��a� �b  �c 
 �I] D 8 & D'd ��e8 & D 7� 
where d is an open neighborhood of the origin in � & , such thatf the mapping

�3b  �c 
hg �� �3?  �� 
 � ` ��a� �b  �c 

defines, for every a,�E] , a real-analytic canonical transformation on 8 &ED'd ;f the transformed Hamiltonian

> J 
 � >Sih`
is in the form:

> J ��a� �b  �c 
 �j@ J ��a$
 �A2�� J ��a$
  �c"4 �lk �X
 c=
 + 

for every a,�E] and �3b  �c 
��C8 & D'd ;f the new frequency vector �hJ satisfies for all a in ] the diophantine inequality


 2�m  �� J ��a$
�4*
 � W

 m=
 n+  Eopm �q< & ��� 0���" (2)

As we already remarked, this statement, concerning the existence of maximal tori only, is
just a particular case of Rüßmann’s main theorem contained in [16] 6.

However, there are two main differences between Rüßmann’s theorem in the case of maxi-
mal invariant tori and theorem 2. The first consists in the different way of controlling the small

6We refer to the thesis to have some more details on how to obtain theorem 2 from the general results in [16]. In
particular, in chapter 2 we review some important aspect of Rüßmann’s paper only in the case of maximal invariant
tori (the case " # % # ( in Rüßmann’s notations). Moreover, we give a quantitative formulation of theorem 2 which
includes also an explicit estimate for the size of the perturbation.
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denominators appearing in the problem. Indeed, Rüßmann performs this control in a very
general way through a so called “approximation function”. Instead, our choice is to use clas-
sical Diophantine inequalities of the form (2). This apparently trivial aspect, which reduces
also the measure of parameters leading to quasi-periodic motions, plays, on the contrary, a
central role. In particular, we infer that it is necessary to consider such kind of inequalities to
apply Rüßmann’s theorem to the case of a properly degenerate Hamiltonian system adopting
our scheme. Without going into details, we may only say that if we consider an approximation
function as defined by Rüßmann in [16, definition 1.4] and then apply Rüßmann’s estimate
for the size of the perturbation to an Hamiltonian in the form (7), we get to a contradiction
reaching an inequality of the form k �92�� 
6[jk �92 � 
 for any

� )�0 , whereas � ��� is a fixed
real number 7.

The other important difference is the choice of T as any integer greater than the index of
non-degeneracy of � . In fact, we claim and prove that it is not necessary to use the literal
definition of index of non-degeneracy, but the same results hold for any T��  � , if we take
into consideration the corresponding “amount of non-degeneracy” defined by equation (1)
with T instead of  � . The reason for this choice will be clarified later.

2.2 Formulation of degenerate maximal tori theorem

Let � an open set in � N , d some open neighborhood of the origin in � +�� and 2 a “small” real
parameter, we consider an Hamiltonian function

>	�
in the form

>
� ���@ �( ��  �� 
 �j@ ��,
 ��2 ! ���@ �( ��  �� 
 (3)

and assume it is real-analytic for

���@ �( ���  �� 
%
��C8 N D � D'd �$
��
where � is endowed with the standard symplectic form

F��GIF�� ��F�� GIF��*"
Moreover, we assume that ! is in the form ! ���@ �( ��  �� 
 ��!��:��( ��  �� 
 ��! �!���@ �( ��  �� 
 with�����

! �!���@ �( ��  �� 
LF��&��0
and

!��:��( ��  �� 
 � !�� �:��,
 � ����� ��� � ��,
 � +� ��� +� ��!!+ ��( ��  �� 
 (4)

with  �!#"$ ��% 
 !!+ ��( ��  �� 
*
	[ � �	
 ���  �� 
*
 &  o����  �� 
 � d (5)

for some � � ) 0 .
Observe that the Hamiltonian @ ��2 !!� possesses for every $� �'� the invariant isotropic

torus 8 N$ / 
 �A8 N D �  � � D � 0�� �(�
with corresponding quasi-periodic flow� ��)%
 �+*�, @,  �� �!
 ��2-, !�� �,  �� �!
/.0) �1� �  ��)%
324 � ��� ��)%
  �� ��)%
%
32�0 "

7See subsection 4.3.5 of the thesis for full details.
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Disregarding the elliptic singularity in every single elliptic plane � � � � , we aim to find La-
grangian invariant tori for

