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Introduction

The problem of solving polynomial equations has interested mathemati-

cians for ages. The Babylonians had methods for solving some quadratic

equations in 1600 BC. The ancient Greeks had other methods for solving

quadratic equations and their geometric approach also gave them a tool

for solving some cubic equations. In AD 1500 a formula for solving cubic

equations was found, although it is uncertain who was the first to discover

it. About 1515, Scipione del Ferro solved some instances of x3 = px + q,

but kept his solution secret. In 1535 Tartaglia rediscovered the solution of

x3 +px = q. Eventually Tartaglia told his solution to Cardano; he completed

the remaining cases and published them in his famous Ars Magna, which also

contained a method for solving the quartic equation. About 1545, Lodovici

Ferrari discovered the quartic formula. Algebraic notations of equations were

introduced by Descartes in the 17th century.

n Polynomial Zeroes

1 ax + b, a 6= 0 x = − b
a

2 x2 + ax + b x = −a
2
±
√

a2

4
− b

3 x3 + ax2 + bx + c y1 = β + γ, y2 = βζ3 + γζ2
3 , y3 = βζ2

3 + γζ3

β =
3

√
− q

2
±
√

q2

4
+ p3

27

γ =
3

√
− q

2
∓
√

q2

4
+ p3

27

x = y − a
3
, p = 3b−a2

3
, q = 2a3−9ab+27c

27

4 x4 + ax3 + bx2 + cx + d too long for this presentation

Table 1: Solutions for polynomial equations.
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Since it was now possible to solve all polynomial equations of degree ≤ 4

by radicals, the next problem was how to solve the quintic equation. In 1770

Lagrange proved that the tricks used to solve equations of a lower degree do

not work for the quintic. This arose the suspicion that the quintic equation

may not be always solvable by radicals. The first person to publish a proof

for this was Ruffini. He made a first attempt in 1799 in his book Teoria

Generale delle Equazioni and then tried again with a better, but still not

accurate, proof in a journal in 1813. In 1824 Abel filled the gap in Ruffini’s

proof. Actually, neither the proof of Ruffini nor that of Abel is correct in

details, but Abel’s proof was accepted by his contemporaries and Ruffini’s

was not. Kronecker published in 1879 a simpler proof that there is no formula

for solving all quintic equations by radicals. This led to a new question: how

can we see if a special equation can be solved by radicals? In 1843 Liouville

wrote to the Academy of Science in Paris that, among the papers of the late

Galois, he had found a proof that the quintic is insoluble by radicals: this

was the origin of the Galois theory.

The problem of determining the Galois group of a polynomial from its

coefficients has held the interest of mathematicians for over a hundred years.

There is a classical algorithm for determining the Galois group of a poly-

nomial from its roots which can be found in Section 2.2, but the method is

cumbersome and is not of much interest from a practical point of view. More

recently Richard Stauduhar has applied modern insights to old techniques,

to develop and implement a computer algorithm that finds Galois groups of

low degree polynomials with integer coefficients, as explained in [Sta73]. We

will follow a different way, based fundamentally on a technical but powerfull

theorem in Algebraic Number Theory: the Chebotarëv Density Theorem.

This theorem is due to the Russian mathematician Nikolai Grigor’evich Cheb-

otarëv, who made his discovery in 1922, as he recalls in a letter of 1945:

I belong to the old generation of Soviet scientists, who were

shaped by the circumstances of a civil war. I devised my best re-

sult while carrying water from the lower part of town (Peresypi in
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Odessa) to the higher part, or buckets of cabbages to the market,

which my mother sold to feed the entire family.

To describe Chebotarëv’s theorem, let us denote with L/K a finite Galois

extension of algebraic number fields with group G. For each prime ideal

p ∈ K which is unramified in L, let σp denote its Frobenius element. Then

the Dirichlet density of the set of prime ideals with a given Frobenius element

C exists and equals |C|/|G|.
The construction of the Frobenius element is mildly technical, which forms

the main cause for the relative unpopularity of Chebotarëv’s theorem outside

Algebraic Number Theory.

In Chapter 1 we introduce the algebraic knowledges necessary to under-

stand the Frobenius element. We can characterize this element in the abelian

case with the following.

Theorem 1.2.1. Let f(x) ∈ Z[x] be an irreducible polynomial such that

Gal(f) = Gal(Q[α]/Q) is abelian, and p be a prime number not dividing

∆(f). Then there is a unique element ϕp ∈ Gal(f) such that the Frobenius

map of the ring Fp[α] is the reduction of ϕp modulo p; this means that, in

the ring Q[α], one has

αp = ϕp(α) + p · (q0 + q1α + · · ·+ qn−1α
n−1)

for certain rational numbers q0, . . . , qn−1 of which the denominators are not

divisible by p.

We start considering minimal abelian extensions of K = Q. Elemen-

tary considerations in the case of a quadratic extension Q(
√

D), where D is

square–free, lead us to a very explicit description of the fact: if we identify

Gal(Q(
√

D)/Q) with the multiplicative group of two elements {±1}, then

ϕp turns out to be the Legendre symbol
(

D
p

)
. Another easy case is the

cyclotomic one: in this situation σp is the element of Gal(L/Q) such that

σ(ζn) = ζp
n. In fact, modulo p we have

σ
(∑

aiζ
i
n

)
=
∑

aiζ
ip
n =

∑
ap

i ζ
ip
n =

(∑
aiζ

i
n

)p
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as required. Therefore, if we identify Gal(Φm) with (Z/mZ)∗, the Frobenius

element of a prime ideal p = pZ is simply given by p mod m.

Thus the Frobenius element of a prime ideal p ∈ OK is always an element of

Gal(L/K), where L is the splitting field of f(x) ∈ K[x]. It’s interesting to

notice that the degree of each irreducible factor of the polynomial (f mod p)

in Fp[x] is equal to the order of ϕp in the group G. In particular, one has

ϕp = id in G if and only if (f mod p) splits into n linear factors in Fp[x].

This will be fundamental in order to relate the Chebotarëv theorem to the

computation of Galois groups.

A general discussion on the Frobenius element put us inside the theory

of Dedekind Domains. The notions of Decomposition group

G(P) := {σ ∈ G s.t. σP = P}

of a prime ideal P ∈ OL s.t. P|p lead us to the following definition.

Definition 1.6.5. We define the Frobenius element σP = (P, L/K) of P

to be the element of G(P) that acts as the Frobenius automorphism on the

residue field extension FP/Fp.

Even if it’s a general characterization, it does not give information about

a constructive method for the computation of the Frobenius element.

In Chapter 2 we explore three theorems which can be regarded as par-

ticular case of the main theorem. Finally we state a reformulation of the

Chebotarëv Density theorem.

Theorem 2.5.1 Let f(x) ∈ Z[x] be a monic polynomial. Assume that the

discriminant ∆(f) of f(x) does not vanish. Let C be a conjugacy class of

the Galois group G = Gal(f). Then the set of primes p not dividing ∆(f)

for which σp belongs to C has a density, and this density equals |C|/|G|.
Since the cycle pattern of σp ∈ Gal(f), with p = pZ, equals the decompo-

sition type of f mod p, the above theorem implies the following, sometimes

called Dedekind’s Theorem.

Corollary 2.2.4. Let f(x) ∈ Z[x] be a monic polynomial of degree m,
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and let p be a prime number such that (f mod p) has simple roots, that is

p - ∆(f). Suppose that (f mod p) =
∏

fi, with fi irreducible of degree mi

in Fp[x]. Then Gal(f) contains an element whose cycle decomposition is of

type m = m1 + · · ·+ mr.

The above result give the following strategy for computing the Galois

group of an irreducible polynomial f ∈ Z[x]. Factor f modulo a sequence

of primes p not dividing ∆(f) to determine the cycle types of the elements

in Gal(f); continue until a sequence of prime numbers has yielded no new

cycle types for the elements. Then attempt to read off the type of the group

from tables of transitive groups of degree ∂f . To make the computation more

effective, in a technical sense, we need the Frobenius Theorem.

Theorem 2.3.1. The density of the set of prime p for which f(x) has a

given decomposition type n1, n2, · · · , ni, exists, and it is equal to 1/#Gal(f)

times the number of σ ∈ G with decomposition in disjoint cycle of the form

cn1cn2 · · · cni
, where cnk

is a nk–cycle.

The Frobenius Density Theorem, which Chebotarëv generalizes, says that

if a cycle type occurs in Gal(f), then this will be seen by looking modulo a

set of prime numbers of positive density. To compute Gal(f), look up a table

of transitive subgroups of Sn with order divisible by n and their cycle types

distribution. We will see that this strategy is not always effective, and other

tools are needed.

The Frobenius Density Theorem is a specialization of the main theorem in

which C is required to be a division of G rather than a conjugacy class;

here we say that two elements of G belong to the same division if the cyclic

subgroups that they generate are conjugate in G. The partition of G into

divisions is, in general, less fine than its partition into conjugacy classes and

Frobenius’s theorem is correspondingly weaker than Chebotarëv’s.

Last theorem discussed is the celebrated Dirichlet’s Theorem on Primes

in Arithmetic Progression.

Theorem 2.6.1. For each pair of integers a, m such that gcd(a, m) = 1, the

set S of prime numbers p such that p ≡ a mod m has density 1/ϕ(m), where
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ϕ is the classical Euler function.

It’s an easy consequence of the main theorem, based on the fact that

there is a bijective correspondence between the conjugacy classes modm of

prime numbers that do not divide m and the elements of the group Gal(Φm),

which is isomorphic to (Z/mZ)∗, given by the map p ↔ σp, so that we may

identify σp with p mod m, as explained in Chapter 1. Hence

δ (p ≡ a mod m) = δ (p s.t. σp : ζm 7→ ζa
m) =

1

ϕ(m)
.

This chapter ends with an elementary proof of Chebotarëv’s theorem in the

quadratic case, based on the theory of congruences. Finally is given a more

extensive, but not general, proof which follows Chebotarëv’s original strategy,

avoiding the technical Class Field Theory.

Chapter 3 deals with applications of the main theorem. The first one

is about polynomials which have a root modulo almost all primes, that is,

except for a finite number of primes.

Theorem 3.1.7. Let f(x) ∈ Z[x] be an irreducible polynomial that has a

zero modulo almost all primes p. Then f(x) is linear.

Next, we have an interesting result about primes p for which f mod p has

no zeros.

Theorem 3.1.1. Let f(x) ∈ Z[x] be an irreducible polynomial of degree

n > 1. If p is prime, let Np(f) be the number of zeros of f in Fp = Z/pZ.

Then there are infinitely many primes p such that Np(f) = 0. Moreover the

set P0(f) of p’s with Np(f) = 0 has a density c0 = c0(f) ≥ 1/n.

The proof is long but not difficult, an is based on Burneside’s Lemma.

A collateral consequence of this lemma is that the mean value of Np(f) for

p →∞ is equal to 1. In other words,∑
p≤x

Np(f) ≈ π(x) when x →∞,

where π(x) = #{p primes s.t. p ≤ x}.
The third argument is a classical theorem about primitive positive definite
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quadratic forms ax2 +bxy+cy2 which represent prime numbers. We will just

consider particular cases, obtaining results of the type

δ(p ≥ 3 s.t. p = x2 + ny2) =
1

2
,

for all n such that the class number h(−4n) equals 1.

The rest of the Chapter takes care for illustrate how the Chebotarëv theorem

can be combined with other tools in order to get a powerfull algorithm to

compute Galois groups of irreducible polynomials in Z[x]. The strategy is as

follows.

1. test whether f is irreducible over Z;

2. compute the discriminant ∆(f);

3. factor f modulo primes not dividing the discriminant until you seem

to be getting no new decomposition type;

4. compute the orbit lengths on the r–sets of roots;

5. use tables of transitive groups of degree ∂f .

If ∂f ≤ 7, then third point suggested by Chebotarëv’s theorem is effective,

but for higher degrees, this test gets into problems. In fact it is possible to

construct two non–isomorphic groups which have transitive permutation rep-

resentations in which the number of elements with a given cycle structure is

the same for both groups. In this situation other tests, like the one suggested

at point 4, are relevant.

Point 5 requires the knowledge of transitive permutation groups, so in the

last section of the chapter we include tables for groups of degree 3, 4, 5, 6, 7

and 11, as well.

The aim of Chapter 4 is to analyze the Maple code, given in Appendix C,

based on the modulo p reductions test suggested by the Chebotarëv theorem,

for polynomials of degree from 3 to 7, and 11.
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We tabulate several outputs in order to give an idea of the accuracy of our

tests, which depends on the choice of the upper bound k representing the

size of prime numbers that we want to consider. If we increase k, on the one

hand our result will be more precise, on the other hand Maple will need more

time to produce the output.

The polynomials considered are those of the type f(x) = xn + 2 and those

in Table 4.1 and 4.2 with Galois group An.

Then we introduce a notion of relative error ε(G) = ε(G, k) of the test, which

measure the distance between the theoretical and the empirical result. From

the analysis of these errors we notice that

ε(G, 106) < 10−2 and ε(G, 103) < 10−1,

and, by induction, one may naively guess ε(103t) < 10−t, t ≥ 1, when

G = Gal(f). This observation indicates that k ≥ 103 usually is a good

bound for the Chebotarëv test.

This tool allows us to make several experiments in finding polynomial with

a given Galois group. In our attempts, we ran the program for all the poly-

nomials in Table 4.1 and 4.2, partially taken from [SM85], in which each

transitive permutation group of degree from 3 to 7 and 11 is realised as a

Galois group over the rationals. The choice p ≤ k = 1000 gave always the

correct output.

The chapter goes on with a section on the computation of Galois groups

for polynomials of prime degree p. We develop an algorithm based on the

existence of non–real roots of a polynomial.

If a prime degree polynomial f(x) has r = 2s complex roots, then we know

that a permutation of the type (2)
r
2 is in its Galois group. Hence, the list of

possible Galois groups for f(x) is much shorter than in general. Knowledge

of r provides us a further information: from a theorem of Jordan, it follows

that if r is small enough with respect to the degree p of the polynomial, then

the Galois group is Ap or Sp. The specific statement follows as a theorem.

Theorem 4.2.2. Let f(x) ∈ Q[x] be an irreducible polynomial of prime

degree p ≥ 3 and r = 2s be the number of non–real roots of f(x). If s

8



satisfies

s(slogs + 2logs + 3) ≤ p

then Gal(f) = Ap, or Sp.

If we consider f(x) such that ∂f = p ≤ 29, no two groups have the

same cycle structure, and so the Galois group can be determined uniquely

by reduction modulo p for all polynomials of prime degree ≤ 29.

Combining the above results we have an algorithm for computing the Galois

group of prime degree polynomials with non–real roots.

begin

r:=Number Of Real Roots(f(x));

if p > N(r) {

if D(f) is a square {

Gal(f)=A_p;

else Gal(f) = S_p;

}

else Chebotarev test(f(x));

}

end;

We remark that while the Chebotarëv test is difficult to execute from a

computational point of view, checking whether a polynomial has non–real

roots is very efficient since numerical methods can be used.
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Chapter 1

Algebraic background

1.1 The Frobenius Map

Every field has a unique minimal subfield, the prime subfield, and this is

isomorphic either to Q or to Zp, where p is a prime number. The proof of

this fact is easy and can be found in [Rot95]. Correspondingly, we say that

the characteristic of the field is 0 or p. In a field of characteristic p we have

px = 0 for every element x, where as usual we write

px = (1 + 1 + · · ·+ 1)x

where there are p summands 1, and p is the smallest positive integer with

this property. In a field of characteristic zero, if nx = 0 for some non–zero

element x and integer n, then n = 0.

Theorem 1.1.1. Let p be a prime number and R be a commutative ring of

characteristic p. Then F : a 7→ ap is a ring homomorphism from R to itself.

Proof. Clearly F (a·b) = (a·b)p = ap ·bp = F (a)·F (b), for any a, b ∈ R. Then

F (a+b) = (a+b)p =
∑p

k=0

(
p
k

)
ap−k ·bk. Since p|

(
p
k

)
, for all k = 1, 2, . . . p−1,

we get F (a + b) = ap + bp = F (a) + F (b).

