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1 Introduction

In 1981 Diaconis and Shahshahani proved that on complete unweighted
graph the interchange process and the random walk have the same spec-
tral gap [5]. This was the first example of what turned out to be a much
more general fact. Further evidences arrived with the work of Flatto and
Odlyzko [6] who proved the equality for all star graphs. In 1992 the prob-
lem arose in a conversation between David Aldous and Persi Diaconis: could
this equality hold for all unweighted graphs? It was stated for the first time
as an open problem in Alouds personal web page [1] and in the 1994 ver-
sion of [2], since then it has been called Aldous’ Spectral gap conjecture or
Diaconis-Aldous conjecture. From that moment the problem received more
ad more attention. In 1996 Handjani and Jungreis proved the equality for
all weighted trees [9] using a recursive approach. The 2008 was the year of
asymptotic version for boxes in Zd, with unweighted edges with Conomos
and Starr [13], and Morris [12]. Recently Cesi push the algebraic approach of
[5] to obtain the conjecture for all unweighted complete multipartite graphs
[4]. The conjecture was finally proved in 2009 in a joint work of Caputo,
Liggett and Richthammer [3] who presented a proof for all weighted graphs.
This article is surveyed in section 2.

In section 3 we explore the frontiers of Aldous’ conjecture by exploring
possible generalization. First we show, by means of numeric counterex-
amples, that the Spectral gap scenario fails for other quantities such as
Log-Sobolev and modified Log-Sobolev. So that we cannot extend the “re-
ductive” approach of the conjecture. Another natural way of generalizing
the conjecture is by considering more “complicated” models. We introduce
two models, k−Deck and Block Shuffle. In k−Deck we increase the number
of particles on every node of the graph from 1 to an arbitrary integer k.
Heuristically speaking, we consider every node as a deck of k cards. This
process generalizes the interchange process, that is the particular case k = 1.
For this process we state an analogue of the Aldous’ conjecture and we give
a proof in a very special case. An higher degree of generalization is obtained
through the model we call Block Shuffle. We lose the structure of the under-
lying graph. The dynamics consists of shuffles of entires blocks, identified as
subsets of a given set V, which are updated each with its own rate. Namely
we have an application

α :
P(V ) \ {∅} −→ [0,+∞)

A 7−→ αA

where P(V ) is the power set of V . We consider subsets A such that αA > 0.
This defines the rates of Poisson’ clocks. When the clock with rate αA
“rings”, the corresponding subset equilibrates (i.e. the cards sitting at the
vertices of A are fully shuffled). We observe that this model generalizes both
interchange process and k−Deck. We state an analogue of the Aldous’ con-
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jecture for Block Shuffle model. Finally in section 4 we prove the conjecture
for a special class of Block Shuffle, that we call simple. The particularity
of this class is the possibility of reducing the Block structure to a binary
structure by means of suitably simple reductions. This allows us, once we
remove all “non necessary” points, to obtain a binary block process, that
we are able to deal with, using the techniques of [3].
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2 Aldous’ Spectral gap conjecture

The conjecture is about the random walk process and the interchange process
on a weighted graph. From now on our graphs will be connected, because
we want the Markov chains to be irreducible. Moreover every graph will be
undirected, that is

cxy = cyx (1)

for every xy ∈ E, where cxy is the weight of edge xy. Such Markov chains
are reversible with respect to the uniform distribution on Ω. Then if we
compute the quadratic form of the infinitesimal generator we find out that

−L ≥ 0. (2)

The spectrum of −L is of the form

Spec (−L) = {λi : i = 0, ..., |Ω| − 1}

with
0 = λ0 < λ1 ≤ · · · ≤ λ|Ω|−1.