> �
, i.e., maximal tori in the form

8 N � �$ / � � �A8 N D �  � � D � ���  �� 
 � � +��  :
 ��� �  �� � 
*
 � � �  Yo � ���  #"#"#"$ �� �
for  � in � and � �=�����*
 � 
 � � � ��� � 
 � � )�0  'o � ���  #"#"#"$ �� � .
Theorem 3 (Degenerate maximal tori theorem). Consider the real-analytic Hamiltonian
function

>
�
described above and assume that the “frequency map”, i.e., the real-analytic

application  � ���� ��R�@ ��,
  � ����,
  #"#"#"# � � ��,
%
�� � N D � �  (6)

is non-degenerate in the sense of Rüßmann (definition 1). Then, provided that 2 is sufficiently
small, in any neighborhood of 8 N D �  � � D � 0  0��'� � there exists a positive measure set
of phase space points belonging to real-analytic maximal KAM tori for

> �
carrying quasi-

periodic motions.

The proof of the result described above consists of three main steps described by the
following three theorems.

Theorem 4. Assume that the frequency map � ��� � ��R�@ ��,
  � ����,
  #"#"#"  � � ��,
%
���� N D � �
is non-degenerate in the sense of Rüßmann. Chose and fix an integer � �� and an open set� � � . Then, there exists an open ball

� N �� �: ���
 
 �
	� � � N 
 
  �' �L
,1���'� �
such that, provided 2 is small enough, there exists a real-analytic canonical transformation�0� 
(���  ��! ��  �� 
 �C8 N D � N �90  �� 9�� 
 D 8 � D � � �90  2 
@� �

� � ���@ �( ��  �� 
��C8 N D � N �� �: ���
 D'd
such that �>
� 
 � >
�=i��0�

assumes the form

�>
� ���  ��  ��! �� 
 � �2 @ �� � ��2���
 � �� �� � � 2���
 � � �� �� � ��2���
 . ��� � ��2�� 
 �
��� � � $ / � ��� ��� � ��2�� 
 ��2 � B � ���  ��  ��! ���5�� � 
 (7)

where � � in �����*
 � is a chosen point having euclidean norm �2 , � � � $ /�� ��� is a polynomial
of degree � � � depending on 2 and $� ��2�� , �� , �� and B � are real-analytic functions.
Furthermore, if we denote � 
 ��� � �! #"#"#"$ � � 
 , it results �!#"� ���! � � "$#�%�& 
��� �� � ��2���
 � � �� � ��2���
*
 �jk �92 
 "

Theorem 5. If 2 is small enough, the frequency map of the torus 8 N � �� � ' of the integrable part

of �>
� , i.e., the real-analytic function

�( � 
(���! �� 
�� � N �90  �� 9�� 
 D � +�� �90  2 
@� �*) ,, �,+ � ,, �-+ �/.
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where + � 
 � �>
� �=2 � B � , is non-degenerate in the sense of Rüßmann.
Moreover, let T and T� denote respectively the index and amount of non-degeneracy of

the initial frequency map in (6) with respect to a compact set � � � N:�� �: �� 9�� 
 ; then, if
we define � � as the index of non-degeneracy of �( � with respect to a suitable compact set� � � N:�90  �� 9�� 
 D � � �90  2 
 , and

�� � 
 � ��� ���� �
� ��� #	% ��� � � � '�& ��� �'&$(�*),+�)��- 00000 , + 
 2��! �( � 4*
 +, � , �

00000  (8)

it results � � [PT and �� � � 2 �-$� + T�� " (9)

Theorem 6. If � in theorem 4 is chosen to be sufficiently large and we assume that 2 is small
enough, then it is possible to apply Rüßmann’s theorem for maximal KAM tori to �>
� obtainingW ) 0 and a positive measure set of phase space points corresponding to quasi-periodic
motions with � W  �U(
 -Diophantine frequencies. Such motions lay on real-analytic maximal
KAM tori.