The map in Theorem 1.1.1 is called the Frobenius Map after Georg Fer-

dinand Frobenius, realized its importance in Algebraic Number Theory in
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1880.

Now, our goal is answering the following question: which ring homomorphism

R → R is F , that is, does F have a more direct description than through

p–th powering? We study two cases in which this can be done. Throughout

we let p be a prime number. The simplest ring of characteristic p is the field

Fp = Z/pZ of integers modulo p. Since any element of Fp can be written

as 1 + 1 + . . . + 1, the only ring homomorphism Fp → Fp is the identity. In

particular the Frobenius map F : Fp → Fp is the identity. Looking at the

definition of F we see that this observation proves Fermat’s Little Theorem:

for any integer a one has ap ≡ a (mod p). Next we consider quadratic ex-

tensions of Fp. Let d be a non–zero integer, and let p be a prime number

not dividing 2d. We consider the ring Fp[
√

d] the elements of which are by

definition the formal expressions u + v
√

d, with u and v ranging over Fp. If

d is not a square modulo p, then no two of these expressions are considered

equal and, therefore, the number of elements of the ring equals p2. The ring

operations are the obvious ones suggested by the notation, that is, we define

(u + v
√

d) + (u′ + v′
√

d) = (u + u′) + (v + v′)
√

d, (1.1)

(u + v
√

(d) · (u′ + v′
√

d) = (uu′ + vv′d) + (uv′ + vu′)
√

d,

where d in vv′d is interpreted to be the element d (mod p) of Fp. It is

straightforward to show that with these operations Fp[
√

d] is a ring of char-

acteristic p. Let us now apply the Frobenius map F to a typical element

u + v
√

d. Using, in succession, the definition of F , the fact that it is a ring

homomorphism, Fermat’s little theorem, the defining relation (
√

d)2 = d and

the fact that p is odd, we find

F (u + v
√

d) = (u + v
√

d)p = up + vp(
√

d)p = u + vd(p−1)/2(
√

d).

This leads us to investigate the value of d(p−1)/2 in Fp. Again, from Fermat’s

little theorem, we have

0 = dp − d = d · (d(p−1)/2 − 1) · (d(p−1)/2 + 1).
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Since Fp is a field, one of the three factors d, (d(p−1)/2−1), (d(p−1)/2 +1) must

vanish. As p does not divide d it is exactly one of the last two. The quadratic

residue symbol
(

d
p

)
distinguishes the two cases: for d(p−1)/2 = +1 in Fp we

put
(

d
p

)
= +1, and for d(p−1)/2 = −1 we put

(
d
p

)
= −1. The conclusion is

that the Frobenius map is one of the two obvious automorphisms of Fp[
√

d]:

for
(

d
p

)
= +1 it is the identity and for

(
d
p

)
= −1 it is the map sending

u+v
√

d to u−v
√

d. The assignment u+v
√

d 7→ u−v
√

d is clearly reminiscent

of complex conjugation, and it defines an automorphism in far more general

circumstances involving square roots. For example, we may define a ring

Q[
√

d] by simply replacing Fp with the field Q of rational numbers in the

above. The ring Q[
√

d] is a field when d is not a perfect square, but whether

or not it is a field it has an identity automorphism as well as an automorphism

of order 2 that maps u + v
√

d to u− v
√

d. If we restrict to integral u and v,

and reduce modulo p, then one of these two automorphisms will give rise to

the Frobenius map of Fp[
√

d].

1.2 The Artin Symbol in Abelian Extensions

We next consider the situation for higher degree extensions. Instead of

x2 − d we consider any non–zero polynomial f(x) ∈ Z[x] of positive degree

n and with leading coefficient 1. Instead of d 6= 0 we require that f have

no repeated factors or, equivalently, that its discriminant ∆(f) be nonzero.

Instead of Fp[
√

d] for a prime number p, we consider the ring Fp[α] consisting

of all pn formal expressions

u0 + u1α + u2α
2 + . . . + un−1α

n−1

with coefficients ui ∈ Fp, the ring operations being the natural ones with

f(α) = 0. Here the coefficients of f(x), which are integers, are interpreted

in Fp, as before. Formally, one may define Fp[α] to be the quotient ring

Fp[x]/f(x)Fp[x]. In the same manner, replacing Fp by Q we define the ring

Q[α]. It is a field if and only if f(x) is irreducible.
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We now need to make an important assumption, which is automatic for

n ≤ 2, but not for n ≥ 3. Namely, instead of two automorphisms, we assume

that a finite abelian group G of ring automorphisms of Q[α] is given such

that we have an equality

f(x) =
∏
σ∈G

(x− σ(α))

of polynomials with coefficients in Q[α]. This is a serious restriction. For

example, in the important case that f(x) is irreducible it is equivalent to

Q[α] being a Galois extension of Q with an abelian Galois group. Just as in

the quadratic case, the Frobenius map of Fp[α] is for almost all p induced by

a unique element of the group G. The precise statement is as follows.

Theorem 1.2.1. Let f(x) ∈ Z[x] be an irreducible polynomial such that

Gal(f) = Gal(Q[α]/Q) is abelian, and p be a prime number not dividing

∆(f). Then there is a unique element ϕp ∈ Gal(f) such that the Frobenius

map of the ring Fp[α] is the reduction of ϕp modulo p; this means that, in

the ring Q[α], one has

αp = ϕp(α) + p · (q0 + q1α + · · ·+ qn−1α
n−1)

for certain rational numbers q0, . . . , qn−1 of which the denominators are not

divisible by p.

Proof. Follows from the definition of the Frobenius element given in Sec-

tion 1.6 and from Proposition 1.6.2.

In all our examples, the condition on the denominators of the qi is satisfied

simply because the qi are integers, in which case αp and ϕp(α) are visibly

congruent modulo p. However, there are cases in which the coefficients of

ϕp(α) have a true denominator, so that the qi will have denominators as

well. Requiring the latter to be not divisible by p prevents us from picking

any ϕp ∈ G and just defining the qi by the equation in the theorem.

The element ϕp of G is referred to as the Artin symbol of p. In the case

n = 2 it is virtually identical to the Legendre symbol
(

∆(f)
p

)
. Note that for
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f(x) = x2 − d we have ∆(f) = 4d so the condition that p does not divide

∆(f) is in this case equivalent to p not dividing 2d. We can now say that,

for the ring Fp[α] occurring in Theorem 1.2.1, knowing the Frobenius map

is equivalent to knowing the Artin symbol ϕp in the group G. The Artin

Reciprocity Law imposes strong restrictions on how ϕp varies over G as p

ranges over all prime numbers not dividing ∆(f) and in this way it helps us

in determining the Frobenius map. Let us consider an example to illustrate

it.

Example 1.2.2. Let f(x) = 8x3+4x2−4x−1. It is an irreducible polynomial

with discriminant ∆(f) = 26·72. Since the discriminant is a square, Gal(f) '
C3 is abelian. Our ring Q[α] turns out to have an automorphism σ with

σ(α) = 2α2 − 1,

and an automorphism τ = σ2 with

τ(α) = σ2(α) = σ(σ(α)) = σ(2α2 − 1) = (1− 2α− 4α2) · 2−1;

here we used the defining relation 8α3 + 4α2 − 4α − 1 = 0 that is α3 =

(−4α2 + 4α + 1) · 8−1. One checks that σ and τ constitute, together with

the identity automorphism, a group of order 3 that satisfies the condition

f(x) = (x − α)(x − σ(α))(x − τ(α)). Let us compute some of the Artin

symbols ϕp for primes p 6= 2, 7. We have

α3 = (1 + 4α− 4α2) · 8−1 ≡ (1− 2α− 4α2) · 2−1 = τ(α) (mod 3),

so ϕ3 = τ . Likewise,

α5 =
3

32
+

5

16
α− 1

2
α2 ≡ 2α2 − 1 = σ(α) (mod 5),

so ϕ5 = σ. A small computation yields

α11 =
89

2048
+

131

1024
α− 155

512
α2 ≡ (1− 2α− 4α2) · 2−1 = τ(α) (mod 11),

so ϕ11 = τ . Continuing in this way, one can list the value of ϕp for a few

small p. The existence of such element follows from Theorem 1.2.1.

Table 1.1 can easily be computed, writing a simple loop in Maple code. As

we will see later, we could instead apply Artin’s reciprocity law.
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Remark 1.2.3. There is an easy pattern in Table 1.1; looking at odd primes

p (mod 14) we have the following scenary:

1. p ≡ ±1 (mod 14) ⇒ ϕp = 1;

2. p ≡ ±3 (mod 14) ⇒ ϕp = τ ;

3. p ≡ ±5 (mod 14) ⇒ ϕp = σ;

We will explain this striking behaviour in the next section.

p 3 5 11 13 17 19 23 29 31 37 41 43

ϕp τ σ τ 1 τ σ σ 1 τ σ 1 1

p 47 53 59 61 67 71 73 79 83 89 97 101

ϕp σ τ τ σ τ 1 τ σ 1 σ 1 τ

Table 1.1: Artin symbol for odd primes p such that p ≤ 101, with p 6=, 7.

Artin symbols are worth knowing because they control much of the arith-

metic of Q[α]. They tell us in which way the polynomial f(x) with f(α) = 0

factors modulo the prime numbers coprime to ∆(f). This gives strong in-

formation about the prime ideals of the ring Z[α], which for Z[α] are just as

important as the prime numbers themselves are for Z. Here are two illustra-

tive results.

Theorem 1.2.4. Let f(x) ∈ Z[x] be an irreducible polynomial, G = Gal(f)

be abelian, and p be a prime number not dividing ∆(f). Then the degree of

any irreducible factor of (f mod p) in Fp[x] is equal to the order of ϕp in the

group G. In particular, one has ϕp = id in G if and only if (f mod p) splits

into n linear factors in Fp[x].

A direct consequence of Theorem 1.2.4 is, for n ≥ 3, that all irreducible

factors of (f mod p) have the same degree. This illustrates the strength of

our assumptions. In the case f(x) = x2 − d, Theorem 1.2.4 implies that one
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has
(

d
p

)
= +1 if and only if d is congruent to a square modulo p. We give

a proof of the theorem above in the special case of cyclotomic polynomials.

The following result is taken from [LN94].

Theorem 1.2.5. Let Φn be the n–th cyclotomic polynomial and p be a prime

number coprime to n. Then (Φn mod p) splits in ϕ(n)/d distinct monic ir-

reducible polynomials in Fp[x] of the same degree d, where d is the minimum

positive integer such that pd ≡ 1 (mod n).

Proof. Let η be the n–th root of unity on Fp; then η ∈ Fpk ⇔ ηpk − η = 0,

that is ηpk
= η, and so pk ≡ 1 (mod n). Now, let d be as in the statment;

pd ≡ 1 (mod n) ⇒ η ∈ Fpd , and @ F ⊂ Fpd such that η ∈ F. Hence the

minimum polynomial of η on Fp has degree d and, since η is an arbitrary

n–th root of unity, we have the statment.

Remark 1.2.6. In Section 1.4 we will see that, for a cyclotomic extension,

the Artin symbol is a tautology; ϕp maps ζn into ζp
n, and therefore ord(ϕp) is

just the minimum positive integer d such that pd ≡ 1 (mod n).

Corollary 1.2.7. Let p be a prime number such that p ≡ 1 (mod n). Then

Φn splits into ∂Φn = ϕ(n) linear factor on Fp[x].

Example 1.2.8. Let f(x) = x4 + x3 + x2 + x + 1 be the 5–th cyclotomic

polynomial. Then we can determine the decomposition type of (f mod p) by

means of ϕp. If we identify Gal(f) = {σj : a 7→ aj, for 1 ≤ j ≤ 4} with

(Z/5Z)∗, we have a very explicit description of the fact.

1. p ≡ 1 mod 5 ⇒ ϕp = σ1 ⇒ (f mod p) = (1)(1)(1)(1);

2. p ≡ 2 mod 5 ⇒ ϕp = σ2 ⇒ (f mod p) = (4);

3. p ≡ 3 mod 5 ⇒ ϕp = σ3 ⇒ (f mod p) = (4);

4. p ≡ 4 mod 5 ⇒ ϕp = σ4 ⇒ (f mod p) = (2)(2);
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In general, the set of prime p such that f(x) splits modulo p can be de-

scribed by congruences conditions with respect to a modulus depending only

on f(x) if and only if Gal(f) is an abelian group. In fact, the non–abelian

case is more difficult to describe. For more details on this fact, see [Wym72].

1.3 Quadratic Reciprocity

To illustrate Artin’s reciprocity law, it is useful to go back to the quadratic

ring Q(
√

d). In that case knowing ϕp is equivalent to knowing
(

d
p

)
, and

Artin’s reciprocity law is just a disguised version of the quadratic reciprocity

law. The latter states that for any two distinct odd prime numbers p and q

one has: (
q

p

)
=


(

p
q

)
if p ≡ 1 (mod 4)(

−p
q

)
if p ≡ 3 (mod 4)

The law is a theorem; it is the theorema fundamentale from Gauss’s Dis-

quisitiones arithmeticae (1801). Gauss also proved the supplementary laws(
−1

p

)
=

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4)

and (
2

p

)
=

{
1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8)

The first one is immediate from the definition(
d

p

)
≡ d(p−1)/2 (mod p)

given in Section 1.1, also called Euler’s Criterion.

For our purposes it is more convenient to use a different formulation of the

quadratic reciprocity law. It goes back to Euler, who empirically discovered

the law in the 1740’s but was unable to prove it.
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Theorem 1.3.1 (Euler’s quadratic reciprocity law). Let d be an integer,

and let p and q be prime numbers not dividing 2d. Then we have

p ≡ q (mod 4d) ⇒
(

d
p

)
=
(

d
q

)
p ≡ −q (mod 4d) ⇒

(
d
p

)
= sgn(d) ·

(
d
q

)
Euler’s quadratic reciprocity law carries substantially the same informa-

tion as the results of Gauss that we stated. The cases d = −1 and d = 2 are

immediately clear from the supplementary laws. Then, one can use Euler’s

formulation to deduce Gauss’s version, by simply choosing d = (q±p)/4, the

sign being such that d is an integer. For example, if p ≡ q (mod 4d) and

p ≡ 1 (mod 4), then p− q = 4d and(
q

p

)
=

(
p− 4d

p

)
(1.2)

=

(
−1

p

)(
d

p

)
=

(
−1

p

)(
d

q

)
=

(
−1

p

)(
q + 4d

q

)
=

(
p

q

)
,

which is the first case of the quadratic reciprocity law. By means of analogous

tricks, if p ≡ 3 (mod 4), then one gets(
q

p

)
=

(
p− 4d

p

)
(1.3)

=

(
−1

p

)(
d

p

)
=

(
−1

p

)(
d

q

)
=

(
−1

p

)(
q + 4d

q

)
=

(
−1

p

)(
p

q

)
,

=

(
−p

q

)
.
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Not only did Euler observe that the value of the quadratic symbol
(

d
p

)
depends only on (p mod 4d), he also noticed that

(
d
p

)
exhibits multiplicative

properties as a function of p. For example, if p, q, j are primes satisfying

p ≡ qj (mod 4d), then we have
(

d
p

)
=
(

d
q

)
·
(

d
j

)
. Formulated in modern

language, this leads to a special case of Artin reciprocity. Denote, for a non–

zero integer m, by (Z/mZ)∗ the multiplicative group of invertible elements

of the ring Z/mZ. Let d again be any non–zero integer.

Theorem 1.3.2 (Artin quadratic reciprocity law). There exists a group

homomorphism

(Z/4dZ)∗ → {±1} (1.4)

(p mod 4d) 7→
(

d

p

)
for any prime p not dividing 4d.

If we wish to generalize Artin’s quadratic reciprocity law to higher degree

abelian polynomial it is natural to guess that 4d is to be replaced by ∆(f),

and
(

d
p

)
by ϕp. This guess is correct. Let the polynomial f(x), the ring

Q[α], the abelian group G = Gal(f), and the Artin symbols ϕp for p not

dividing ∆(f) be as in Theorem 1.2.1.