2.1 The processes

Random Walk The random walk on a graph G = (V,E) is the Markov
chain in which a particle in vertex x ∈ V jump to y 6= x with rate cxy. Its
space state is ΩRW = V = {1, 2, ..., n}. The generator is defined by

LRW f(x) =
∑
x 6=y

cxy(f(y)− f(x)) (3)

for f : V = ΩRW → R and x ∈ V .
Moreover −LRW is nonnegative semi definite and symmetric then it has
|ΩRW | = n nonnegative eigenvalues and positive spectral gap λRW1 > 0.

Interchange A state in interchange process is an assignment of |V | =
n labeled particles to the n vertices of the graph G, so that any vertices
is occupied by exactly one labeled particle. We identify a state with an
element η ∈ Sn that is the symmetric group of the n elements permutations.
Formally the associated Markov chain is the one in which with rate cxy
occurs a transition from state η to stateηxy that is an “interchange” of the
particles at vertices x and y, to be more precise ηxy = η ◦ (xy), so that the
state space of the associated Markov chain is ΩIP = Sn. The generator is
defined by

LIP f(η) =
∑
xy∈E

cxy(f(ηxy)− f(η)) (4)
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with f : ΩIP → R and η ∈ ΩIP . The operator −LIP is symmetric and
positive semidefinite, then it has |ΩIP | = n! nonnegative eigenvalues and
positive spectral gap λIP1 > 0.

Conjecture 1. For all weighted graph G, the interchange process and the
random walk process have the same spectral gap,

λRW1 (G) = λIP1 (G). (5)

We will refer to the label of the particle at x as ηx, and to the position
the particle labeled i as ξi = ξi(η).
One can obtain the random walk as a subprocess of the interchange process
following just the particle labeled 1. Thus the inequality

λRW1 ≥ λIP1 . (6)

is easy to prove.

2.2 Novelties

There are two main novelties introduced in [3], that made possible the proof
of Aldous’ conjecture. The first is a generalized electric network reduction
and the second is a tricky inequality involving Dirichlet forms, called Octo-
pus Inequality.

Network reduction Given a weighted graph G = (V,E) we can think
about it as a network and the weights on the edges as conductances. Con-
sider now a vertex x ∈ V , the reduced network obtained by removing
x gives a new graph Gx with vertices set Vx := V \ {x} and edges set
Ex := {yz ∈ E : y, z 6= x}. The conductance in the new graph are such that
c̃xy ≥ cxy defined by

c̃yz = cyz + c∗,xyz (7)

where
c∗,xyz :=

cxycxz∑
w∈Vx cxw

. (8)

The next result is about the behavior of the Spectral gap of the Random
walk with respect to the reduction of the undelying graph.

Proposition 2.1. The spectral gap of the random walk do not decrease when
the underlying graph is reduced,

λRW1 (Gx) ≥ λRW1 (G).
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Octopus Inequality In this subsection we introduce the Octopus inequal-
ity. From now on let E [ · ] denote the expectation with respect to the uniform
probability measure on Sn, and the gradient defined by

∇xyf = f(ηxy)− f(η) equivalentely ∇bf = f(ηb)− f(η).

Using this notation we have the following theorem.

Theorem 2.2 (Octopus Inequality). For any weighted graph Gon |V | = n
vertices, for every x ∈ V and f : Sn → R:∑

y∈Vx

cxyE
[

(∇xyf)2
]
≥
∑
yz∈Ex

c∗,xyz E
[

(∇yzf)2
]

(9)

It is important to note that inequality (9) holds for every choice of non-
negative weights {cb}b∈E .

2.3 Proof of the conjecture

If with set HΩIP := {f such that f : ΩIP → R}, we have

λIP1 (G) = inf
H

ΩIP

−E
[
fLIP (f)

]
Var IP (f)

= inf
H

ΩIP

EIP (f)

Var IP (f)
.

where Var IP (f) = E
[
f2
]
− (E [ f ])2. We already showed that

Spec
(
−LRW

)
⊂ Spec

(
−LIP

)
,

in order to understand better the relation between these two spectra we
define

H = {f ∈ HΩIP : E [ f |ξi ] = 0 for all i ∈ V } =

= {f ∈ HΩIP : E [ f |ηx ] = 0 for all x ∈ V }

the identity holds because, for η ∈ Sn such that ξi(η) = x,

E [ ·|ξi ] (η) = E [ ·|ξi = x ] = E [ ·|ηx = i ] = E [ ·|ηx ] (η).