2.3 Proof of theorem 3

Before outlining a sketch of the proof of theorem 3, we introduce some notations:f Let � � � � or � � and 
 . 
 denote the standard Euclidean norm; for any ) ) 0 we
denote � 6 
 � 	
 ��� 1 � �3?  �)%
�
 � 	
 ��� � ?� ��� � 
 
 ?�(� ?�
,1 )��
and 8 N6 
 � � ? ��� N 
 
 Im ? � 
,1 )  Re ? � �C8� Yo � � � "#"#"XF ��"

f We assume that
>

in (3) can be holomorphically extended to

���@ �( ��  �� 
 �q8 N� D � � / D'd � % �$
�� J
and denote

 
 � �� ��� ���  �!#"%�� /���� � % 
 ! � ��( ��  �� 
*
 ����� � � % � "
as the “sup-Fourier” norm of ! . In particular, by the assumption made,

> �
is real-

analytic on 8hN D � N:�� �: ���
 D � +�� �90  ��!�$
 for any chosen $� in � and � 1 �#� .f In this section we denote with � any positive constant which may depend on
>

, F , � ,� , �#� , �!� and on � , as it will appear in inequalities (11) and (12).

We now follow the scheme described in section 2.2 and give a proof of theorems 4, 5 and
6 obtaining the validity of theorem 3 as a consequence.

The canonical transformation
� �

in theorem 4 is obtained through five main steps. First of
all, consider the real-analytic Hamiltonian

>	�
in (3) with the form described at the beginning

of section 2.2, let �3�*�� and ��+-��� be two integers to be later determined and set �,
 �"!� ��� ��� ��
�# $�% �2X " (10)
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From the hypothesis of non-degeneracy in the sense of Rüßmann of the frequency application
in (6), we may find 0 1 �;1 � � and a point  � �(� such that

� N:�� �: ���
'� � and the two
following inequalities hold:


 �*��,
 . m=
,)�0  Yopm �q< N  (0�1 
 m=
 � [  �  o  � 1 N:�� �: ���
� (11)


 � ��,
 . m=
,)�0  Yo m �q< �  0 1 
 m=
 � [ ��+� o  � 1 N:�� �: ���
�" (12)

Now, we apply a classical result of averaging theory in order to remove the dependence of>
�
on the “fast angles” � up to order �3� . The following lemma is a corollary of a general

formulation of “Averaging Theorem” given in [17, proposition A.1]:

Lemma 1 (Averaging Theorem). In view of inequality (11) with
 � defined in (10), for

sufficiently small 2 there exists a real-analytic symplectic transformation� �� 
(����@ �( ���  ��� 
 � � �,
 � 8 N � � D 1 N �� �: �� 9  
 D 1 +�� �90  ��!� 9  
���
� � ���@ �( ��  �� 
 � � � 
 �A8 N� D 1 N �� �: ���
 D 1 +�� �90  ��!�#


that casts
>
�

into the Hamiltonian

> �� 
 � >
�=i�� �� �j@�� � � �!
where � � � � �( ���  ��� 
 and �! satisfy �!#"

� % 

� �=2 !�� 
	[�� �92X 
 +   �!#"

� % 
 �! 
	[ �92X 
 � % " (13)

Now, in view of equation (13) we may write � �$
 2 !��@���� with �!#"
� % 
	�� 
	[�� �92X 
 + "

Thus, if we set �� �$
 2$T� and �! �$
 2 � % T! , using again (13) we have

> �� ����@ �( ���  ��� 
 �j@ � �,
 ��2 
 !��:� �  ���  ��� 
 ��2$T� � �  ���  ��� 
��*��2 � % T! ����  �( ���  ��� 
 (14)

with T� and T! real-analytic on � � . Furthermore, (4) and (5) give

!��:� �( ���  ��� 
 � !�� �:� � 
 � ����� ��� � � �,
 �� +� ���� +�
 ��!!+ � �( ���  �� 
 (15)

with 
 !!+ � �  ���  ��� 
*
L[��'
 ����  ��� 
*
 & for every ����  ��� 
 � 1 +�� �90  ��!� 9  
 .
From equation (14) we see that the application of averaging theory has caused a shift of

order 2 to the elliptic equilibrium initially possessed by !�� at the origin of � +�� . We now
focus our attention on the Hamiltonian function !��*��2$T� with the aim to find a real-analytic
symplectic transformation restoring the original equilibrium. The application of the Implicit
Function Theorem yields the following: 8

8Refer to section 3.3 in the thesis for detailed proofs of the following results.
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Lemma 2. Let � + 
 �A8hN � � D 1 N:�� �: �� 9�� 
 D 1 +�� �90  ��!� 9�� 
 ; then, provided 2 is small enough,
there exists a real-analytic symplectic transformation� + � 
(�3?  ��  ��  ���
�� � +-�� ����@ �( ���  ��� 
 � � �

such that
> +� 
 � > �� i�� + � is in the form

> +� �3?  ��  ��  ���
 �A@ �3� 
 ��2 �� �3�  ��  ���
 ��2 � % �! �3?  ��  ��  ���

with , � �� �3�  0  0:
 ��0 � ,�� �� �3�  0  0:
 and �� and �! real-analytic on �B+ .