Theorem 1.3.3 (Artin reciprocity law over Q). There exists a group

homomorphism

(Z/∆(f)Z)∗ → Gal(f)

(p mod ∆(f)) 7→ ϕp

for any prime number p not dividing ∆(f).

From Theorem 1.2.4 we know that ϕp determines the splitting behavior of

the polynomial f(x) modulo p, so Artin reciprocity yields a relation between

(f mod p) and (p mod ∆(f)).

In our cubic example f(x) = 8x3 + 4x2 − 4x− 1 we have ∆(f) = 26 · 72 and
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G is of order 3. Thus, the reciprocity law implies that the Table 1.1 of Artin

symbols that we gave for f(x) is periodic with period dividing ∆(f), namely

with period 14 as we observed in Remark 1.2.3. It is a general phenomenon

for higher degree abelian extensions that the number ∆(f) in Theorem 1.3.3

can be replaced by a fairly small divisor.

Theorems 1.3.2 and 1.3.3 are simple reformulations of the Artin reciprocity

law. The original statement involves the notion of ray class group, which we

do not discuss in this work.

We state the law as formulated in [Wym72].

Theorem 1.3.4 (Artin Reciprocity Law). Let L/Q be a finite abelian

extension with Galois group G, and let Γ be the subgroup of Q∗ generated by

the primes unramified in L. Then the Artin symbol gives a surjective group

homomorphism

ϕ : Γ 7→ Gal(L/Q)

whose kernel contains the ray group Γa, where a is an appropriate product of

the ramified primes.

In theorems 1.3.2 and 1.3.3 we replace Γ with (Z/∆(f)Z)∗ so that we

express primes in terms of congruences modulo ∆(f), and, in this way, we

automatically exclude ramified primes. Moreover, this presentation gives an

explicit description of the Artin symbol ϕp just looking at (p mod ∆(f)).

1.4 Cyclotomic Extensions

Artin’s reciprocity law over Q generalizes the quadratic reciprocity law.

This generality depends on the study of cyclotomic extensions.

Let m be a positive integer, and define inductively the m–th cyclotomic

polynomial Φm(x) ∈ Z[x] to be the product

Φm(x) =
xm − 1∏

d|m,d6=m Φd(x)
.
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So one readly proves the identity∏
d|m

Φd(x) = xm − 1,

from which we can derive that the degree of Φm equals ϕ(m) = #(Z/mZ)∗.

Therefore the discriminant ∆(Φm) divides the discriminant of ∆(xm − 1),

which equals ±mm. For example, the discriminant of Φ8(x) = x4 + 1, which

equals 28, divides ∆(x8− 1) = −224. Denoting by ζm a formal zero of Φm(x)

we obtain a ring Q[ζm] that has vector space dimension ϕ(m) over Q. We

have ζm
m = 1, but ζd

m 6= 1 when d < m divides m, so the multiplicative order

of ζm equals m. In the polynomial ring over Q[ζm] the identity

Φm(x) =
∏

a∈(Z/mZ)∗

(x− ζa
m)

is valid. One deduces that for each a ∈ (Z/mZ)∗ the ring Q[ζm] has an

automorphism φa : ζm 7→ ζa
m and that G = {φa s.t. a ∈ (Z/mZ)∗} is a group

isomorphic to (Z/mZ)∗; in particular, it is abelian. This places us in the

situation of Theorem 1.2.1 with f = Φm and α = ζm. Applying the theorem,

we find ϕp = φp for all primes p not dividing m: all qi in the theorem vanish,

Artin’s reciprocity law is now almost a tautology. If we identify G with

(Z/mZ)∗, the Artin map

(Z/∆(Φm)Z) → (Z/mZ)∗

is simply the map

(a mod ∆(Φm)) 7→ (a mod m)

whenever a is coprime to m. This map is clearly surjective.

We conclude that for cyclotomic extensions, Artin’s reciprocity law can be

proved by means of a plain verification. One can now attempt to prove

Artin’s reciprocity law in other cases by reduction to the cyclotomic case. For

example, the supplementary law that gives the value of
(

2
p

)
is a consequence

of the fact that ζ8 + ζ−1
8 is a square root of 2. Namely, one has

ϕp(
√

2) = ϕp(ζ8 + ζ−1
8 ) ≡ (ζ8 + ζ−1

8 )p ≡ ζp
8 + ζ−p

8 (mod p);
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for p ≡ ±1 (mod 8), this equals

ζ8 + ζ−1
8 =

√
2,

and for p ≡ ±3 (mod 8) it is

ζ3
8 + ζ−3

8 = ζ4
8 · (ζ8 + ζ−1

8 ) = −
√

2.

This confirms that in the two respective cases one has
(

2
p

)
= 1 and

(
2
p

)
=

−1. Our example f(x) = 8x3 + 4x2 − 4x − 1 can also be reduced to the

cyclotomic case: if ζ14 is a zero of Φ14 then a computation shows that

α = (ζ2
14 + ζ−2

14 )/2 = (ζ2
14 − ζ5

14)/2

is a zero of f , and one finds

ϕp(α) = (ζ2p
14 + ζ−2p

14 )/2 = (ζ2p
14 − ζ5p

14 )/2.

As consequence of this fact, by more simple computations we have

ϕp(α) ≡


(ζ2

14 − ζ5
14)/2 = α for p ≡ ±1 (mod 14),

(−1− ζ2
14 + ζ3

14 − ζ4
14 + ζ5

14)/2 = τ(α) for p ≡ ±3 (mod 14),

(ζ4
14 − ζ3

14)/2 = σ(α) for p ≡ ±5 (mod 14).

This proves our remark on the pattern underlying the Table 1.1 of Artin

symbols. The theorem of Kronecker–Weber (1887) implies that the reduc-

tion to cyclotomic extensions will always be successful: this theorem asserts

that every abelian Galois extension of Q can be embedded in a cyclotomic

extension. That takes care of the case in which f(x) is irreducible, from

which the general case follows easily. In particular, to prove the quadratic

reciprocity law it suffices to express square roots of integers in terms of roots

of unity, as we just did with
√

2.

1.5 Dedekind Domains

In the previous sections we gave an explicit description of the Artin sym-

bol relative to a prime number just in terms of congruences, that is, exploiting
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informations based on Artin reciprocity. Here we provide an overview of the

general construction of the Artin symbol, which is a fundamental tool in

order to understand the Chebotarëv Theorem. We put ourselves in a more

general contest, that is, the one of Dedekind Domains. The basic theory on

Dedekind Domains, which we take for granted, can be found in [ST02].

Definition 1.5.1. A Dedekind Domain A is a ring that satisfies the following

properties:

(a) A is a domain, with field of fractions K;

(b) A is noetherian, that is, every ideal in A is finitely generated;

(c) A is such that if α satisfies a monic polynomial equation with coefficients

in A then α ∈ A;

(d) every non–zero prime ideal of A is maximal.

In this section we will use the following notations: we denote by A a

Dedekind domain with field of fractions K, and with B the integral closure

of A in a finite separable extension L of K. It will be useful to think of the

simplest example for which these relations hold, namely A = Z, K = Q, B =

OL, where OL is the set of elements of L whose monic minimum polynomial

has coefficients in Z; this set make up the ring of algebraic integers in L. The

ring OL is a Dedekind domain when L/K is a finite extension of the number

field K. We recall the notion of division between ideals.

Definition 1.5.2. For ideals a, b of A, we say that

a|b ⇔ a ⊇ b.

Let p be a nonzero prime ideal of A. Then pB is an ideal of B, and it

has a factorization

pB = Pe1
1 Pe2

2 · · ·Peg
g , ei > 0,

where P1, . . . ,Pg are distinct prime ideals of B, and e1, . . . , eg are positive

integers. Hence P divides p, written P | p, if P occurs in the factorization

of pB. Primes dividing p have a specific property.
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Lemma 1.5.3. A prime ideal P of B divides p if and only if p = P ∩ A.

Proof. (⇒) Clearly p ⊂ P∩A; but P∩A 6= A and p is maximal, so P∩A = p.

(⇐) If p ⊂ P then pB ⊂ P, and this implies that P occurs in the factoriza-

tion of pB.

Definition 1.5.4. If any of the numbers ei is > 1, then we say that p is

ramified in B; the number ei = e(Pi/p) is called the ramification index. We

then write fi = f(Pi/p) for the vector space dimension [B/Pi : A/p], called

the relative degree of Pi.

Example 1.5.5. Let L = Q[
√

2] and K = Q; it follows that B = Z[
√

2] and

A = Z. The prime ideal (2) = 2Z has the factorization 2B = (
√

2B)2. It’s

easy to see that
√

2B is a prime ideal because

√
2B = 2Z +

√
2Z,

and so B/
√

2B is the field of 2 elements. It follows that the ramification index

e(P/(2)) of P =
√

2B is 2, and f(P/(2)) is [Z[
√

2]/
√

2Z[
√

2] : Z/2Z] = 1,

since they are both isomorphic to a field of 2 elements. Thus the prime ideal

(2) = 2Z ramifies in B = Z[
√

2].

Lemma 1.5.6. Let L/K be a finite Galois extension and G = Gal(L/K).

Let p be a prime ideal of OK and let P1, P2 be prime ideals of OL dividing

p. Then there exists σ ∈ G such that P1 = σ(P2).

Proof. Suppose that P1 6= σ(P2), ∀σ ∈ G. By the Chinese Reminder The-

orem, there exists an element x ∈ B such that x ≡ 0 (mod P1), and

x ≡ 1 mod σ(P2),∀σ ∈ G. The element

N(x) :=
∏
σ∈G

σ(x)

lies in B ∩ K = A, and lies in P1 ∩ A = p, because P1 | p. But x 6∈
σ(P2),∀σ ∈ G, so that σ(x) 6∈ P2,∀σ ∈ G. This contradicts the fact that

N(x) lies in p = P2 ∩ A.
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Theorem 1.5.7. Let m be the degree of the field extension L/K, and let

P1, . . . ,Pg be the prime ideals dividing p; then

g∑
i=1

eifi = m.

Moreover, if L/K is a Galois extension, then all the ramification numbers

and all the relative degrees are equal; therefore

efg = m.

Proof. See [Sam67, Chap.5]. The proof of the equality in the case of abelian

extensions follows from Lemma 1.5.6.

Definition 1.5.8. Let L be a finite extension of degree m over K = Q,

and {α1, . . . , αm} be a basis of L as vector space over Q. We define the

discriminant of this basis to be

∆[α1, . . . , αn] = {det[σi(αj)]}2, i, j = 1, . . . m,

for all σi : L → C such that σi is a K–homomorphism.

We will focus on basis for OL over OK = Z, called an integral basis for

OL. If {α1, . . . , αm} if an integral basis for OL, then we can prove that

∆[α1, . . . , αn] is a rational integer and that if {β1, . . . , βn} is another integral

basis for OL, then ∆[β1, . . . , βn] = ∆[α1, . . . , αn]. For the proof of these facts,

see [ST02, Chap.2].

The following gives a description of the prime ideals that ramify in an exten-

sion.

Theorem 1.5.9. A prime ideal p = pZ ∈ OK = Z ramifies in OL if and only

if p | ∆(OL/Z). In particular, only finitely many prime ideals ramify.

Proof. See [Sam67, Chap.5].

In other words, a prime ideal p ∈ Z ramifies in OL if and only if p contains

the ideal (∆(OL/Z)).
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Example 1.5.10. Let L = Q[
√
−2] and OL = Z[

√
−2] so that ∆(Z[

√
−2]/Z)

equals ∣∣∣∣∣1
√
−2

1 −
√
−2

∣∣∣∣∣ = −8.

If p is an odd prime, then p does not ramify. By Theorem 1.5.7 we have

2 = fg. Let p = 3; then g = 2 and f = 1. In fact, 3OL = P1P2, where

P1 = (3, 1 +
√
−2) and P2 = (3, 1 −

√
−2). Notice that P2 = σP1, with

Gal(Q(
√
−2)/Q) 3 σ = conj :

√
−2 7→ −

√
−2, as Lemma 1.5.6 predicts.

In these conditions, we must obtain f = 1; in fact f = [Z[
√
−2]

Pi
: Z

3Z ] = 1,

because Z[
√
−2]/Pi = {a + b

√
−2 s.t. a ≡ b mod 3 and a, b ∈ Z3}, which is

isomorphic to Z/3Z.

1.6 The Frobenius Element

For the theory developed in this section we refer to [Sam67, Chap.6]. We

keep the same notations of last section: let A be a Dedekind Domain, K be its

quotient field, and L be a finite Galois extension of K with Gal(L/K) = G.

Let p be a prime ideal of A, and P be an ideal of B = OL dividing p. We

denote FP = OL/P = B/P and Fp = OK/p = A/p.

Definition 1.6.1. The decomposition group G(P) of P is defined to be

{σ ∈ G s.t. σP = P}.

Then G(P) acts in a natural way on the residue class field FP, and leaves

Fp fixed. To each σ ∈ G(P) we can associate an automorphism σ̄ of FP over

Fp, and the map given by

σ 7−→ σ̄

induces a homomorphism of G(P) into the group of automorphism of FP.

Proposition 1.6.2. Let L/K be a finite Galois extension, with G = Gal(L/K).

Let p be a prime ideal and P such that P | p. Then FP = OL/P is a Galois
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extension of Fp = OK/p and the map σ 7→ σ̄ induces a surjective homomor-

phism of G(P) into the Galois group Gal(FP/Fp).

Proof. Let A = OK and B = OL. Let LG(P) be the field of invariants of L

under the action of the decomposition group of P, ĀLG(P)
= B ∩ LG(P) be

the integral closure of A in LG(P), PG(P) = P ∩ ĀLG(P)
. P is the only prime

factor of BPG(P). In fact, if P1 is another prime ideal dividing BPG(P),

then PG(P) = P1 ∩ ĀLG(P)
by Lemma 1.5.3, while PG(P) = P ∩ ĀLG(P)

.

But, by Theorem 1.5.6, there exists an element σ ∈ Gal(L/LG(P)) = G(P)

such that σP = P1; since any σ in G(P) fixes P , the equality P1 = P holds.

We set BPG(P) = Pe′ and denote with f ′ the relative degree [B/P : ĀLG(P)
/PG(P)].

Hence Gal(L/LG(P)) = G(P) and

e′f ′ = [L : LG(P)] = #G(P) = ef.

Since A/p ⊂ ĀLG(P)
/PG(P) ⊂ B/P, we have f ′ ≤ f , and e′ ≤ e because of

pĀLG(P) ⊂ PG(P); but e′f ′ = ef , so that e = e′ and f = f ′. Therefore

A/p ' ĀLG(P)

/PG(P).

Let ᾱ be a primitive element of B/P on A/p and α ∈ B be a representing

element of ᾱ. If xr + ar−1x
r−1 + · · · + a0 is the minimal polynomial of α

on LG(P), then ai ∈ ĀLG(P)
and the set of its root is {σ(α) s.t. σ ∈ G(P)}.

From the isomorphism A/p ' ĀLG(P)
/PG(P), we can consider the reduced

polynomial in A/p, whose set of roots is {σ̄(ᾱ) s.t. σ ∈ G(P)}. On the one

hand we conclude that B/P contains all the conjugates of ᾱ in A/p, hence

B/P is a Galois extension of A/p. On the other hand, since any conjugate of

ᾱ in A/p is of the form σ̄(ᾱ), any A/p–automorphism of B/P is a σ̄. Finally,

the Galois group of B/P on A/p is identified with G(P)/T (P) and, since

[B/P : A/p] = f , we have #G(P)/#T (P) = f , that is #T (P) = e.

Definition 1.6.3. The Inertia group T (P) of P is defined to be the kernel

of the homomorhism σ 7→ σ̄.
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We recall that in the case L/K abelian of degree n, it holds n = efg, and

#G(P) = n/g = ef ; moreover, from Proposition 1.6.2,

G(P)

T (P)
' Gal(FP/Fp),

and so f = #G(P)/#T (P), that is #T (P) = e.