Lemma 2.3. If f ∈ HΩIP is an eigenfunction with eigenvalue λ, that is

LIP f = −λf ,

if we define g(x) = E [ f | ξ1 ] (x) and g : V → R, we have

LRW g = −λg .
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We are able to split the problem, splitting the spectrum. From the
variational principle defining the Spectral gap it follows

λIP1 (G) = min{µIP1 (G), λRW1 (G)}. (10)

if we define

µIP1 (G) = inf
H

{
EIP (f)

Var IP (f)
, Var IP (f) 6= 0

}
.

The conjecture can now be reformulated as

µIP1 (G) ≥ λRW1 (G).

Let us show a property of µIP1 , this is an halfway step to the Conjecture
proof.

Proposition 2.4. For an arbitrary weighted graph G

µIP1 (G) ≥ max
x∈V

λIP1 (Gx) (11)

We can now go through the proof.

Theorem 2.5. For all weighted graph G, the interchange process and the
random walk process have the same spectral gap,

λRW1 (G) = λIP1 (G) (12)

Proof. We go through the proof by induction on the number of elements of
the vertices set V .

(n = 2) For n = 2 we have a trivial graph G, made of just one weighted
edge (xy). In this case (12) holds because the random walk process
coincides with the interchange process as 2−state Markov chain, when
n = 2.

(n− 1⇒ n) Suppose now that (12) holds for all n − 1 vertices weighted
graph G′. This means that in particular holds for Gx. Now

• From Proposition 2.4

µIP1 (G) ≥ max
x∈V

λIP1 (Gx)

• From inductive hypotesis

max
x∈V

λIP1 (Gx) = max
x∈V

λRW1 (Gx)

• From Proposition 2.1

max
x∈V

λRW1 (Gx) ≥ λRW1 (G)

Thus
µIP1 (G) ≥ λRW1 (G)

and the conjecture holds for any weighted graph. �
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3 Generalizations

3.1 Spectral Gap scenario fails for other quantities

We present two numerical counterexample in order to show that, in the case
of a complete graph with 3 nodes, the Log-Sobolev constant and the modified
Log-Sobolev constant of interchange process and random walk process are
different.

3.2 k−Deck Generalization

The first generalization we want to suggest is through the process we called
k−Deck. Heuristically imagine a graph with a deck of k cards on every
vertex. When an edge “rings” we put together the 2k cards of the two decks
at the ends of the edge, then we shuffle them and once they are randomly
rearranged, we put back the first k on one vertex an the other k on the
other. Let us introduce better this model.

The model We work with an undirected graph G = (V,E). We refer to
the elements of V , as nodes or decks labeled from 1 to n. Now, on every
node, there is a set of k elements, k ∈ N fixed, that we call vertices or
cards. We have to think about this system as a graph with a deck of k
cards on every node. We associate to the elements b ∈ E, a collection of
weights {cb}b∈E , with cb ≥ 0 for all b ∈ E, such that the skeleton graph is
connected. Formally the k−Deck process is the Markov chain in which, if
edge b connects nodes i and j, with rate cb the 2k cards of decks i and j are
equilibrated, then we put the first k on vertex i and the other k on vertex j.

Figure 1: Heuristic representation of k−Deck, here the clock on edge b has rung. In this
example k = 10.

The state space is ΩkD = Skn, the group of permutations of kn elements,
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and its generator is

LkD =
∑
b∈E

2cb(µb − 1) (13)

where

µbf(η) = E [ f | ηm m 6= i, j if b = (i, j) ] =
1

(2k)!