Next, consider the quadratic part of �� , that is the real-analytic  � D  � symmetric matrix����3� 
�
 � , + � � � & �� �3�  0  0:
 . Using the construction of
� + � in lemma 2 and equation (15) for !!� ,

we obtain ����3� 
 � diag � � �!�3� 
  #"#"#"# � � �3� 
  � ���3� 
  #"#"#"# � � �3� 
%
 �lk �92 
 "
Then, the following result runs as a consequence of another application of the Implicit Func-
tion Theorem:

Lemma 3. If 2 is taken sufficiently small, then the eigenvalues of the symplectic quadratic part
of �� , i.e., the eigenvalues of 9 ����3� 
��:+�� , define  � purely imaginary functions 	*5 �� �� #"#"#"$ 
	*5 �� �verifying  �!#"

�����
�  $ / � "$#��& 
��� �3� 
 � � �3� 
*
L[��-2 " (16)

Now, using a well-known result by K. Weierstraß on the symplectic diagonalization of
quadratic Hamiltonians, we can find a real-analytic symplectic transformation k �92 
 -close to
the identity� & � 
(���?  ���  ���  ����
 � � & 
 �A8 N � � D 1 N �� �: �� 9�� 
 D 1 +�� �90  ��!� 9�� 
��� �3?  ��  ��  ���
�� � +

such that ��&� � and the transformed Hamiltonian function
> &� 
 � > +� i�� & � , which is real-

analytic on � & , has the form

> &� ���?  ���  ���  ����
 � @ � �� 
 ��2 �� �:� �� 
 � 2 ����� � �� � � �� 
����� +� � �� +��� �
� 2�� & � ��  ���  ����
 ��2 � % �! & ���?  ���  ���  ����


where �� � 
 � �� � ��  0  0:
 , �! & 
 � T! i�� & � and �� & 
 � �� & i�� & � verifies �!#"
������

�  $ / � "$#�%�& 
	�� & � ��  ���  ����
*
	[��'
 � ��  ����
*
 & o � ��  ����
 � 1 +�� �90  ��!� 9�� 
 "
Let �� + � ��  ���  ����
 
 � �+�� � � � � �� � � �� +� � �� +� 
 , next step is putting �� + � 2�� & into Birkhoff’s normal

form up to order ��+ . In view of inequalities (12) and (16), provided 2 is small enough, we
have 
��� � �� 
 . m=
,)�0  Yopm �q< �  (0 1 
 m=
 � [ ��+� o  � 1 N �� �: �� 9�� 
 " (17)

This non-resonance condition allows the following result:

9 ����� denotes the standard symplectic ��"�����" matrix.
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Lemma 4 (Birkhoff’s normal form). 10 If inequality (17) is satisfied, then there exist 0	1� J 1 � � [ �!� 9�� and a real-analytic symplectic diffeomorphism�  � 
 ���  ��! ��  �� 
 � �  
 �A8 N � � D 1 � �� �: �� 9�� 
 D 1 +�� �90  �� J 
 � �
�� ���?  ���  ���  ����
 � � & 
 �A8 N � � D 1 � �� �: �� 9�� 
 D 1 +�� �90  �� � 


leaving the origin and the quadratic part of
> &� invariant, such that ���  ���
&� ���?  ��� 
 and> � 
 � > &� i��  � is in the form

> � ���  ��! ��  �� 
 � @ ����
 ��2 �� �:����
 � 2 ����� � �� � ����
$��� +� ��� +� 
 �
� 2 � J ���! ��  �� 
 ��2�� J ���! ��  �� 
 ��2 � % �!  ���  ��! ��  �� 


where:f � J is a polynomial of degree � ���+�� in the variables  ������! #"#"#"$ ���:
 having the form