Corollary 1.6.4. The prime ideal p ⊂ OK is not ramified in OL if and only

if T (P) is trivial, for any prime ideal P dividing p.

Thus, assume that p is unramified and that P | p. Then Gal(FP/Fp)

is cyclic with a canonical generator, namely, the Frobenius automorphism

x → xq, where q is the number of elements of Fp. Hence T (P) is trivial

and G(P) is cyclic. The generator of G(P) corresponding to the Frobenius

automorphism in Gal(FP/Fp) deserves a special name.

Definition 1.6.5. We define the Frobenius element σP = (P, L/K) of P

to be the element of G(P) that acts as the Frobenius automorphism on the

residue field extension FP/Fp.

Therefore the Frobenius element σ ∈ Gal(L/K) is uniquely determined

by the following two conditions:

1. σ ∈ G(P), that is σP = P;

2. for all α ∈ OL, σ(α) ≡ αq (mod P), where q is the number of elements

of the residue field Fp, with p = P ∩K.

We now list the basic properties of (P, L/K).

Proposition 1.6.6. Let σP be a second prime ideal dividing p, for any

σ ∈ G. Then:

(a) G(σP) = σG(P)σ−1,

(b) T (σP) = σT (P)σ−1.
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Proof. (a) (⊆) Let τ ∈ G(P); we have στσ−1 · σ(p) = στ(p) = σ(p), and

σG(P)σ−1 ⊆ G(σ(P)). (⊇) Let θ ∈ G(σ(P)); θ·σ(p) = σ(p) ⇒ σ−1θ·σ(P) =

P, and σ−1θσ ∈ G(P), i.e., θ ∈ σ−1G(P)σ or, equivalently, G(σ(P)) ⊆
σ−1G(P)σ.

Corollary 1.6.7. For all σ ∈ G we have (σP, L/K) = σ(P, L/K)σ−1

Proof. The equality follows from Proposition 1.6.6 and from Definition 1.6.5.

It’s easily seen that, if Gal(L/K) is abelian, then (P, L/K) = (P′, L/K)

for all primes P, P′ dividing p, and we write σp = (p, L/K) for this ele-

ment, which equals the Artin symbol discussed in the previous sections. If

Gal(L/K) is not abelian, then {(P, L/K) s.t. P | p} is a conjugacy class in

G, which, by an abuse of notation, we again denote (p, L/K). So, for a prime

ideal p of OK , (p, L/K) is either an element of Gal(L/K) or a conjugacy class

depending on whether Gal(L/K) is abelian or nonabelian.

Example 1.6.8. Let L = Q(ζn), where ζn is a primitive n–th root of 1. If

p | n then p = pZ ramifies in OL by Theorem 1.5.9, and (p, L/Q) is not

defined. Otherwise σ = (p, L/Q) is the unique element of Gal(L/Q) such

that

σ(α) ≡ αp mod P, ∀α ∈ OL = Z[ζn],

where P ranges over the prime ideals dividing p. We claim that σ is the

element of Gal(L/Q) such that σ(ζn) = ζp
n; let P be a prime ideal dividing p

in Z[ζn]; then modulo P, we have

σ
(∑

aiζ
i
n

)
=
∑

aiζ
ip
n =

∑
ap

i ζ
ip
n =

(∑
aiζ

i
n

)p

as required. Note that (p, L/Q) has order f , where f = f(P/p) is the residual

degree [FP : Fp].

Knowledge of the Frobenius element also allows us to control the de-

composition of p in OL. We can see it in the simple case L = Q(γ) and
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K = Q. With this assumption, p = pZ and Gal(FP/Fp) = 〈ϕ : a 7→ ap〉. If

αi is a root of an irreducible factor f̄i of (f mod p), then, by Lemma A.0.7,

the length of the orbit of αi under the action of 〈ϕ : a 7→ ap〉 equals ∂fi,

and therefore the cycle pattern of ϕ contains a ∂fi–cycle. Repeating this

procedure on each irreducible factor, we get that the decomposition type of

(f mod p) equals the cycle structure of ϕ. Finally, in the unramified case,

Theorem 1.6.2 holds and Gal(FP/Fp) ' G(P) ⊂ Gal(L/K); so we can as-

sume that Gal(FP/Fp) ⊂ Gal(L/K) and there will be an element corrispond-

ing to ϕ in Gal(L/K) with the same cycle structure. If we are interested in

factoring pOL, it’s sufficient to compute the decomposition type of (f mod p),

by virtue of the following.

Theorem 1.6.9. Let L be a number field of degree n with ring of integers

OL = Z[θ] generated by θ ∈ OK. Given a rational prime p, suppose the

minimum polynomial f(x) of θ over Q gives rise to the factorization into

irreducibles over Zp:

f̄ = f̄1
e1 · · · f̄r

er

where the bar denotes the natural map Z[x] → Zp[x]. Then, if fi ∈ Z[x] is a

polynomial mapping onto f̄i, the ideal

pi = 〈p, fi(θ)〉

is prime and the prime factorization of p is

p = pe1
1 · · · per

r .

Proof. See [ST02, Chap.10].

For example, if L = Q(
√

2), then OL = Z[
√

2] and therefore 2OL = 〈
√

2〉2.

Remark 1.6.10. Theorem 1.6.9 holds when the ring of integers OL is gen-

erated by a single element, i.e., there exists a θ ∈ OL such that OL = Z[θ].

This is not usually the case. For example, in Q( 3
√

175), one can show that

the ring of integers is Z[ 3
√

175, 3
√

245], and that it is not generated by a single

element.
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To conclude this chapter we give a complete treatment of the theory

developed in the case of quadratic extension.

Example 1.6.11. Let L = Q[
√

d] where d ∈ Z is square–free, and let p = pZ
be a prime ideal in Z. Identify Gal(L/Q) with {±1}. We will prove that

(p, L/Q) = +1 or − 1 according as p does, or does not, split in L, that is,

according as d is, or is not, a square modulo p.

In other words (p, L/Q) =
(

d
p

)
. From Theorem 1.5.7, the formula

∑g
i=1 eifi =

2 shows that g ≤ 2 and that only 3 cases occur:

(a) g = 2, e1 = e2 = 1, f1 = f2 = 1; we say that p splits in L;

(b) g = 1, e1 = 1, f1 = 2; we say that p is prime in L;

(c) g = 1, e1 = 2, f1 = 1; we say that p is ramified in L.

Let p be an odd prime not dividing d; there are 2 possibilities for B, that is

B = Z +
√

dZ, or B = Z + 1+
√

d
2

Z. Let us consider the cosets in B/pB;

in the second case, a + b
(

1+
√

d
2

)
(being b an odd number) is congruent to

a+(b+ p)
(

1+
√

d
2

)
, which is an element in Z +

√
dZ. Thus, whether or not b

is odd, we have B/pB ' (Z+
√

d)Z/(p). Moreover, Z+
√

dZ ' Z[x]/(x2−d),

and so

B/pB ' Z[x]/(p, x2 − d) ' Zp[x]/(x2 − d).

Our question on the factorization of pB is actually a question on the irre-

ducibility of x2−d ∈ Zp[x], namely, on the value of the Legendre symbol
(

d
p

)
.

In Section 1.1 we have seen that the Frobenius map is one of the two obvious

automorphisms of Zp[
√

d]: for
(

d
p

)
= +1 it is the identity, and for

(
d
p

)
= −1

it is the map sending a + b
√

d to a− b
√

d.
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Chapter 2

Chebotarëv’s Density Theorem

2.1 Symmetric Polynomials

The results in this chapter can be found in [Rot95] and [vdW91].

Definition 2.1.1. A polynomial P (x1, . . . , xn) ∈ Z[x1, . . . , xn] is said to be

symmetric if it is unchanged when its variables are permuted, that is, if

P (xσ(1), . . . , xσ(n)) = P (x1, . . . , xn), ∀σ ∈ Sn.

Example 2.1.2. Let t1(x) =
∑

xi = x1 + . . . + xn; this is a symmetric

polynomials, called the first elementary symmetric polynomial. Then,

let x = (x1, . . . , xn); we define

t2(x) =
∑
i<j

xixj = x1x2 + x1x3 + . . . + x1xn + x2x3 + . . . + xn−1xn.

In general tr(x) =
∑

i1<···<ir
xi1 · · ·xir and tn(x) = x1x2 · · ·xn are the r–th

and n–th elementary symmetric polynomial of x.

It’s interesting to notice that if a monic polynomial f(x) =
∑n

i=0 aix
i has

roots α1, . . . , αn, then each of the coefficients ai of f(x) =
∏n

i=0(x − αi) is

an elementary symmetric polynomial of α = (α1, . . . , αn), and the following

equality holds

f(x) = xn − t1(α)xn−1 + · · ·+ (−1)ntn(α).
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Here we give an important theorem on symmetric polynomials.

Theorem 2.1.3. Every symmetric polynomial P (x1, . . . , xn) ∈ Z[x1, . . . , xn]

is equal to a polynomial in the elementary symmetric polynomials with coef-

ficients in Z, i.e., ∃Q ∈ Z[t1, . . . , tn] s.t P (x1, . . . , xn) = Q(t1(x), . . . , tn(x)).

2.2 Dedekind’s Theorem

Let α1, . . . αn be the roots of f(x) ∈ Z[x] and consider the expression

θ = u1α1 + . . . + unαn,

where ui are indeterminates. Let us consider the product

F (z, u) =
∏
s∈Sn

(z − su(θ)),

where the symbol su indicates that the permutation s acts on the indetermi-

nates ui. This product is a simmetric function of the roots, and therefore,

by Section 2.1, it can be expressed in terms of the coefficients of f(x). Let

F (z, u) = F1(z, u)F2(z, u) · · ·Fr(z, u)

be the decomposition of F (z, u) into irriducibiles factors in Z[u, z]. The

permutations su which carry any of the factors, say F1, into itself form a

group G.

Proposition 2.2.1. With precedent notations, G ' Gal(f).

Proof. After adjoing all roots, F and therefore F1 are decomposed into linear

factors of the type z −
∑

uvαv, with the roots αv as coefficients in any

sequential order. Let F1 such that it contains the factor z−(u1α1+· · ·+unαn).

By su we shall hereafter denote any permutation of the u, and by sα the same

permutation of the α. Then the product susα leaves invariant the expression

θ = u1α1 + . . . + unαn; that is, we have

susαθ = θ

sαθ = s−1
u θ
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If su belongs to the group G, that is, if it leaves F1 invariant, then su trans-

forms every linear factor of F1, including the factor z− θ, into a linear factor

of F1 again. If, conversely, a permutation su transforms the factor z− θ into

another linear factor of F1, it transforms F1 into a polynomial which is irre-

ducible in Z[u, z] and which is a divisor of F (z, u), and so it transforms F1

into one of the polynomials Fj. This Fj has a linear factor in common with

F1. Therefore the permutation necessarily transforms F1 into itself, which

means that su ∈ G. Thus G consists of the permutations of the u which

transform z − θ into a linear factor of F1 again. The permutations sα of the

Galois group of f(x) are characterized by the property that they transform

the quantity

θ = u1α1 + · · ·+ unαn

into its conjugates. This means that sα transforms θ into an element satis-

fying the same irreducible equation as θ, that is, sα carries the linear factor

z − θ into another linear factor of F1. Now, sαθ = s−1
u θ; hence, s−1

u carries

the linear factor z − θ again into a linear factor of F1; that is, s−1
u and so su

belong to G. The converse is also true. Thus, the Galois group consists of

exactly the same permutations as the group G, excepted they are performed

on the α instead of the u.

This proposition gives an algorithm for computing the Galois group of

a polynomial f(x) ∈ Z[x]. First find the roots of f(x) to a high degree of

accuracy. Then compute F (z, u) exactly, using the fact that it has coefficients

in Z. Factor F (z, u), and take one of the factors F1(z, u). Finally list the

elements σ of Sn such that σ fixes F1(z, u). The problem with this approach

is that F (z, u) has degree n!. Hence, from a pratical point of view, this

method for determining the Galois group is not so much useful. However,

the following interesting fact can be derived from it.

Lemma 2.2.2. Let f(x) be a monic polynomial in Z[x]. Let p = pZ be a

prime ideal in Z, and let f̄(x) be the image of f(x) in (Z/p)[x]. Assume that

neither f(x) nor f̄(x) has a multiple root. Then the Galois group Gal(f̄)
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relative to the quotient field of Z/p is a subgroup of the Galois group Gal(f)

relative to Q.

Proof. The factorization of

F (z, u) =
∏

s

(z − suθ)

into irreducibile factors in can be carried out in Z[u, z]. The natural homo-

morphism carries this factorization down into Z/p[u, z]:

F̄ (z, u) = F̄1F̄2 . . . F̄k.

The polynomials F̄1 . . . F̄k, may be reducible. The permutations in G fix F1,

and so F̄1. The other permutations of the u’s map F̄1 into F̄2, . . . , F̄k. The

permutations in Ḡ map an irreducible factor of F̄1 into itself so that they

cannot map F̄1 into F̄2, . . . , F̄k, but must map F̄1 into F̄1, which means that

Ḡ ⊂ G.

The theorem is frequently used for determining the group G. In particular,

we often choose the ideal p in such a manner that the polynomial f(x) factors

mod p, since in this way we can narrow down the list of candidates for Gal(f).

For example, let f(x) factor modp so that

f(x) ≡ φ1(x)φ2(x) . . . φh(x) (mod p).

It follows that

f̄ = φ̄1φ̄2 . . . φ̄h.

The Galois group Ḡ of f̄(x) is always cyclic. In fact, the automorphism

group of a finite field is always cyclic, as explained in Appendix B. Let the

generating permutation s of Ḡ be

(1 2 . . . j)(j + 1 . . .) . . . .

Since the transitivity sets of the group Ḡ correspons exactly to the irreducible

factors of f̄ , the numbers occurring in the cycles (12 . . . j)(. . .) . . . must exacly
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denote the roots of φ̄1, φ̄2, . . . φ̄h. Thus, as soon as the degrees j, k, . . . of

φ1, φ2, . . . are known, the type of the substitution s is known as well: s

consists of a cycle of j terms, of a cycle of k terms, and so on. Since, with a

suitable arrangement of the roots, Ḡ ⊂ G by Lemma 2.2.2, G must contain

a permutation of the same type.

Example 2.2.3. Let f(x) = x4−x3+x2−x+1 ∈ Z[x]. Since f(x) = Φ10(x),

it resolves modulo p = 19 into 2 irreducible factor of the second degree, that

is f̄ ≡ (x2 + 4x + 1) · (x2 + 14x + 1) (mod 19). Therefore the Galois group

Gal(f) contains a permutation with cycle pattern 22 = (−−)(−−).

We give the following as a corollary of Lemma 2.2.2, even if it is currently

referred to as a theorem.

Corollary 2.2.4 (Dedekind’s Theorem). Let f(x) ∈ Z[x] be a monic

polynomial of degree m, and let p be a prime number such that f mod p has

simple roots, that is p - ∆(f). Suppose that f̄ =
∏

fi with fi irreducible of

degree mi in Fp[x]. Then Gal(f) contains an element whose cycle decompo-

sition is of the type m = m1 + · · ·+ mr.

The above result gives the following strategy for computing the Galois

group of an irreducible polynomial f ∈ Z[x]. Factor f modulo a sequence

of primes p not dividing ∆(f) to determine the cycle types of the elements

in Gf ; continue until a sequence of prime numbers has yielded no new cycle

types for the elements. Then attempt to read off the type of the group from

tables of transitive groups of degree ∂f . To make the computation more

effective, in the technical sense, we need the Frobenius Theorem.