∑
p

f(ηpij) (14)

where ηpij is one of the (2k)! possible outcomes of the shuffling of deck on
vertices i and j.
Note that the 2 multiplying the weight cb in (13) is due in order to have an
homogeneity with the case k = 1, corresponding to the interchange process.
The Dirichlet form is

EkD(f) =
∑
b

2cbE
[

(µb(f))2 − f2
]

=
∑
b

2cbVar b (f) , (15)

where Var b (·) is the conditional variance with respect to µb(·). Following,
for example, the card with the label 1 we find again

λRW1 ≥ λkD1 .

The conjecture should be as follows.

Conjecture 2. The k−Deck process and the random walk process, on all
weighted graph G, have the same Spectral Gap,

λkD1 (G) = λRW1 (G) (16)

We end this section with a really special case, where we are able to
prove the conjecture. Let the number of nodes be n = 2 and arbitrary k.
For k−Deck we have gapkD = 2cb, because

EkD(f) = 2cbVar b (f) = 2cbVar (f) (17)

Even for the random walk gapRW = 2cb. Let start with the generator. In
this special case, for g ∈ HΩRW , we have

(LRW g)(x) = cb(g(y)− g(x))

(LRW g)(y) = cb(g(x)− g(y))
(18)

is now simple to compute the Dirichlet form

ERW (g) = −E
[
g(LRW g)

]
=

1

2
cb (g(x)− g(y))2 . (19)

On the other and for the variance of the function g we have

Var (g) =
1

4
(g(x)− g(y))2. (20)

So gapRW = 2cb, and the conjecture holds.
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3.3 Block Shuffle Generalization

A further generalization is represented by the process we call Block Shuffle.

The model We have a set V of n elements and we consider all the subsets
∅ 6= A ⊆ V BS , to which we assign a weight αA ≥ 0. We just consider
the subsets A such that αA > 0. The Block Shuffle model is the Markov
chain that with rate αA equilibrates the particle of subset A. Therefore the
generator of this process is

L(α) =
∑

A⊆V BS

αA(µA − 1) (21)

where
µA(f) = E

[
f
∣∣∣ ηAC

]
.

The state space is ΩBS = Sn and |ΩBS | = n!.
If we follow only one particle in the Block Shuffle it does a random walk
with weights

cyz(α) =
∑

A:{y,z}⊂A

αA
|A|

. (22)

In fact, let be f = g(ξ1), then

L(α)g(z) =
∑
y

 ∑
{y,z}⊂A

αA
|A|

 [g(y)− g(z)]. (23)

Thus the particle jump randomly on a graph that we call G(α). This graph
has vertices set V and edges set

E(α) = {yz such that cyz(α) > 0}.

Let λ1(α) be the smallest non zero eigenvalue of −L(α), the reformulation
of the conjecture for Block Shuffle should be as follows.

Conjecture 3. The Block Shuffle process and the random walk process in-
duced by the Block Shuffle process on the graph G(α), have the same Spectral
Gap,

λ1(α) = λRW1 (G(α)) (24)

A generalization We now show that this process generalize the inter-
change process. Let us consider the special case of binary blocks

αA > 0⇐⇒ |A| = 2 (25)
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In this case we can introduce a graph structure, because we are considering
just couple of linked points. Then if we think at subsets A as edges b, the
generator of the process is

L̃ =
∑
b

αb(µb − 1) (26)

Where µb(·) has the particular structure,

µb(f) =
1

2
f(ηb) +

1

2
f(η). (27)

Thus we have

L̃f(η) =
∑
b

αb

(
f(ηb) + f(η)

2
− f(η)

)
= LIP f(η) (28)

that correspond to the generator of the Interchange process with cb = 1
2αb.