2��� ����
  �	4 � � 2�	�����
 ( �	4 � .#.#. with  � 
 � � ��� +� ��� +� 

where 	�����
 is  � D  � real-analytic matrix;

f � J is a real-analytic function verifying 
 � J ���! ��  �� 
*
	[��'
 ���  �� 
*
 ��� � � for every ���  �� 
 �1 +�� �90  �� J 
 and � � 1 N:�� �: �� 9�� 
 ;f �!  
 � �! & i��  � is real-analytic on �  .
Next, we perform a passage to symplectic polar coordinates in order to move � J to the

perturbative part of
> �

with the help of a simple rescaling by a factor 2 . Let � � ����� � �  #"#"#"$ �� �� 

in �����*
 � be sufficiently close to the origin; consider, for a suitable 
 ) 0 , the real-analytic
symplectic transformation� % � 
(���  ��! ��  �� 
�� � % 
 �A8 N � � D 1 N �90  �� 9�� 
 D 8 � � D 1 � � 0  �
 � � 
 9  � ��

�� ���  � � � �! �,
 � � 
where � � ����5/��
 ��� � �� � � � � � + � ��� . So, the transformed Hamiltonian function

> %� 
 �> � i�� % �
, real-analytic on � % , assumes the form

> %� ���  ��! ��  �� 
 � @ �� � � ��
 ��2 �� �:�� � � ��
 � 2 ����� � �� � �� � � ��
$��� �� � � �� 
 �
� 2 � $ /�� � ��� � � � 
 ��2�� �� � � �! ��  �� � � � 
 ��2 � % �! % ���  ��! ��  ���5�� � 


wheref � $ /�� � 
 � � J i � % �
is a polynomial of degree � ���+�� with respect to � � � � , depending

also on  � � � ;
10A complete and quantitative proof of “Birkhoff’s normal form Theorem” can be found in section 3.4 of the thesis.
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f ��
 � � J i�� % � verifies


 � �� � � �! ��  �� � � � 
*
	[�� 00 � � 00 � � � %�
for every � � 1 +�� � 0  �� �$9  � , � � 1 N �90  �� 9�� 
 and � �C8 � � ;

f �! % 
 � �!  i�� % � is real-analytic on � % .
Now, let � � be the homothety given by� � 
(���  ��! ��  �� 
 �� ���  2��! ��  2�� 
 "
Even though � � is not a symplectic map, it preserves the structure of Hamilton’s equations if
we consider the Hamiltonian function

>��� 
 � � � > %� i � � . Explicitly we have

> �� ���  ��! ��  �� 
 � �
2 @ �� � ��2���
 � �� �:�� � ��2���
 � � �� �� � ��2���
 . ��� � ��2�� 


� � � � $ /�� ��� ��� � ��2�� 
 � � �� � ��2��! 2��  ��L5�� � 
 ��2 � % � � �! � ���  ��! ��  ���5�� � 
 "
where �! � 
 � �! % i � � . Now we fix � � ��������
 � with 
 � � 
 �<�2 such that we obtain 
 �'
 [
�-2

� � � %� . Thus, defining � 
 �4�3�@� � 
 � ��� � �+ , we may write

� �� � ��2��! 2��  ��L5�� � 
 ��2 � % � � �! � ���  ��! ��  �� 
 �$
 2 � B � ���  ��! ��  �� 

for a suitable function B � real-analytic on 8ON � � D 1 N �90  �� 9�� 
 D 8 � � D 1 � �90  2 
 (that is � % once

we have imposed 
 � � 
 ���2 ). We have so proved theorem 4 with �>
� � > ��
.

Define now + � 
 � �>
� �=2 ��B � as the integrable part of �>
� , i.e.,

+ � �� � ��2��! �� � ��2�� 
 
 � � 2 @ �� � ��2���
 � �� �:�� � ��2���
 �
� �

����� � �� � �� � ��2���
$��� �� ��2�� � 
 � � � � $ /�� ��� ��� � ��2�� 
 "
The frequency application of this unperturbed Hamiltonian is given by

�( � ���! �� 
�
 � ) ,, � + � �� � � 2��! �� � ��2�� 
  ,, � + � �� � ��2��! �� � ��2�� 
 . �
�

�
�*�� � ��2���
 �lk �92 
  2 �� �� � ��2���
 �lk �92 + 
��

and is real-analytic on 1 N:�90  �� 9�� 
 D 1 � �90  2 
 (we recall � 
 � R�@ ). Then, using (16) we
obtain �( � ���! �� 
 � �

�*�� � ��2���
 �lk �92 
  2�� � �� � ��2���
 �lk �92 

	�� " (18)

Now, a proposition by Rüßmann gives the following characterization of non-degeneracy:
if !�
 ��� � & �� � � is real-analytic and non-degenerate, then for any point a ��� there
exist � linearly independent coefficients in the Taylor expansion of ! ; conversely, if for some
point a � � we can find such � linearly independent coefficients, then ! is non-degenerate.
This result establishes a relation between a non-degenerate function and the non-singularity
of a matrix which depends on some of its derivatives. Thus, from hypothesis in theorem 3
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and formula (18), we can conclude that �( � is non-degenerate in the sense of Rüßmann on1 N:�90  �� 9�� 
 D 1 � �90  2 
 , provided that 2 is small enough. The first part of theorem 5 is so
proved.