2.3 Frobenius’s Theorem

The theorem of Frobenius (1849− 1917) that Chebotarëv generalized de-

serves to be better known than it is. For many applications of Chebotarëv’s

theorem it suffices to have Frobenius’s theorem, which is both older (1880)

and easier to prove than Chebotarëv’s theorem (1922). Again, Frobenius’s
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theorem can be discovered empirically. Consider a polynomial with integer

coefficients, say f(x) = x4−x3+x2−x+2, and suppose that one is interested

in deciding whether or not f(x) is irreducible over the ring Z of integer. A

standard approach is to factor f(x) modulo several prime numbers p: if the

leading coefficient of f is not divisible by p, then a nontrivial factorization

f = gh in Z[x] will give a nontrivial factorization f̄ = ḡh̄ in Fp[x]. Thus,

if f(x) is irreducible in Fp[x] for some prime p not dividing its leading coef-

ficient, then it is irreducible in Z[x]. This test is very useful, but it is not

always effective: in [Bra86], the author proves that every non–prime integer

n ≥ 1 occurs as the degree of a polynomial in Z[x] that is irreducible over Z
but reducible modulo all primes.

According to Maple, we have

f(x) ≡ (x + 1)(x3 + x2 + 2) (mod 3).

We say that the decomposition type of (f mod 11) is 1, 3. It follows that if

f(x) is reducible over Z, then its decomposition type will likewise be 1, 3:

a product of a linear factor and a factor of degree 3. However, the latter

alternative is incompatible with the fact that the decomposition type modulo

5 is 2, 2:

f ≡ (x2 + 2x + 4)(x2 + 2x + 3) (mod 5),

where the two factors are irreducible over F5. One concludes that f is irre-

ducible over Z.

Could the irreducibility of f(x) have been proven with a single prime? Mod-

ulo such a prime number, f(x) would have to be irreducible, with decompo-

sition type equal to the single number 4. Maple make it easy to do numer-

ical experiments. There are 168 prime numbers below 1000. Two of these,

p = 2 and p = 349, are special, in the sense that f acquires repeated factors

modulo p: f(x) ≡ x(x + 1)3 (mod 2) and f ≡ (x + 177)2(x2 + 343x + 112)

(mod 349). Indeed 2 and 349 divide ∆(f) For no other prime does this

happen, and the following types are found.

It is suggested that the primes with type 1, 1, 1, 1 have density 1
12

; the

primes with type 4 and 1, 1, 2 have desity 1
4
; the primes with type 1, 3 have
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Type 1, 1, 1, 1: 6 primes (4%),

Type 1, 1, 2: 42 primes (25.5%),

Type 2, 2: 21 primes (12.5%),

Type 1, 3: 51 primes (31%),

Type 4: 46 primes (27%).

density 1
3
; finally, to make the densities add up to 1, the primes with type 2, 2

have density 1
8
. Frobenius’s theorem tells how to understand these fractions

through the Galois group of the polynomial.

Let f(x) ∈ Z[x] be a monic polynomial, and denote the degree of f(x) by

n. Assume that the discrimmant ∆(f) does not vanish, so that f(x) has

n distinct zeros α1, α2, · · · , αn in a suitable extension field of the field Q.

Write K for the field generated by these zeros, K = Q(α1, α2, · · · , αn). The

Galois group G of f(x) is the group of field automorphisms of K. Each

σ ∈ G permutes the zeros α1, α2, · · · , αn of f , and is completely determined

by the way in which it permutes these zeros. Hence, we may consider G

as a subgroup of the group Sn of permutations of n symbols. Writing an

element σ ∈ G as a product of disjoint cycles, including cycles of length 1,

and looking at the lengths of these cycles, we obtain the cycle pattern of σ,

which is a partition of n. If p is a prime number not dividing ∆(f), then

we can write f (mod p) as a product of distinct irreducible factors over Fp.

The degrees of these irreducible factors form the decomposition type of f

modulo p; this is also a partition of n. Frobenius’s theorem asserts, roughly

speaking, that the number of prime numbers p with a given decomposition

type is proportional to the number of σ ∈ G with the same cycle pattern. So

we have the following.

Theorem 2.3.1 (Frobenius’s Theorem). The density of the set of prime

p for which f mod p has a given decomposition type n1, n2, · · · , ni, exists, and

it is equal to 1/#Gal(f) times the number of σ ∈ G with decomposition in

disjoint cycle of the form cn1cn2 · · · cni
, where cnk

is a nk–cycle.
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Let us consider the partition in which all ni are equal to 1. Only the

identity permutation has this cycle pattern. Hence the set of primes p for

which f modulo p splits completely into linear factors has density 1/#G.

2.4 Chebotarëv’s Theorem

To introduce Chebotarëv’s theorem we need the theory of Dedekind’s

Domains explained in Section 1.5.

For any prime ideal p of K unramified in L, the Frobenius element

(p, L/K) = {(P, L/K)s.t.P | p}

is a conjugacy class in G. Given an element of Gal(L/K), can it be repre-

sented as a Frobenius element of a prime ideal? This question and more is

answered by the following.

Theorem 2.4.1 (Chebotarëv’s Density Theorem). Let L be a Galois

extension of number field K, and for σ ∈ Gal(L/K) define Cσ to be the

conjugacy class of σ. Let S be the set of unramified prime ideals p of K such

that for every prime ideal P of L dividing p, the Frobenius element of P is

Cσ. Then S has Dirichlet density

#Cσ

#Gal(L/K)
.

If S is a set of primes of K, then we define the analytic density of S to

be

δan(S) = lim
x→∞

#{p : #(Ok/p) ≤ x, p ∈ S}
#{p : #(Ok/p) ≤ x, p prime}

if this limit exists. If the analytic density exists, then it is actually equal to

the Dirichlet density

δan(S) = lim
s→1+

(∑
p∈S

1

#(OK/p)s

)( ∑
p prime

1

#(OK/p)s

)−1

.

The converse is not true: there are cases where the Dirichlet density exists

but the analytic one does not. However, the Chebotarëv Density Theorem

is valid with either notion of density.
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2.5 Frobenius and Chebotarëv

In the last section we said that Chebotarëv generalized Frobenius’s theo-

rem. In order to explain it clearly, let us consider the following reformulation.

Theorem 2.5.1 (Chebotarëv’s Density Theorem). Let f(x) ∈ Z[x] be

a monic polynomial. Assume that the discriminant ∆(f) of f(x) does not

vanish. Let C be a conjugacy class of the Galois group G of f(x). Then the

set of primes p not dividing ∆(f) for which σp belongs to C has a density,

and this density equals |C|/|G|.

On first inspection, one might feel that Chebotarëv’s theorem is not much

stronger than Frobenius’s version. In fact, applying the latter to a well–

chosen polynomial, with the same splitting field of f(x), one finds a variant

of the density theorem in which C is required to be a division of G rather

than a conjugacy class; here we say that two elements of G belong to the

same if the cyclic subgroups that they generate are conjugate in G. Frobenius

himself reformulated his theorem already in this way. The partition of G into

divisions is, in general, less fine than its partition into conjugacy classes and

Frobenius’s theorem is correspondingly weaker than Chebotarëv’s.

Let σ = (1 2 3 4) be such that the cyclic group is C4 = 〈σ〉. Table 2.1 shows

the difference between these partitions.

Conjugacy classes of C4 {id} {σ} {σ3} {σ2}
Divisions of C4 {id} {σ, σ3} {σ2}

Table 2.1: Partition of C4 into divisions and conjugacy classes.

Applying Frobenius’s and Chebotarëv’s theorem to the 10–th cyclotomic

polynomial Φ10(x) = x4−x3 +x2−x+1, which has Galois group C4, we get

the distributions shown in Table 2.2.

We computed Table 2.2 just considering primes p ≤ 1000. In particular,

from the second line in Table 2.2 we get the cycle distribution of Gal(f) and
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C4 {id} {σ} {σ3} {σ2} C4 {id} {σ, σ3} {σ2}
Chebotarëv 5

21
19
84

47
168

1
4

Frobenius 40
167

89
167

38
167

Table 2.2: Chebotarëv’s and Frobenius’s informations.

from these datas we conclude that Gal(f) ' C4. Increasing the range, the

distributions will be closer to the theoretical results given in Table 2.3.

C4 {id} {σ} {σ3} {σ2} C4 {id} {σ, σ3} {σ2}
Chebotarëv 1

4
1
4

1
4

1
4

Frobenius 1
4

1
2

1
4

Table 2.3: Theoretical informations.

2.6 Dirichlet’s Theorem on Primes in Arith-

metic Progression

Chebotarëv’s density theorem may be regarded as the least common gen-

eralization of Dirichlet’s theorem on primes in arithmetic progressions (1837)

and Frobenius’s theorem (1880; published 1896). Dirichlet’s theorem is easy

to discover experimentally. Here are the prime numbers below 100, arranged

by final digit:

� 1 : 11; 31; 41; 61; 71

� 2 : 2

� 3 : 3; 13; 23; 43; 53; 73; 83

� 5 : 5

� 7 : 7; 17; 37; 47; 67; 97

� 9 : 19; 29; 59; 79; 89
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It does not come as a surprise that no prime numbers end in 0, 4, 6, or 8, and

that only two prime numbers end in 2 or 5. The table suggests that there are

infinitely many primes ending in each of 1, 3, 7, 9, and that, approximately,

they keep up with each other. This is indeed true; it is the special case

m = 10 of the following theorem, proved by Dirichlet in 1837. Write ϕ(m)

for the Euler function evaluated in m. Our goal is to prove the following.

Theorem 2.6.1 (Dirichlet’s Theorem). Let m be a positive integer. Then

for each integer a with gcd(a, m) = 1 the set S of prime numbers p such that

p ≡ a (mod m) has density 1/ϕ(m).

Hence we will show that there are ”equally many” prime numbers p ≡ a

(mod m) for each a ∈ (Z/mZ)∗.

To see how Dirichlet’s theorem follows, let K = Q and let L = Q(ζm), where

ζm is one of the primitive m–th roots of unity. Q(ζm) is an abelian extension

of Q and we can identify its Galois group with (Z/mZ)∗; so Cσ = {σ} for all

σ ∈ Gal(Q(ζm)/Q), and the Frobenius element of P is just

(p, Q(ζm)/Q) = p (mod m) ∈ (Z/mZ)∗

for all P dividing any prime number p - m, as explained in Example 1.6.8.

Thus we see that there is a bijective correspondence between the conjugacy

classes (mod m) of prime numbers that do not divide m and the elements of

the Galois group, so that the set S in the statement of the theorem becomes

Sa = {prime numbers p ∈ Z s.t. p ≡ a (mod m)}. Since #Cσ = 1 and

#Gal(Q(ζm)/Q) = ϕ(m), the theorem tells us that the set Sa has density

1/ϕ(m) for each a ∈ (Z/mZ)∗, which is exactly Dirichlet’s theorem.

We can follow the same strategy using Frobenius’s theorem, instead of Cheb-

otarëv’s. However, this choice does not work for all m.

Example 2.6.2. Case m = 12. Let f(x) be the polynomial x12 − 1 = (x −
1)(x+1)(x2+1)(x2+x+1)(x2−x+1)(x4−x2+1). According to Theorem 1.2.5,

we find that the decomposition type depends only on the residue class of p

modulo 12.
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p ≡ 1 (mod 12) ⇒ (1)12

p ≡ 5 (mod 12) ⇒ (1)4, (2)4

p ≡ 7 (mod 12) ⇒ (1)6, (2)3

p ≡ 11 (mod 12) ⇒ (1)2, (2)5

Table 2.4: Decomposition types of f(x) = x12 − 1 modulo different primes.

Looking at Table 2.4 we conclude that Frobenius’s theorem implies Dirich-

let’s theorem in the case m = 12, since the four decomposition type are pair-

wise distinct.

Let us consider now the case m = 8. Let f(x) be the polynomial x8 − 1 =

(x− 1)(x + 1)(x2 + 1)(x4 + 1). According to Theorem 1.2.5, we find that the

decomposition type depend only on the residue class of p modulo 8.

p ≡ 1 (mod 8) ⇒ (1)8

p ≡ 5 (mod 8) ⇒ (1)4, (2)2

p ≡ 7 (mod 8) ⇒ (1)2, (2)3

p ≡ 11 (mod 8) ⇒ (1)2, (2)3

Table 2.5: Decomposition types of f(x) = x8 − 1 modulo different primes.

However, in this case Frobenius’s Theorem does not distinguish between

the residue class 7 mod 8 and 11 mod 8, since these classes belong to the

same division. Dirichlet’s theorem is not implied in this case and we need to

use the stronger statement of the Chebotarëv density theorem.

It’s interesting to observe that although Theorem 2.6.1 involves only in-

tegers, its simplest proof requires the use of complex numbers and Dirichlet

L–series. The proof of the Chebotarëv density theorem is a generalization

of that one of Dirichlet’s theorem. Here we illustrate how Dirichlet implies

Chebotarëv in the case of quadratic extensions.

Let L = Q(
√

m), with m square–free, and K = Q, so that the Galois group

of this extension must be the group with two elements, namely Z/2Z. Since
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this group is abelian, every element has only one conjugate. Thus, viewing

the Galois group as an multiplicative group, the primes with Frobenius ele-

ment 1 must have density 1/2, as should the primes with Frobenius element

−1. Now, from the definition of the Frobenius element, we know that, in

this case, primes that remain prime in OL should correspond to a Frobenius

element of order 2, and primes that split into two primes in OL should cor-

respond to a Frobenius element of order 1; this results from the fact that

the order of the Frobenius element is f = f(P/p), the relative degree of p.

Thus, what Chebotarëv’s theorem states in this case is that the density of

the set of primes that split and the density of primes that remain prime in

OL is 1/2. In Example 1.6.11 we have seen that there is a simple way to

characterize each of these sets: p = pZ remains prime in OL if and only if m

is not a square modulo p.

Our statement becomes: the density of primes p such that a given square–

free integer m is a square mod p is 1/2. In the following arguments, we might

be concerned about the case where p | m. We have actually already thrown

out these cases by discarding ramified primes. From Theorem 1.5.9 we know

that such primes are exactly those which divide the discriminant and, in this

case, the discriminant is divisible by m. Now we are ready to use Dirichlet’s

theorem on primes in arithmetic progressions to prove the following.

Proposition 2.6.3. For a quadratic extention Q(
√

m), Dirichlet’s theorem

implies Cheboterev’s theorem.

Proof. First, consider
(

p
q

)
where q is an odd prime. If q ≡ 1 mod 4,

(
p
q

)
=(

q
p

)
for all p. Since half the residues modulo any integer are squares, this

gives us our result in the case where q ≡ 1 mod 4, since exactly ϕ(q)/2

residues are squares modulo q and the density of the set of primes congruent

to each residue is 1/ϕ(q), so the density of primes which are squares modulo

q is
ϕ(q)

2

1

ϕ(q)
=

1

2
,

and the primes that are squares modulo q are exactly the primes for which
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q is a square.

The other case, q ≡ 3 mod 4, is more difficult. If p ≡ 1 mod 4,
(

p
q

)
=
(

q
p

)
,

but if p ≡ 3 mod 4,
(

q
p

)
= −

(
p
q

)
. To deal with this, consider Dirichlet’s

theorem applied to 4q. This tells us that the density of the primes in each

equivalence class of (Z/(4q)Z)∗ is 1/ϕ(4q). The Chinese remainder theorem

says that exactly half these equivalence classes contain the primes congruent

to 1 mod 4. Thus, if we consider only the set of primes congruent to 1 mod 4,

the primes in this set congruent to a given a ∈ (Z/qZ)∗ must have density

1/ϕ(q). For primes in this set,
(

q
p

)
=
(

p
q

)
, so the density of primes in

this set for which q is a square must be 1/2. Considering the set of primes

congruent to 3 mod 4, the fact that the density of primes in this set which

are not squares modulo q must be 1/2 gives us the same result. Thus the

density of all primes for which q is a square must be 1/2.

Now, if we let m = q1q2 · · · qn where all the qi are distinct, we can obtain the

same result if we consider that the primes congruent to 1 mod 4 are equally

distributed over Z/mZ and that for primes p in this set,(
q1q2 · · · qn−1

p

)
is completely determined by the residue of p mod (q1q2 · · · qn−1). Then if we

consider the subset A of these primes congruent to a given a mod (q1q2 · · · qn−1),

the subset of primes in A congruent to a given b mod (qn) must have density

ϕ(qn) in A. Then (
m

p

)
=

(
q1q2 · · · qn−1

p

)(
qn

p

)
.