The Block Shuffle process is also a generalization of k−Deck process. We

introduce the notation k
(x)
i for the i−th card of the deck on node x and k(x)

for the entire deck. Let us consider a k−Deck process on a graph G = (V,E)
and weights set {cb}b∈E . We can see this process as an Block Shuffle if we
take

V = {k(x)
i : x ∈ V , i = 1, ..., k},

as the set of all the kN cards, if |V | = N is the number of decks. As subsets
A ⊂ V we take, for every xy ∈ E,

A = A(x, y) = {k(z)
i : i = 1, ..., k and z = x, y }

with weights αA = αA(x,y) = 2cxy. Let us focus on the random walk of one
card. In the particular case of k−Deck the graph G(α), on which the card
“walk randomly”, has the particular structure of a product graph. On every
node of the graph G there is a complete graph with k elements. We call this
new graph G.

We denote its vertices as pairs (x, i), where x is a node of graph G and
i is a node of the complete graph. Thus we have

V = {(x, i) : x ∈ V and i = 1, ..., k}.

The graph G has many edges. Fix the position of the card in (x, i). Now it
can jump in position (y, j) for every y neighboring with x in graph G, for
every j = 1, ..., k, thus

E = {(x, i)(y, j) : i, j = 1, ..., k and xy ∈ E}.
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Figure 2: The graph G. In this example k = 5.

Following (22) the weights are

c(x,i)(y,j) =


1

k

∑
z

cxz =
c(x)

k
if x = y

cxy
k

if x 6= y

Now a contradiction seems to arise. If we consider the process as a Block
Shuffle, conjecture 3 tell us that the gap of this process should be equal to
the gap λRW1 (G) of the random walk on graph G. Nevertheless if we take
the process as k−Deck, following conjecture 2, the gap should be equal to
λRW1 (G), the gap of the random walk on graph G. Next proposition make
clear that there is no ambiguity.

Proposition 3.1.
λRW1 (G) = λRW1 (G)

Proof. We define the set S of the functions defined on V and symmetric on
the complete graphs, as

S = {f : f(x, i) = f(x, j) for every x ∈ G and i = 1, ..., k},

then the orthogonal set S⊥ is

S⊥ = {f :
∑
i

f(x, i) = 0 for every x}.
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In fact take g ∈ S and f : V → R, if we denote E
[
· | k(x)

]
the conditional

expectation of being on node x, then

E [ fg ] = E
[
E
[
fg | k(x)

] ]
= E

[
gE
[
f | k(x)

] ]
= 0

if and only if
1

k

∑
i

f(x, i) = 0.

Note that if f ∈ S, then

Lf(x, i) =
∑
(y,j)

c(x,i)(y,j)[f(y, j)− f(x, i)] =
∑
(y,j)

c(x,p)(y,j)[f(y, j)− f(x, p)] = Lf(x, p)

for every p = 1, ..., k, this follow by how we defined the weights on the graph,
independently from the position on the complete graph. So LS ⊂ L, thus we
can find the gap of the random walk on G as the minimum of two quantities,

λRW1 (G) = min{λS1 , λS
⊥

1 }.

Since we defined S to be the set of symmetric function on the complete
graphs, then λS1 = λRW1 (G). Now take f ∈ S⊥, we have

Lf(x, i) =
∑
(y,j)

c(x,i)(y,j)[f(y, j)− f(x, i)] =

=
1

k

∑
j

∑
z

cxz[f(y, j)− f(x, i)] +
1

k

∑
y

∑
j

cxy[f(y, j)− f(x, i)] =

= −c(x)f(x, i)− c(x)f(x, i) = −2c(x)f(x, i)

then the eigenvalues of −L in S⊥ are

{2c(x) : x ∈ G}.

In particular,

λS
⊥

1 = min
x

2c(x) = 2c∗.

The proof is complete if we prove λRW1 (G) ≤ 2c∗. To this end let 1x be the
indicator function of node x, then

λRW1 (G) = inf

{
E(f)

Var (f)

}
≤ E(1x)

Var (1x)

where

Var (1x) =
1

N

(
1− 1

N

)
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and

E(1x) = −E [1xL1x ] = − 1

N

∑
y,z

1x(y)cyz(1x(z)− 1x(y))

= − 1

N

∑
z

cyz(1x(z)− 1) =
1

n
c(x)

then

λRW1 (G) ≤
1
N c(x)

1
N

(
1− 1

N

)c(x) =
N

(N − 1)
c(x) ≤ 2c(x)

taking the minimum in x we have

λRW1 (G) ≤ 2c∗.