Let now T)�p��� and T� )�0 be respectively the index and the amount of non-degeneracy
of
(

with respect to a compact set ��� � N:�� �: �� 9�� 
 such that ���1 � . If we define ��� 
 �	�� � � N 
  � � � � � � and( �:����
 �����*�� � ��2���
  � �� � ��2���
%
� (19)

it results

��� �� ��� / �'&$(�*),+�)��- 0000 , +, � 
 2��! ( �:����
�4*
 +
0000 ��2 �- T� ) 0

for every � ��� N � �$� � � � � ��� N � � 
C
 ��
 + � � � . Now denote with
( �

the real-analytic
function over 1 N:�90  �� 9�� 
 D 1 � �90  2 
 obtained multiplying the last � component of �( � by a
factor  9 2 . Then, observe that equations (18) and (19) yield

( � ���! �� 
'� ( �:����
 �Qk �92 
 ; thus,
if 2 is taken small enough, we may obtain

��� � � � '�& ��� / � � % �'&$(�*),+�)��- 0000 , +, � 
 2��! ( � ���! �� 
�4*
 +
0000 � 2

�- T�
 )�0

for every ����� N � �$� � , where � � is some compact subset of 1 � �90  2 9�� 
 containing the origin.
Furthermore, the definition of �( � and

( �
and the homogeneity of the function

! ���#
 
 � ��� � � � '�& ��� / � � % �'&$(�*),+�)��- 0000 , +, � 
 2��! ( � 4*
 +
0000

give

��� � � � '�& ��� / � � % �'&$(�*),+�)��- 00000 , + 
 2��! �( � 4*
 +, � , �
00000 �

2 �-$� + T�� ) 0

for every � ��� N � �$� � . Accordingly to the notation of theorem 5, if we take � � � � D � � ,
the above inequality means � � [PT . Moreover, �� � , the “amount of non-degeneracy” 11 which
corresponds to T , verifies �� � � 2 �-$� + T�� (20)

such that theorem 5 has been completely proved.

Now, to end the proof of theorem 3 we need to apply Rüßmann’s theorem for maximal
tori to the “degenerate” case of �>
� . With theorems 4 and 5 we are in a position to meet the
hypothesis of non-degeneracy of the frequency application required in theorem 2. However,
the “degenerate” case of

>���
also requires that the size of the perturbation is of a sufficiently

small order in 2 .
As we see from (7), the size of the perturbation of �>
� is order 2 � with � �� ; observe

that since � � and ��+ can be arbitrarily fixed at the beginning of the process described in this
section, also � can be arbitrarily fixed. Now, if we analyze the estimate given by Rüßmann12,
we see that the admissible size of the perturbation has a polynomial dependence upon the
quantities 2XJ ,

�
, and � , which, in turn, can be controlled by powers of 2 when �>
� is considered

11Notice that this is not literally the amount of non-degeneracy (unless �� #	���
 ), but is the corresponding value of �
in (1) with respect to �� .

12See [16, page 171] or the simplified estimate that we derived in the maximal case in section 2.4 of the thesis.
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( �� � for instance is controlled by means of (20)). Moreover, accordingly to the statement of
theorem 2, we can consider the index T in the application to �>
� in view of T=� � � . Also, the
exponent U , which needs to be fixed in theorem 2, can be fixed a priori without any problem
since the condition is U ) �VT which is greater than � � � . These observations explain how the
admissible size of the perturbation of �>
� is order k �92 � / 
 for some � � �� . Therefore, if we
choose � )(� � in theorem 4, we can apply Rüßmann’s theorem to �>
� and obtain theorem 6
as a consequence.

A fully detailed proof of the application of Rüßmann’s theorem to �>
� � > ��
is provided

in section 4.3 of the thesis. There, we analyze each quantity involved in the estimate given by
Rüßmann for the admissible size of the perturbation, and in particular how they change order
in 2 when �>
� is considered. Moreover, we give an explicit determination of a suitable lower
bound for � , we explain the different choice for the control of the small denominators and
we also provide an explicit estimate for the size of the perturbation in theorem 3.