For primes in A, the former factor is constant, and the set of primes for which

the latter factor is 1 has density 1/2. Thus m is a square modulo p for half

the primes in A. Since a was arbitrary, the density of primes congruent to

1 mod 4 for which m is a square must be 1/2. A similar argument applies

for the primes congruent to 3 mod 4, so we achieve our result in general: the

density of primes for which a given m is a square is 1/2.
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2.7 Hint of the Proof

In this section we give a proof of Chebotarëv’s theorem that follows his

original strategy, not including class field theory. We refer to [SL96] for more

details.

Let L/K be a finite Galois extension with G = Gal(L/K). For all primes

p not containing the discriminant ideal (∆(L/K)) there exists a Frobenius

element σp, which is an element of G well defined up to conjugacy.

Theorem 2.7.1 (Chebotarëv’s theorem). For any conjugacy class C of

G, the density d(L/K, C) of the set S = {p ∈K s.t. σp ∈ C} exists and equals

#C/#G.

Proof. The first step in our proof is the reduction to the abelian case. Let

σ ∈ C and E = {x ∈ L s.t. σx = x}. Then L is a Galois extension of E

with Gal(L/E) = 〈σ〉. Chapter 8 of [Lan94] shows that the conclusion of

the theorem holds for L, K, C if and only if it holds for L, E, {σ}. Note

that Gal(L/E) is abelian, since E = L〈σ〉. Next one considers the case that

L is cyclotomic over K and proves the theorem in this case, as explained

in [SL96].

With this tools we are able to approach a general proof. We assume L/K

to be an abelian extension of degree n, with G = Gal(L/K). Let mOK be

a prime not ramified, and ζ = ζm. Then H = Gal(K(ζ)/K) ' (Z/mZ)∗

and Gal(L(ζ)/K) ' G×H. If a prime p of K has Frobenius element (σ, τ)

in G × H, then it has Frobenius element σ in G. Hence δinf (L/K, {σ}) ≥∑
τ∈H δinf (L(ζ)/K, {(σ, τ)}). If we fix σ and τ , and suppose that n divides

ordH(τ), then 〈(σ, τ)〉 ∩ G × {1} is the trivial group, and therefore, M =

L〈(σ,τ)〉 satisfies M(ζ) = L(ζ). So L(ζ)/M is a cyclotomic extension. But

we have assumed that in this case the theorem holds, i.e. δ{L(ζ)/M, (σ, τ)}
exists and has the correct value; then the same holds for δ{L(ζ)/K, (σ, τ)},
which equals 1/(#G·#H). Let Hn = {τ ∈ H s.t. n|ordH(τ)}; then δinf (L/K), {σ} ≥∑

τ∈H 1/(#G · #H) = #Hn/(#G · #H). When m ranges over all primes

not ramified in L, the fraction #Hn/#H gets arbitrarily close to 1, so that
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δinf (L/K) ≥ 1/#G. Applying this to all other elements of the group one

finds that δsup(L/K, {σ}) ≤ 1/#G; hence δ(L/K, {σ}) = 1/#G.
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Chapter 3

Applications

3.1 Charming Consequences

First, we have an interesting result about primes p for which (f mod p)

has no zeros. For the following we refer to [Ser03].

Theorem 3.1.1. Let f(x) ∈ Z[x] be an irreducible polynomial of degree

n > 1. If p is prime, let Np(f) be the number of zeros of f in Fp = Z/pZ.

Then there are infinitely many p’s such that Np(f) = 0. Moreover the set

P0(f) of p’s with Np(f) = 0 has a density c0 = c0(f) ≥ 1/n.

To prove the statement above we will use the Burneside Lemma, for which

we refer to [Rot95].

Notation 3.1.2. If ϕ is a function on G, and S ⊂ G, we denote by
∫

S
ϕ the

number 1
|G|
∑

g∈S ϕ(g). When S = G, we write
∫

ϕ instead of
∫

G
ϕ.

Lemma 3.1.3 (Burniside’s Lemma). If X is a finite G–set and χ(g) is

the number of fixed points of g on X, then the number of G–orbits of X is

equal to
1

|G|
∑
g∈G

χ(g) =

∫
χ.

Proof. In
∑

g∈G χ(g), each x ∈ X is counted |StabG(x)| times. If x and y lie in

the same orbit, then |StabG(x)| = |StabG(y)| because they are conjugated in

48



G. So the (G : StabG(x)) elements constituing the orbit of x are collectively

counted (G : StabG(x))|StabG(x)| times. Each orbit thus contributes |G| to

the sum, and so we have 1
|G|
∑

g∈G χ(g) orbits.

Corollary 3.1.4. If X is a finite transitive G–set with |X| > 1, then there

exists g ∈ G having no fixed points.

Proof. Since the action of G on X is transitive, the number of G–orbits is 1,

and so Burnside’s Lemma gives

1 =
1

|G|
∑
g∈G

χ(g).

Now χ(1) = |X| > 1. If χ(g) ≥ 1 for every g ∈ G, then the right hand side

is too large.

We are ready to prove Theorem 3.1.1.

Proof. Let χ2(g) be the number of points of X ×X fixed by g ∈ G and
∫

χ2

be the number of orbits of G on X × X. Then is
∫

χ2 ≥ 2, as one sees by

decomposing X ×X into the diagonal and its complement. We will denote

with G0 the set of g ∈ G with χ(g) = 0. If g /∈ G0, we have 1 ≤ χ(g) ≤ n

and therefore

(χ(g)− 1)(χ(g)− n) ≤ 0.

Hence ∫
G−G0

(χ(g)− 1)(χ(g)− n) ≤ 0,

that is ∫
G

(χ(g)− 1)(χ(g)− n) ≤
∫

G0

(χ(g)− 1)(χ(g)− n) ≤ n

∫
G0

1.

The left hand side is ∫
G

(χ2 − (n + 1)χ + n),

while the right hand side is

n

∫
G0

1 = n
1

|G|
∑
g∈G0

1 = n
|G0|
|G|

= nc0.
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Finally,
∫

χ = 1, since the action is transitive. From Lemma 3.1.3 we have∫
G

(χ2 − (n + 1)χ + n) ≥ 2− (n + 1) + n = 1,

hence 1 ≤ nc0. To conclude our proof, we use Chebotarëv’s Density Theorem.

Let f(x) ∈ Z[x] be the polynomial in the statement and X = {α1, . . . , αn} be

the set of its distinct roots. We know that G = Gal(f) acts transitively on X.

Now, we denote with G0 the set σ ∈ G with no fixed points; from the above

result, |G0|/|G| ≥ 1/n. The key–observation is that Np(f) = 0 ⇔ σp ∈ G0,

since the decomposition type of (f mod p) equals the cycle pattern of the

Frobenius element σ = σp ∈ G, and so every fixed point of σp corresponds

to a linear factor, i.e. to a root, of (f mod p). Moreover, G0 is stable under

conjugation so that, from Theorem 2.5.1, the set {p s.t. σp ∈ G0} has density

c0 = |G0|/|G| ≥ 1
n
. Thus there are infinitely many p’s such that Np(f) =

0

Note also that Burnside’s Lemma, combined with Chebotarëv’s Density

Theorem, gives the following result, due to Kronecker.

Theorem 3.1.5. Let f be as in Theorem 3.1.1. Then the mean value of

Np(f) for p →∞ is equal to 1.

In fact, if G acts transitively on X, then from Lemma 3.1.3 we have

1 =
1

|G|
∑
g∈G

χ(g),

so that the mean value of χ(g) is 1, for each g ∈ G. But each g ∈ G can

be seen as the Frobenius element σp, for some p, whose cycle pattern equals

the decomposition type of (f mod p). Therefore the mean value of zeros of

(f mod p) is 1.

In other words, ∑
p≤x

Np(f) ≈ π(x) when x →∞.

It’s very easy to test this formula for any irreducible polynomial f if we know

the cycle type distribution of it’s Galois group.
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Example 3.1.6. Let f(x) = x3 − 2 so that Gal(f) ' S3. Knowledge of

cycle pattern in Gal(f) allows us to figure out the number of roots modulo

each prime number: they corresponds to the number of fixed point of each

permutation, as explained in Table 3.1.

According to the above result, the mean value of Np(f) is 1. We can prove

this computing ∑
(Fixed points) · (Distribution),

where the sum is extended to all cycle type in S3. Hence∑
p Np(f)∑

p 1
= 3 · 1/6 + 1 · 1/2 = 1

as the theoretical result predicts.

Cycle type (−) (−−) (−−−)

Distribution 1
6

1
2

1
3

Fixed points 3 1 0

Table 3.1: Distribution and fixed points of cycle type in S3.

In Section 2.3 we said that it’s always possible to construct an irreducible

polynomial of non–prime degree which is reducible modulo all primes. What

we can state about polynomial that have a root, that is, a linear factor,

modulo all primes? With a little group theory, we can get our answer to

this question. This result can be found in the article [LS91] by Lenstra and

Stevenhagen.

Theorem 3.1.7. Let f(x) ∈ Z[x] be an irreducible polynomial that has a

zero modulo almost all primes p. Then f(x) is linear.

Proof. Assume that ∂f > 1, and let G be the Galois group of the splitting

field of f . Then G acts transitively on the set Ω of roots of f , and the

assumption that f has a root modulo p for almost all p implies that almost

all Frobenius elements in G fix a root of f . If H ⊂ G is the stabilizer
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of some ω ∈ Ω, the subset of G consisting of those elements that fix at

least one element of Ω equals
⋃

g∈G gHg−1, because we have a transitive

action and StabG(gω) = gStabG(ω)g−1. From Corollary 3.1.4, G contains

at least an element that fix no root of f , and which therefore occurs as

the Frobenius of only finitely many primes in the splitting field of f . This

obviously contradicts the Chebotarëv density theorem.

3.2 Primes and Quadratic Forms

For the theory developed in this section we refer to [Cox89]. We will

prove the classical theorem that a primitive positive definite quadratic form

ax2 + bxy + cy2 represents infinitely many prime numbers. We will just

consider particular cases, since a general proof should involve Class Field

Theory.

A first definition is the following.

Definition 3.2.1. A form f(x, y) = ax2 + bxy + cy2 is primitive if a, b, c

are relatively prime.

We will deal exclusively with primitive forms. An integer m is represented

by a form f(x, y) if the equation m = f(x, y) has integer solution in x and

y; if gcd(x, y) = 1, then we say that m is properly represented by f(x, y).

Next, we say that f(x, y) and g(x, y) are equivalent if there are integers

p, q, r, s such that

f(x, y) = g(px + qy, rx + sy) and ps− qr = ±1.

An important observation is that equivalent forms properly represent the

same numbers. Then we say that an equivalence is a proper equivalence if

ps− qr = 1, and it is an improper equivalence if ps− qr = −1.

There is a very nice relation between proper representation and proper equiv-

alence.

Lemma 3.2.2. A form f(x, y) properly represents an integer m if and only

if f(x, y) is properly equivalent to the form mx2+bxy+cy2, for some b, c ∈ Z.

52



Proof. (⇒) suppose that m = f(p, q), with gcd(p, q) = 1. We can find r and

s so that ps− qr = 1, and then

f(px + ry, qx + sy) = f(p, q)x2 + (2apr + bps + brq + 2cqs)xy + f(r, s)y2

= mx2 + bxy + cy2.

(⇐) Note that mx2 + bxy + cy2 represents properly m taking (x, y) = (1, 0).

We define the discriminant of ax2+bxy+cy2 to be D = b2−4ac; equivalent

forms have the same dicriminant. We will consider only positive definite

forms, that is, forms such that a > 0 and D < 0.

We have the following necessary and sufficient condition for a number m to

be represented by a form of discriminant D.

Lemma 3.2.3. Let D ≡ 0, 1 mod 4 be an integer and m be an odd prime

with gcd(D, m) = 1. Then m is properly represented by a primitive form of

discriminant D if and only if
(

D
m

)
= 1.

Proof. (⇒) From lemma 3.2.2 we may assume f(x, y) = mx2 + bxy + cy2,

since f(x, y) properly represents m. Thus D = b2 − 4mc ≡ b2 mod m.

(⇐) Suppose that D ≡ b2 mod m. Since m is odd, we may assume that

D and b have the same parity, replacing b by b + m if necessary. Then

D ≡ 0, 1 mod 4 implies D ≡ b2 mod 4m. This means that D = b2 − 4mc for

some c. Then mx2+bxy+cy2 represents m properly and has discriminant D,

and the coefficients are relatively prime since m is relatively prime to D.

Corollary 3.2.4. Let n be an integer and let p be an odd prime not dividing

n. Then
(
−n
p

)
= 1 if and only if p is represented by a primitive form of

discriminant −4n.

Proof. From Lemma 3.2.3, −4n is a quadratic residue modulo p if and only

if
(
−4n

p

)
=
(
−n
p

)
= 1.

A primitive positive definite form ax2 + bxy + cy2 is said to be reduced if

|b| ≤ a ≤ c, and b ≥ 0 if either |b| = a or a = c.
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The basic theorem is the following, which we give without proof.

Theorem 3.2.5. Every primitive positive definite form is properly equivalent

a unique reduced form. Moreover, the number h(D) of classes of primitive

positive definite forms of discriminant D is finite, and h(D) is equal to the

number of reduced forms of discriminant D.

D h(D) Reduced forms of discriminant D

−4 1 x2 + y2

−8 1 x2 + 2y2

−12 1 x2 + 3y2

−20 2 x2 + 5y2, 2x2 + 2xy + 3y2

−28 1 x2 + 7y2

Table 3.2: Computation of h(−4n) for n = 1, 2, 3, 5, 7.

The crucial observation is that there exist a natural isomorphism between

the ideal class group Cl(OK) and the class group of primitive positive definite

forms of discriminant D. For example, in the case of quadratic fields, the

isomorphism is given by the map

ax2 + bxy + cy2 7→ [a, (−b +
√

∆(OK/Z))/2].

In the following we show how to use these notions to get information on

primes represented by a quadratic form.

Example 3.2.6. Case D = −4. We put f(x) = x2 + 1, so that D(f) = −4

and its splitting field is K = Q(i). Obviously K = Q(ζ4) and the ring of

integers OK equals Z(ζ4), which is the ordinary ring of Gauss integer Z(i).

By Lemma 3.2.3 we have that an odd prime p is representable by x2 + y2

if and only if
(

D
p

)
= 1, that is, when p ≡ 1 mod 4. So we get the famous

result by Fermat: the equation p = x2 + y2 admits integer solutions in (x, y)

if and only if p ≡ 1 mod 4. Furthermore, from Chebotarëv’s theorem, the
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density of primes such that
(

D
p

)
= 1 equals 1/2 and therefore we have the

supplementary information

δ(p ≥ 3 s.t. p = x2 + y2) =
1

2
.

By means of analogous investigations in the case D = −8, −12, −28 we get

δ(p s.t.
(
−8
p

)
= 1) = δ(p ≥ 3 s.t. p = x2 + 2y2) = 1

2

δ(p s.t.
(
−12

p

)
= 1) = δ(p ≥ 5 s.t. p = x2 + 3y2) = 1

2

δ(p s.t.
(
−28

p

)
= 1) = δ(p ≥ 11 s.t. p = x2 + 7y2) = 1

2
.

The case D = −20 is significantly different and more complicated since

h(−20) > 1 and this fact implies the notion of ring class field. A complete

explaination of this theory leads us to the following general result.

Theorem 3.2.7. Let ax2+bxy+cy2 be a primitive positive definite quadratic

form of discriminant D < 0, and let S be the set of primes represented by

ax2 + bxy + cy2. Then the Dirichlet density δ(S) exists and is given by the

formula

δ(S) =

{
1

2h(D)
if ax2 + bxy + cy2 is properly equivalent to its opposite,

1
h(D)

otherwise.

In particular, ax2 + bxy + cy2 represents infinitely many prime numbers.