�

3.4 Please not too general

The most general model we can think on Sn is what we call random per-
mutations. We put weights on every permutation. The only restriction
is

cπ = cπ−1

for reversibility. The generator is, for f : Sn → R

LRP f(ζ) =
∑
π∈Sn

cπ(f(ζπ)− f(ζ)) (29)

where ζπ = π ◦ ζ. We can think to exend the conjecture to this model, but
now consider the following counterexample.

Counterexample. Consider an undirected graphG = (V,E) that is n−cycle,
i.e. b ∈ E ⇐⇒ b = (i, i+1), where this sum, and all the following others, are
taken modulo n. Let us denote γi : Sn → Sn as the rotation of i elements
of this system, i.e. for ζ ∈ Sn we define

(γi ◦ ζ)k = ζi+k

note that, by this definition, γ0 =id.
We now put weights on the permutations in this way

cπ =


1

n
if π = γi for i = 0, ..., n− 1

0 otherwise

(30)

Note that these assumptions follow the constraint, in fact for every i we have
cγi = n−1 = cγn−i = c(γi)−1 . Let us now compute the gap of the random
walk process and the random permutations process on this graph.
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(RW) The gap for the random walk process is λRW1 (G) = 1. Because in
one step the system equilibrates.

(RP) For random permutations model, let consider the function f̃(ζ) =
|ξ1 − ξ2|, where ξ1 and ξ2 are the positions of particle 1 and 2. The
function f̃ has, in general, variance non zero but in this special case
f̃(ζ ◦ γi) = |ξ1 + i− (ξ2 + i)| = |ξ1 − ξ2| for all i = 0, ..., n− 1. So that

λRP1 (G) = 0.

Thus an analogous of Aldous’ conjecture cannot hold for general random
permutations process. And Block Shuffle seems to be the furthermost we
can go.

4 Simple Block Shuffle

In this section we present a particular class of Block Shuffle for which we
can prove the conjecture. In this class there are special vertices.

Definition 4.1 (Simple vertex). We define a vertex as simple if there exist
an unique set A∗ ⊂ V such that

(i) αA∗ > 0

(ii) x ∈ A∗.

If we have to reduce the system, the correct redefinition of weights is

α
(x)
B =


αB B 6= A∗, A∗ \ {x}
αA∗ + αB B = A∗ \ {x}
0 B = A∗

(31)

if A∗ is the unique set containing the simple vertex x.
When we reduce the system in a simple vertex x it holds an Octopus like
inequality.

Theorem 4.2. If x is a simple vertex for a Block Shuffle process determined
by weights α = {αA}A⊂V , then

E
[
E(f, α(x))

]
≤ E(f, α).

Proof. The Dirichlet form of the Block Shuffle process, is

E (f, α) = −E [ f(L(α)f) ] = −
∑
A⊂V

αAE
[
µA(f)2 − f2

]
=
∑
A⊂V

αAVarA (f) .

For the reduced system we have

E(f, α(x)) = E(f, α)− αA∗E [ VarA∗ (f) ] + αA∗E
[

VarA∗\{x} (f)
]

(32)
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We have to proof

E
[

VarA∗\{x} (f)
]
≤ E [ VarA∗ (f) ] . (33)

This inequality follows immediately from the definitions of conditional vari-
ance

VarA∗ (f) = EA∗ [VarA∗ (f |x)] + VarA∗ (EA∗ [f |x])

taking the expectations, and from the nonnegativity of variance, Var (·) ≥ 0,

E [ VarA∗ (f) ] ≥ E [EA∗ [VarA∗ (f |x)] ] = E
[

VarA∗\{x} (f)
]
.

And the inequality is proved. �

4.1 The theorem

Let us define the class of simple Block Shuffle.