3 Application to the planetary
���������

-body problem

3.1 Hamiltonian formulation and reduction to the form considered in
Theorem 3

The movements of � � � bodies (point masses) interacting only through gravitational attraction
are ruled by Newton’s equations

��  � & � �
/�� � � !���� � T� � �  � & � �  � &00 �  � & � �  � & 00 &  5 ��0  #"#"#"$ %� (21)

where �  � & �/���  � &�  ��  � &+  ��  � && 
�� � & are the cartesian coordinates of the 57698 -body of mass T� �
and the gravitational constant has been renormalized to one by rescaling the time ) .

As it is well know, the integral curves of equations (21) are the integral curves of the
Hamiltonian vector field generated by the Hamiltonian function

�>
New 
 �

&� � � � 00 �  � & 00 +
6T� � �

�
�*) ��� � ) & T� � T� �


 �  � & � �  � & 

where �  � & �eT� � �  � & is the momentum conjugated to �  � & , � �  � &  ��  � & 
 are standard symplectic
variables and the phase space considered excludes any intersection between the orbits.

The classical scheme adopted when dealing with many-body problems consists, at first, in
the introduction of “heliocentric” coordinates and in a simple rescaling of masses by a factor
2 (motivated by the planetary case in which one mass is much bigger than the others). Then,
one introduces Poincaré coordinates � �  
	* �b  �c  ��  ���
 �C8 & D �90  �� 
 & D � & D � & D � & D � & "
In this variables, the new Hamiltonian function, that we will call + plt, has an integrable part
given by

+ Kep 
 �
�
�K) � ) & �  &�� +�

�	 +�
where  � and  � are functions of T��� , T� � and 2 ; the perturbative part of + plt will be denoted
by + per. We can now define the average movements �,�� #"#"#"# ��!& , which play the role of � � in
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theorem 313 for
� � �  #"#"#"# %� , by14

� � 
 � , + Kep, 	 � �
�  �
'���� �  &�  +�

	 & " (22)

Our aim is to apply theorem 3 with
> � � >

plt, !�� � 2 + per 4 15 and ! � � + per �A2 + per 4 .
Remarkable results by Laplace and Lagrange (contained for instance in [15]) about Birkhoff’s
normal form of 2 + per 4 near the elliptic equilibrium point at the origin, show the following fact:
the quadratic part of 2 + per 4 can be written in the form�

�K) � ) & � � �3b +� � c +� 
 � �
�K) � ) &�� � � � +� � � +� 
 �lk � � 
 "

where � �! #"#"#"# � & and
�
�! #"#"#"$ 

�
& are the eigenvalues of two bilinear forms denoted by � 8 and

��� , depending on the masses and semi-major axes via the famous “Laplace’s coefficients”.
The Hamiltonian function of the planetary ���;� ��
 -body problem is so reduced to the form
considered in theorem 3 but we still need to check if it verifies the non-degeneracy hypothesis.

3.2 Laskar-Herman-Féjoz lemma about non-degeneracy

Up to rearranging the planets, we may assume that the semi major axes of the orbits described
by the planets belong to the open subset of � &

M 
 � � �9' �� ',+� #"#"#"# ',& 
 � � & 
 0�1�',& 1�',&	� �*1 .#.#. 1�' � ��"
Now, let � � be the average movements in (22), � � and

�
� the eigenvalues of the matrices

representing � 8 and ��� , we denote with � the multivalued application

�)
:' �qM g �� � � �� #"#"#"# � &  
�
�! #"#"#"$ 

�
&  �� �! #"#"#"$ ��!& � � � &

and call it the planetary frequency application.
In [7, pages 52-62] (to which we always refer for full details) it is shown that, for all values

of masses and in a simply connected neighborhood of almost every value of semi major axes,
there exists an analytic determination of the frequency application again denoted by

��
 ' �CM g �� � � �! #"#"#"# � &  
�
�! #"#"#"$ 

�
&  �� �! #"#"#"$ ��!& 
 � � & & "

However, it turns out that this application is degenerate in the sense of Rüßmann. In particular
the following statement is proved:

Proposition 1. For all � �  there exists an open and dense set with full Lebesgue measure� � M , where the eigenvalues of � 8 and ��� are pairwise distinct and satisfy the following
property: for any open and simply connected set