Therefore, the case D = −20 gives the following result:

δ(p = x2 + 5y2) = δ(p = 2x2 + 2xy + 3y2) =
1

2h(D)
=

1

4
.

3.3 A Probabilistic Approach

The Chebotarëv density theorem allows a probabilistic approach to find-

ing G by factoring f modulo different non–ramified primes and cheking for

which transitive subgroups of Sn this approximates the shape distribution

best. Effective bounds on estimates of these distributions have been cal-

culated by Lagarios and Odlyzko in [LO77] using assumptions based on the
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Generalized Riemann Hypothesis, enabling Gal(f) to be determined uniquely

in many cases.

In the study of Galois groups of polynomial f(x), we restrict ourselves to

monic polynomials with integer coefficients, since any polynomial can easily

be transformed into a monic polynomial with integer coefficients equivalent

with respect to its Galois group, as explained in the following.

Proposition 3.3.1. Let f(x) be a polynomial in Q[x]. Then there exists a

monic polynomial h(x) ∈ Z[x] such that Gal(f) = Gal(h).

Proof. Let f(x) ∈ Q[x]; then f(x) = 1
D

g(x), with g(x) ∈ Z[x] and D equal to

a common denominator for the coefficients of f . Let g(x) =
∑n

i=0 bix
i, bi ∈

Z. Then

g(x) =
1

bn−1
n

(
(bnx)n + bn−1(bnx)n−1 + · · ·+ b1b

n−2
n (bnx) + b0b

n−1
n

)
=

1

bn−1
n

h(bn(x)),

where h(x) ∈ Z[x] is monic. Hence

h(x) = xn + bn−1x
n−1 + · · ·+ b1b

n−2
n x + b0b

n−1
n = Dbn−1

n f

(
x

bn

)
.

It’s easy to verify that Gal(f) = Gal(h), since Qf = Qh. In fact, if α1, . . . , αn

are n distinct roots of f , i.e. Qf = Q(α1, . . . , αn), then α1bn, . . . , αnbn are n

distinct roots of h, i.e. Qh = Q(α1bn, . . . , αnbn). But bn ∈ Z, so that

Qf = Q(α1, . . . , αn) = Q(α1bn, . . . , αnbn) = Qh.

Thus we need consider only polynomials of the form

f(x) = xn + a1x
n−1 + · · ·+ an, ai ∈ Z.
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Moreover we want f(x) to be irreducible; this restiction is not essential, but

it greatly simplifies the work of implementing the algorithm for polynomials

of a given degree. By the way, let f(x) ∈ Z[x] be a monic polynomial and

f(x) = g(x) · h(x) be its decomposition into irreducible factors, Qg and Qh

being the respective splitting fields. If Qg ∩ Qh = Q, then the Galois group

of f(x) is the direct product Gal(g)×Gal(h). Otherwise, if Qg ∩Qh is larger

than Q, then Gal(f) is not easily determined from those of g(x) and h(x),

without explicit knowledge of the relations between the roots of g and h. In

fact, generally we have

Gal(g · h) = {(σi, σj) ∈ Gal(g)×Gal(h) s.t. σi|Qg∩Qh
= σj|Qg∩Qh

}.

With this assumptions, the strategy for determining the Galois group of

a polynomial f ∈ Z[x] is:

1. test whether f is irreducible over Z;

2. compute the discriminant ∆(f);

3. factor f modulo primes not dividing the discriminant until you seem

to be getting no new decomposition type;

4. compute the orbit lengths on the r–sets of roots;

5. use tables of transitive groups of degree ∂f .

The second point is very useful. In fact, knowledge of ∆(f) allows us to

establish if Gal(f) ⊆ An.

Proposition 3.3.2. Let An be the alternating group on n letters. Then

Gal(f) ⊂ An if and only if ∆(f) is a square.

Proof. Let αi be the roots of f . We know that D(f) = ∆(f)2, where ∆(f) =∏
1≤i<j≤n(αi−αj). Clearly ∆(f) is an algebraic integer, since it’s a symmetric

polynomial on α1, . . . , αn. We have σ(∆(f)) = ε(σ)∆(f) ∀σ ∈ Gal(f), where

ε(σ) is the signature of σ. Hence, if Gal(f) ⊂ An, then ∆(f) is invariant
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under Gal(f), and so ∆(f) ∈ Z. On the other hand, if ∆(f) ∈ Z, we have

∆(f) 6= 0 since the root of an irreducible polynomial in Z[x] are distinct.

Therefore σ(∆(f)) = ∆(f), that is ε(σ) = 1, ∀σ ∈ G, and Gal(f) ⊂ An.

Remark 3.3.3. Consider a permutation σ ∈ Sn,

σ =

(
1 2 3 · · · n

σ(1) σ(2) σ(3) · · · σ(n)

)
and define η(σ) = {(i, j) with i < j and σ(i) > σ(j)}. Then σ is said to

be even or odd according as the number η(σ) is even or odd. The signature,

ε(σ), of σ is +1 or −1 according as σ is even or odd, i.e., ε(σ) = (−1)η(σ).

With this definition of signature, it’s easily seen that σ(∆(f)) = ε(σ)∆(f),

as we stated above.

The third point is difficult to execute from a computational point of

view: this is a rather expensive technique since algorithms of factorizing

polynomials are not very efficient. Furthermore, many primes p might be

needed in the process. For more detail on the problem, see [LO77].

The fourth point gives an upper bounds for Gal(f) using a method based

on the following lemma. We refer to [EFM79] and [McK79].

Lemma 3.3.4. Let Kα = Q(α1, . . . , αn) and Kβ = Q(β1, . . . , βm), where

{βk} is the set of the partial sums r at a time, with 0 < r < n, of the {αi}
and m = #{βk} =

(
n
r

)
. Then Kα = Kβ.

Proof. Let r > 1. For every i, j we have αi − αj ∈ Kβ, since αi − αj is the

difference of two of the b’s differing in one place. Suppose that βk =
∑

j∈I αj,

where #I = r; then

βk +
∑
j∈I

(αi − αj) = rαi ∈ Kβ.

If we denote with Pα =
∏

(x−αi) and with Pβ =
∏

(x−βk), Lemma 3.3.4

yields Gal(Pα) = Gal(Pβ). It’s fundamental to notice that the degrees of the

58



irreducible factors in Q[x] of the polynomial Pβ, whose roots are the sums

of r roots of Pα, equal the orbit lengths on the r–sets of roots. In particular

the following holds.

Proposition 3.3.5. Let Pβ be the above polynomial and assume that it has

only distinct zeros. Then Pβ is reducible if and only if Gal(Pα) is not r–

transitive on {αi}.

If we can prove by the Chebotarëv density theorem that

G ⊆ Gal(f) ⊆ An,

where G is maximal in An, then Proposition 3.3.5 will usually determine

Gal(f). In [McK79], the author describes and uses this method to find poly-

nomials with Galois group PSL3(F2) and M11: the first one is a maximal

subgroup of the alternating group A7, while the second one is the Mathieu

group of degree 11, which is a maximal subgroup of A11. Here below, we

illustrate how this test works.

Example 3.3.6. Let Pα(x) = x5−5x+12 and A be the set of its roots, which

we denote with {α1, . . . , α5}. If r = 2, then B = {α1 + α2, α1 + α3, α1 +

α4, α1+α5, α2+α3, α2+α4, α2+α5, α3+α4, α3+α5, α4+α5}. Suppose, after

several mod p reductions, that we have two possibilities for G = Gal(Pα), i.e.

D5 ⊆ G ⊆ A5. Computing Pβ(x) =
∏

βi∈B(x− βi), we get

Pβ(x) = (x5 − 5x3 − 10x2 − 30x− 36)(x5 + 5x3 + 10x2 + 10x + 4).

Therefore Gal(Pα) is not 2–transitive. This information gives us the desired

upper bound: in fact, since An is (n − 2)–transitive, the only possibility is

Gal(Pα) = D5.

Remark 3.3.7. Proposition 3.3.5 gives information on r–fold transitivity,

i.e. transitivity on r–sets, rather than on r–transitivity. However these two

concepts are the same in many cases. In particular, for r = 2 we have that

a group G is 2–transitive if and only if G is 2–fold transitive, and therefore

the result in Example 3.3.6 is correct.
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Instead of making considerations on the r–fold transitivity, Soicher and

McKay in [SM85] suggest to use the decomposition type of Pβ in order to

identify Gal(Pα), tabulating for each transitive group of degree up to 7 its

specific decomposition on Q of Pβ, that is the orbit length partition on r–sets

under tha action of Gal(Pα). In Example 3.3.6, the decomposition type of

Pβ associated to D5 is 52, while that one associated to A5 is 10.

Although this strategy does not determine Gal(Pα) univocally, the informa-

tion we can get in this way plays a fundamental role in distinguishing between

group which appear very similar. In fact, the Chebotarëv test suggested at

point 3 is not always effective: it gets into problems since it is possible to

construct two non–isomorphic groups which have transitive permutation rep-

resentations in which the number of elements with a given cycle structure is

the same for both groups. This problem arises in degree 8 with polynomials

f(x) = x8 − 3x6 + 9x4 − 12x2 + 16 and g(x) = x8 − 18x4 + 9.

According to Maple9, Gal(f) = 8T10 and Gal(g) = 8T11, but we can’t get

this result just by means of modp reduction. In fact 8T10 and 8T11 are not

distinguishable if we just consider their cycle type distribution, as Table 3.3

shows. They are both groups of order 16 with generators

8T10 = 〈(1238)(4567), (15)(37)〉,

and

8T11 = 〈(15)(37), (2468)(1357), (1458)(2367)〉.

22

18 14 24 42

8T10+ 1 2 5 8

8T11+ 1 2 5 8

Table 3.3: Cycle type distribution for 8T10 and 8T11.
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In this situation, considerations on the orbit–length partition of r–sets are

very useful. For example, if r = 2, the decomposition type of Pβ relative to

8T10 is (43, 16), while the one relative to 8T11 is (83, 4). However, if r = 2, then

Pβ in Example 3.3.6 has multiple roots, and therefore we need a preliminar

Tschirnhausen transformation, as explained in [SM85].

The informations, that we used, on the orbit–length partition of r–sets

under the action of G = Gal(f) can be found in [SM85] for transitive groups

of degree up to 7 and in [MM97] for each transitive group of degree 8.

3.4 Transitive Groups

In this section we illustrate the tables for all transitive permutation groups

of degrees 3 to 7 and 11, and include the distribution of cycle patterns and

permutation generators. We will not analyze degree 8, 9, 10, 12, 13, 14, 15,

etc. Below we tabulate the number of transitive subgroups of Sn, for n from

3 to 30, in order to give an idea of the complexity of some degrees; these

informations are from [CHM98]. It’s interesting to notice that when n is

prime, the number of transitive groups is relatively low, but when it’s not the

case, the scenary is completely different. Numbers in italics are preliminary,

and not yet confirmed.
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Deg. Transitive Primitive Deg. Transitive Primitive

groups groups groups groups

2 1 1 17 10 10

3 2 2 18 983 4

4 5 2 19 8 8

5 5 5 20 1117 4

6 16 4 21 164 9

7 7 7 22 59 4

8 50 7 23 7 7

9 34 11 24 26813 5

10 45 9 25 211 28

11 8 8 26 96 7

12 301 6 27 2382 15

13 9 9 28 1852 14

14 63 4 29 8 8

15 104 6 30 5712 4

16 1954 22 31 12 12

Table 3.4: Number of transitive and primitivee groups of degree up to 31.
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The following tables can be found in [BM83] for degree up to 11. The

notation for the group names is similar to that one in [McK79]. For each

degree we give a brief description of inclusions and geometric representation

of groups. Groups marked ′+′ are groups of even permutations.

Degree 3

The transitive subgroups of S3 are A3 ' C3 ' D3 and S3.

Deg 3 2

13 1 3 #G

A3+ 1 . 2 3

S3 1 3 2 6

Table 3.5: Transitive groups of degree 3.

Degree 4

The transitive subgroups of S4 are V4 (the Klein Vierergruppe), C4, D4 (the

dihedral group of degree 4, i.e., the symmetry group of a square), A4 and S4.

Some inclusions are

A4 ⊃ V4 and D4 ⊃ C4.

Deg 4 2 3

14 12 22 1 4 #G

C4 1 . 1 . 2 4

V4+ 1 . 3 . . 4

D4 1 2 3 . 2 8

A4+ 1 . 3 8 . 12

S4 1 6 3 8 6 24

Table 3.6: Transitive groups of degree 4.
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Degree 5

The transitive subgroups of S5 are C5, D5 (the dihedral group of degree 5,

i.e., the symmetries of a regular pentagon), F20 (the Frobenius group of order

20, i.e., the affine maps on F5), A5 and S5. The inclusions are

A5 ⊃ D5 ⊃ C5 and F20 ⊃ D5,

meaning that C5, D5 and A5 correspond to square discriminant, and F20

and S5 to non–square discriminant. The groups C5, D5 and F20 are solvable

groups, while A5 is simple.

Deg 5 2 22 3 3 4

15 13 1 2 12 1 5 #G

C5+ 1 . . . . . 4 5

D5+ 1 . 5 . . . 4 10

F20 1 . 5 . . 10 4 20

A5+ 1 . 15 . 20 . 24 60

S5 1 10 15 20 20 30 24 120

Table 3.7: Transitive groups of degree 5.
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Degree 6

We will not go into details about groups of degree 6, for the simple reason that

there are quite a lot of them. For instance, S3, S4 and S5 can all be considered

as transitive subgroups of S6. In fact, S4 can be embedded transitively into

S6 in two fundamentally different ways, by (123) 7→ (123)(456), (34) 7→
(15)(36), and by (123) 7→ (123)(456), (34) 7→ (13)(24)(56). The second of

these embeddings corresponds to S4 as the rotation group of a cube, while

the first is obtained by identifying S4 with the full symmetry group of a

tetrahedron and maps into A6. The image of A4 is the same under both

maps, and is transitive in S6 as well. The embedding of S5 into S6 can also

be described geometrically, by considering S5 as the full symmetry group of

a dodecahedron, meaning that A5 (the rotation group) is also transitive in

S6.
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Deg 6 3

2 22 3 2 4 4 5

16 14 12 23 13 1 32 12 2 1 6 #G

C6 1 . . 1 . . 2 . . . 2 6

S3 1 . . 3 . . 2 . . . . 6

D6 1 . 3 4 . . 2 . . . 2 12

A4+ 1 . 3 . . . 8 . . . . 12

G18 1 . . 3 4 . 4 . . . 6 18

G24 1 3 3 1 . . 8 . . . 8 24

S4+ 1 . 9 . . . 8 . 6 . . 24

S4− 1 . 3 6 . . 8 6 . . . 24

G1
36 1 . 9 6 4 . 4 . . . 12 36

G2
36+ 1 . 9 . 4 . 4 . 18 . . 36

G48 1 3 9 7 . . 8 6 6 . 8 48

PSL2(F5)+ 1 . 15 . . . 20 . . 24 . 60

G72 1 6 9 6 4 12 4 . 18 . 12 72

PGL2(F5) 1 . 15 10 . . 20 30 . 24 20 120

A6+ 1 . 45 . 40 . 40 . 90 144 . 360

S6 1 15 45 15 40 120 40 90 90 144 120 720

Table 3.8: Transitive groups of degree 6.
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Degree 7

The transitive subgroups of S7 are C7, D7 (the dihedral group of degree 7,

consisting of the symmetries of a regular heptagon), F21, F42 (both Frobenius

groups, consisting of affine transformations on F7), PSL2(F7) (the projective

special linear group of 2 × 2 matrices over F7), A7 and S7. The groups C7,

D7, F21 and F42 are solvable, while PSL2(F7) and A7 are simple groups. The

inclusions are

A7 ⊃ PSL2(F7) ⊃ F21 ⊃ C7.

Moreover

F42 ⊃ F21 and F42 ⊃ D7 ⊃ C7.
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Deg 7 3

2 22 23 3 2 3 32

17 15 13 1 14 12 22 1

C7+ 1 . . . . . . .