Definition 4.3 (Simple Block Shuffle). We define a Block Shuffle process to
be simple if it can be reduced to a binary Block shuffle by means of successive
reductions of simple vertices.

For this class of Block Shuffle we can prove conjecture 3.

Theorem 4.4. If the Block Shuffle defined by the weights {αA}A⊂V is sim-
ple, then

λ1(α) = λRW1 (α)

Proof. We define
H = {f : E [ f | ηx ] = 0 ∀x}

where E [ · | ηx ] is the conditional expectation with respect to the reduced
system in x. If we define

µ1(α) = inf
H

{
E(f, α)

Var (f)

}
then the Spectral gap of the Block Shuffle process can be found as the min-
imum of two quantities

λ1(α) = min{µ1(α), λRW1 (α)}.

The Block Shuffle is simple, let us define {x1, x2, ..., xN} as the set of all the
simple vertices. By Theorem 4.2 if we take f ∈ H and we fix (x1),then

E(f, α) ≥ E
[
E(f, α(x1))

]
≥

≥ λ1(α(x1))E [ Var (f | ηx) ] =

= λ1(α(x1))Var (f)
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thus µ1(α) ≥ λ1(α(x1)), furthermore

λ1(α) ≥ min{λ1(α(x1)), λRW1 (G(α))}.

Let us now consider λ1(α(x1)), we have that

λ1(α(x1)) = min{µ1(α(x1)), λRW1 (G(α(x1)))}

with analogous arguments, if we reduce the system in (x2), we find the
bound

µ1(α(x1)) ≥ λ1(α(x1)(x2)).

Iterating we obtain

λ1(α) ≥ min
{
λRW1 (α), λRW1 (α(x1)), λRW1 (α(x1)(x2)), ...., λRW1 (α(x1)(x2)···(xN ))

}
.

Now, consider the jump rate of one particle in the reduced system, for
x ∈ {x1, ...., xN} we define

c̃yz = cyz(α
(x)) =

∑
{y,z}∈B
x/∈B

α(x)
B

|B|
. (34)

where α
(x)
B is defined by (31). Let us define A∗ as the unique set containing

x. We assume {y, z} ∈ A∗, otherwise the rates are unchanged, and |A∗| = k.
Following these assumptions we prove that

cyz(α
(x)) = cyz +

cxzcyx∑
w∈A cwx

.

For the following sums we introduce the notation∑
{· · · } for

∑
···

We have

cyz(α
(x)) =

∑
{x /∈ B, {y, z} ∈ B}

α
(x)
B

|B|
=
∑
{x /∈ B, {y, z} ∈ B} αB

|B|
=

=
αA∗

k − 1
+
∑
{x /∈ B, {y, z} ∈ B, B 6= A∗ \ {x}} αB

|B|
=

=
αA∗

k − 1
− αA∗

k
+

∑
{y,z}∈B

αB
|B|

=

= cyz +
αA∗

k − 1
− αA∗

k
. (35)

Remains to prove
αA∗

k − 1
− αA∗

k
=

cxzcyx∑
w∈A cwx

.

Notice that
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• cxy = cxz = αA∗
k

•
∑

w∈A cwx = αA∗
k (k − 1)

then
αA∗

k − 1
− αA∗

k
=

αA∗

k(k − 1)
=

αA∗
k

αA∗
k

αA∗
k (k − 1)

=
cxzcyx∑
w∈A cwx

.

Thus for the jump rate of reduced system defined as (34) holds the same
relations of network reduction in the proof of Aldous’ conjecture. Therefore
we can use proposition 2.2.1 to say that when we reduce the system in a
simple vertex the Spectral gap does not decreases. Then we have

λRW1 (G(α(x1)(x2)···(xN ))) ≥ λRW1 (G(α(x1)(x2)···(xN−1))) ≥ · · · ≥ λRW1 (G(α)).

Thus λRW1 (G(α)) = λ1(α). �
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