� � � , the eigenvalues of � 8 and ��� define
!� holomorphic functions � �! #"#"#"$ � &  

�
�� #"#"#"# 

�
& 
 � �� � which, together with the average

movements � �� #"#"#"# ��!& , satisfy only this linear relations:

&���� � � � � � �
� 
 ��0 and

�
& ��0 " (23)

13With respect to notations in theorem 3 we have 	�#�
 and "$# ��
 .
14We are using ���# � ��� ������� by definition.
15This denotes the average of � per with respect to ���������������! and is known as the “Secular Hamiltonian”.
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So, we are not yet in a position to apply directly theorem 3 to
>

plt. To avoid the degen-
eracy of the frequency application, in [7] the author follows an intermediate strategy between
a classical expedient (known as “Poincaré trick”) and an idea of M. Herman. First of all, it is
considered an Hamiltonian

>�� 
 � >
plt �

� � +� , where
�

is a real parameter and � � is the third
component of the total angular momentum. This new Hamiltonian

>��
still has an equilibrium

point at the origin and its quadratic part possesses � � eigenvalues with double multiplicity
corresponding to !� frequencies which form, together with the average movements, an “ex-
tended frequency application” � �  ' 
 g �� ��@� �  ' 
 .

It is not difficult to prove that
�� does not satisfy the first relation in (23). Furthermore,

if the averaged Hamiltonian 2 >�� 4 is restricted to the submanifold of vertical total angular
momentum � vert 
 � � � 
 �<0&�<� � � and �� � denotes its quadratic part computed at the
origin, then the following is true

Theorem 7 (Herman, Féjoz, Laskar). For all �/�  there exists an open and dense set� � M D � with full Lebesgue measure, such that the !� ��� frequencies associated to the
eigenvalues of �� � , regarded as functions of ' �qM and

� � � , are pairwise distinct and satisfy
the following property: for every open and simply connected

� � � these frequencies define
!� ��� holomorphic functions � �! #"#"#"$ � &  

�
�� #"#"#"# 

�
&	� � 
 � �� � which, together with the

average movements �:�� #"#"#"# ��!& , do not satisfy any linear relation. In particular the frequency
application

��)
 � 	* � 
 �=������
 & D � � � � �! #"#"#"$ � &  �� �� #"#"#"$ ��!&  
�
�� #"#"#"$ 

�
&	� �#
 ��� & &L� � (24)

is non-degenerate in the sense of Rüßmann on an open and dense subset of M D � having full
Lebesgue measure.

Now, a simple extension of theorem 3 to the case of an Hamiltonian depending on an
additional parameter, permits its application to

>��
. Then, since

>
plt and

>��
commute, a

classical argument shows that they have the same invariant Lagrangian tori. So, we have
obtained that

>
plt possesses a positive measure subset of points in � vert belonging to quasi-

periodic motions, laying on real-analytic maximal invariant tori with ����� � frequencies.
Moreover, the union of these tori forms a strictly positive � ! �=�� 
 -dimensional Lebesgue
measure set. Then, the invariance of equations (21) under rotations and Fubini’s theorem show
that the union of invariant tori for the planetary problem has strictly positive ! � -dimensional
Lebesgue measure.

4 Appendices

The thesis ends with three appendices in which we review some aspects of both classical and
recent KAM theory. In appendix A we provide a proof of Kolmogorov’s 1954 theorem on the
persistence of quasi-periodic motion. Based on Kolmogorov’s original and outstanding idea
contained in [10], and inspired by notes taken from [5], we give a quantitative formulation of
the famous theorem which marked the beginning of KAM theory. We underline the construc-
tive aspect of the detailed proof by providing also an explicit estimate for the admissible size
of the perturbation.

Next, in appendix B, we discuss another classical result concerning the measure of the
union of Kolmogorov’s tori (i.e., maximal invariant tori carrying quasi-periodic motions)
which can be found with his theorem contained in appendix A. In particular, if we denote with
2 the size of the perturbation of the considered Hamiltonian system, using ��� -Whitney’s ex-
tensions and the estimates obtained in Kolmogorov’s theorem, we are able to conclude that the
set of all invariant tori leaves out a set whose measure is proportional to 2 %� times the measure
of the phase space.
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Finally, in appendix C, we briefly review the general Rüßmann’s theory on invariant lower
dimensional elliptic tori; we introduce some aspects of his theory and then summarize the
main results contained in [16].
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