D7 1 . . 7 . . . .

F21+ 1 . . . . . . 14

F42 1 . . 7 . . . 14

PSL2(F7)+ 1 . 21 . . . . 56

A7+ 1 . 105 . 70 . 210 280

S7 1 21 105 105 70 420 210 280

Deg 7 4

4 2 4 5 5 6

13 1 3 12 2 1 7 #G

C7+ . . . . . . 6 7

D7 . . . . . . 6 14

F21+ . . . . . . 6 21

F42 . . . . . 14 6 42

PSL2(F7)+ . 42 . . . . 48 168

A7+ . 630 . 504 . . 720 2520

S7 210 630 420 504 504 840 720 5040

Table 3.9: Transitive groups of degree 7.
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Degree 11

The transitive subgroups of S11 are C11, D11 (the dihedral group), F55, F110

(both Frobenius groups), PSL2(F11) (the projective special linear group),

M11 (the Mathieu group), A11 and S11. The inclusions are

A11 ⊃ M11 ⊃ PSL2(F11) ⊃ F55 ⊃ C11.

Then

F110 ⊃ F55 and F110 ⊃ D11 ⊃ C11.

Since there are 56 different partitions of 11, we don’t give the cycle type of

elements that belongs to An and Sn. However we remember that an element

of cycle type 1a1 , 2a2 , . . . , kak occurs n!/
∏k

i=1 iai(ai!) in Sn.
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Deg 11

24 25 33 42

111 13 1 12 13 #G

C11+ 1 . . . . 11

D11 1 . 11 . . 22

F55+ 1 . . . . 55

F110 1 . 11 . . 110

PSL2(F11)+ 1 55 . 110 . 660

M11+ 1 165 . 440 990 7920

Deg 11 6 8

52 3 2 10

1 2 1 1 11 #G

C11+ . . . . 10 11

D11 . . . . 10 22

F55+ 44 . . . 10 55

F110 44 . . 44 10 110

PSL2(F11)+ 264 110 . . 120 660

M11+ 1584 1320 1980 . 1440 7920

Table 3.10: Transitive groups of degree 11.
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Chapter 4

Inverse Galois Problem

4.1 Computing Galois Groups

Can any permutation group appear as the Galois group of a polynomial

over the rationals? The answer is positive just for solvable groups and is due

to Shafarevich, as explained in [Šaf54]. Shafarevich’s argument, however, is

not constructive and so does not produce a polynomial having a prescribed

finite solvable group as a Galois group. For unsolvable groups, the question

is an open problem. For example, let us consider the the Mathieu group M23.

It is a finite simlpe group of order 27 · 32 · 5 · 7 · 11 · 23 and can be regarded

as a transitive subgroup of S23. However, it’s not known if there exists a

polynomial f(x) ∈ Q[x] such that Gal(f) is the M23, as explained in [Völ96].

In the following tables, partially taken from [SM85], each transitive per-

mutation group of degree from 3 to 7 and 11 is realised as a Galois group

over the rationals. The proof of exactness of these results is verified by the

galois( ) routine implemented in Maple9, which computes the exact Galois

group of polynomials of degree up to 9. For polynomials of degree 11, we use

the polgalois( ) routine implemented in GP/Pari, version 2.3.2, which can

handle polynomial of degree up to 11.
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G f(x) Remarks

A3 x3 + x2 − 2x− 1 Qf = Q(ζ7 + ζ−1
7 )

S3 x3 + 2

C4 x4 + x3 + x2 + x + 1 Qf = Q(ζ5)

V4 x4 + 1 Qf = Q(ζ8)

D4 x4 + 2

A4 x4 + 8x + 12

S4 x4 + x + 1

C5 x5 + x4 − 4x3 − 3x2 + 3x + 1 Qf = Q(ζ11 + ζ−1
11 )

D5 x5 − 5x + 12

F20 x5 + 2

A5 x5 + 20x + 16

S5 x5 + x + 3

C6 x6 + x5 + x4 + x3 + x2 + x + 1 Qf = Q(ζ7)

S3 x6 + 108 Qf = Qx3+2

D6 x6 + 2

A4 x6 − 3x2 − 1 Qf = Qx4+8x+12

G18 x6 + 3x3 + 3

G24 x6 − 3x2 + 1

S4+ x6 − 4x2 − 1 Qf = Qx4+x+1

S4− x6 − 3x5 + 6x4 − 7x3 + 2x2 + x− 4 Qf = Qx4+x+1

G1
36 x6 + 2x3 − 2

G2
36 x6 + 6x4 + 2x3 + 9x2 + 6x− 4

G48 x6 + 2x2 + 2

PSL2(F5) x6 + 6x5 − 124

G72 x6 + 2x4 + 2x3 + x2 + 2x + 2

PGL2(F5) x6 + 2x5 + 3x4 + 4x3 + 5x2 + 6x + 7

A6 x6 + 6x5 + 100

S6 x6 + x + 1

Table 4.1: (A) Polynomials f(x) such that Gal(f) = G.
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G f(x) Remarks

C7 x7 + x6 − 12x5 − 7x4 + 28x3+ Qf = Q(
∑4

j=1 ζ12j
29 )

+14x2 − 9x + 1

D7 x7 + 7x3 + 7x2 + 7x− 1

F21 x7 − 14x5 + 56x3 − 56x + 22

F42 x7 + 2

PSL2(F7) x7 − 7x + 3 Trinks’polynomial

A7 x7 − 56x− 48

S7 x7 + x + 1

C11 x11 + x10 − 10x9 − 9x8 + 36x7 + +28x6+ Qf = Q(ζ23 + ζ−1
23 )

−56x5 − 35x4 + 35x3 + 15x2 − 6x− 1

D11 x11 − x10 + 5x8 + 8x5 + 6x4 − x3 + x2+

+3x + 1

F55 x11 − 33x9 + 396x7 − 2079x5+

+4455x3 − 2673x− 243

F110 x11 + 2

PSL2(F11) x11 − 4x10 − 25x9 + 81x8 + 237x7+

−562x6 − 1010x5 + 1574x4 + 1805x3+

−1586x2 − 847x + 579

M11 x11 + 2x10 − 5x9 + 50x8 + 70x7 − 232x6+

+796x5 + 1400x4 − 5075x3 + 10950x2+

+2805x− 90

A11 x11 − x9 + x7 − x6 + 2x5+

+x4 − 2x3 − x− 1

S11 x11 − x + 2

Table 4.2: (B) Polynomials f(x) such that Gal(f) = G.
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In Appendix C we write down a Maple code which computes Galois groups

of polynomials using the strategy suggested by the Chebotarëv theorem. We

introduce the following definitions in order to describe the code step by step.

Definition 4.1.1. Let n be a positive integer. We define S(n) to be the

ordered set of all the cycle type in the symmetric group Sn, where the order

is the lexicographic one. The cardinality of this set equals the number of

different partitions of n, which we will denote with π(n).

Example 4.1.2. There are 5 different partitions of n = 4. Therefore the

ordered set S(4) equals

{(14); (12, 2); (22); (12, 3); (4)}.

Definition 4.1.3. Let G be a transitive group of degree n. We define the

distribution–vector S(G) to be the vector, with π(n) components, whose j–

th component represents the distribution, in G, of the j–cycle type of S(n).

Namely

S(G)[i] :=
|{σ ∈ G s.t. σ has cycle type S(n)[i]}|

|G|
.

Given an irreducible polynomial f(x) ∈ Z[x] of degree n, we can con-

struct a similar distribution–vector S(f) in the following way. Fix a bound

k and consider the primes p ≤ k. For each prime not dividing ∆(f), store

the decomposition type of (f mod p). When each prime in the bound has

been parsed, compute the frequency of each decomposition type. Now, each

decomposition type can be regarded as a partition of n in which the num-

bers that make up the partition are the degrees of the irreducible factors of

(f mod p). Finally complete the empirical distribution–vector S(f) with the

frequency found in this way keeping the lexicographic order, so that

S(f)[i] :=
|{p ≤ k s.t. p - ∆(f) and (f mod p) has a cycle decomposition of the type S(n)[i]}|

|{p ≤ k s.t. p - ∆(f)}|
.

Definition 4.1.4. Let G be a transitive group of degree n and f(x) ∈ Z[x]

be an irreducible polynomial of degree n. We define the error–vector E(G) to
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be the vector obtained as the difference S(f) − S(G). Moreover, we denote

with ε(G) the euclidean norm of E(G).

Now we are ready for describing our code.

Step 1. Input: an irreducible monic polynomial f(x) and a bound k for the

size of prime numbers considered.

Step 2. Select all primes p ≤ k such that p - ∆(f) and, for each of these

primes, compute the decomposition type of (f mod p). In this way we

will obtain an array of decompositions type.

Step 3. Looking at the precedent array, compute the frequency of each de-

composition type in order to get the distribution–vector S(f).

Step 4. For each transitive group G of degree ∂f , compute the error–vector

E(G).

Step 5. Evaluate the euclidean norm ε(G).

Step 6. Choose the transitive group G which gives place to the minimal

value of ε(G).

Step 7. Output: the empirical distribution–vector relative to f , and the

group G described above, which equals Gal(f) in virtue of the Chebo-

tarëv theorem.

We implemented this method for polynomials of degree from 3 to 7, and

11. The following tables show the output produced by means of the Chebo-

tarëv test, applied with the bound p ≤ 1000, for degrees 3, 4, and 5.
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Deg 3 2

13 1 3

A3+ 0.3333 . 0.6667

x3 + x2 − 2x− 1 0.3293 . 0.6707

S3 0.1667 0.5 0.3333

x3 + 2 0.1446 0.5181 0.3373

Table 4.3: Empirical and theoretical results for polynomials of degree 3.

Deg 4 2 3

14 12 22 1 4

C4 0.25 . 0.25 . 0.5

x4 + x3 + x2 + x + 1 0.2395 . 0.2275 . 0.5329

V4+ 0.25 . 0.75 . .

x4 + 1 0.2216 . 0.7784 . .

D4 0.125 0.25 0.375 . 0.25

x4 + 2 0.0838 0.2635 0.3952 . 0.2575

A4+ 0.0833 . 0.25 0.6667 .

x4 + 8x + 12 0.0723 . 0.2651 0.6627 .

S4 0.0417 0.25 0.125 0.333 0.25

x4 + x + 1 0.0179 0.2575 0.1257 0.3593 0.2395

Table 4.4: Empirical and theoretical results for polynomials of degree 4.
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Deg 5 2 22 3 3 4

15 13 1 2 12 1 5

C5+ 0.2 . . . . . 0.8

x5 + x4 − 4x3+ 0.1976 . . . . . 0.8024

−3x2 + 3x + 1

D5+ 0.1 . 0.5 . . . 0.4

x5 − 5x + 12 0.0663 . 0.5120 . . . 0.4217

F20 0.05 . 0.25 . . 0.5 0.2

x5 + 2 0.0482 . 0.2289 . . 0.5301 0.1928

A5+ 0.0167 . 0.25 . 0.3333 . 0.4

x5 + 20x + 16 0.0060 . 0.2711 . 0.3133 . 0.4096

S5 0.0083 0.0833 0.125 0.1667 0.1667 0.25 0.2

x5 + x + 3 0 0.0952 0.1488 0.1786 0.1426 0.2262 0.2083

Table 4.5: Empirical and theoretical results for polynomials of degree 5.

In the following tables we compare, with respect to ε(G), the error–vectors

E(G) defined in 4.1.4, for polynomials of the type

f(x) = xn + 2,

where n ∈ {3, 4, 5, 6, 7, 11}. The minimal value of ε is always obtained for

the transitive group G of degree n and order |G| = n ·ϕ(n), as Galois theory

predicts. The bound considered is p ≤ 1000, which is always effective in

these examples.

ε(S3) ε(A3)

0.0288 0.6422

Table 4.6: Computation of ε(G) for x3 + 2.
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ε(S4) ε(A4) ε(C4) ε(D4) ε(V4)

0.4314 0.7754 0.4206 0.0484 0.5378

Table 4.7: Computation of ε(G) for x4 + 2.

ε(S5) ε(A5) ε(F20) ε(D5) ε(C5)

0.3917 0.6607 0.0375 0.6326 0.8516

Table 4.8: Computation of ε(G) for x5 + 2.

ε(S6) ε(A6) ε(PGL2(F5)) ε(G42)

0.5059 0.6367 0.4343 0.4427

ε(PSL2(F5)) ε(G48) ε(G2
36) ε(G1

36)

0.5833 0.2816 0.6422 0.2615

ε(S4−) ε(S4+) ε(G24) ε(G18)

0.3906 0.5042 0.4197 0.4163

ε(A4) ε(D6) ε(S3) ε(C6)

0.6379 0.0262 0.4093 0.4010

Table 4.9: Computation of ε(G) for x6 + 2.

ε(S7) ε(A7) ε(PSL2(F7)) ε(F42) ε(F21) ε(D7) ε(C7)

0.4197 0.5694 0.4997 0.03163 0.5448 0.6469 0.8750

Table 4.10: Computation of ε(G) for x7 + 2.

ε(S11) ε(A11) ε(M11) ε(PSL2(F11)) ε(F110) ε(F55) ε(D11) ε(C11)

0.5202 0.6028 0.5727 0.4919 0.0084 0.5844 0.7834 0.9989

Table 4.11: Computation of ε(G) for x11 + 2.
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Finally, in the tables below we give an idea of the accuracy of our results,

which depends on the choice of the upper bound k representing the size of

prime numbers that we want to consider. If we increase k, on the one hand

our result will be more precise, on the other hand Maple will need more time

to produce the output.

The polynomials considered are those in Table 4.1 and 4.2 with Galois group

An, as we can guess comparing the norm ε(An) with ε(G), for each other

transitive group G of degree n.

k Time ε(S3) ε(A3)

102 0.01s 0.6374 0.0589

103 0.3s 0.6247 0.0056

104 2.1s 0.6250 0.0073

105 22.4s 0.6238 0.0012

106 696.9s 0.6237 0.0002

Table 4.12: Comparing ε(G) with respect to k. Degree 3

k Time ε(S4) ε(A4) ε(C4) ε(D4) ε(V4)

102 0.01s 0.5242 0.0504 0.8813 0.7928 0.8751

103 0.3s 0.5039 0.0191 0.8491 0.7609 0.8402

104 2.3s 0.5056 0.0051 0.8536 0.7699 0.8544

105 25.1s 0.5039 0.0018 0.8506 0.7665 0.8501

106 765.1s 0.5035 0.0003 0.8499 0.7660 0.8497

Table 4.13: Comparing ε(G) with respect to k. Degree 4
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k Time ε(S5) ε(A5) ε(F20) ε(D5) ε(C5)

102 0.01s 0.4582 0.1114 0.6758 0.4934 0.5429

103 0.3s 0.4289 0.0325 0.6281 0.3993 0.6014

104 2.2s 0.4254 0.0321 0.6396 0.4413 0.6360

105 24.8s 0.4255 0.0023 0.6341 0.4239 0.6044

106 700.3s 0.4252 0.0008 0.6343 0.4248 0.6054

Table 4.14: Comparing ε(G) with respect to k. Degree 5

k Time ε(S6) ε(A6) ε(PGL2(F5)) ε(G72)

102 0.01s 0.4977 0.2516 0.6212 0.5791

103 0.3s 0.3906 0.0696 0.4796 0.5184

104 2.9s 0.3691 0.0189 0.4647 0.4787

105 30.8s 0.3725 0.0038 0.4654 0.4879

106 948.4s 0.3710 0.0016 0.4641 0.4848

k Time ε(PSL2(F5)) ε(G48) ε(G2
36) ε(G1

36)

102 0.01s 0.5699 0.6513 0.5304 0.7738

103 0.3s 0.3808 0.5449 0.5291 0.6519

104 2.9s 0.3807 0.5095 0.4785 0.6131

105 30.8s 0.3754 0.5164 0.4914 0.6171

106 948.4s 0.3750 0.5133 0.4874 0.6145

Table 4.15: (A) Comparing ε(G) with respect to k. Degree 6.
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k Time ε(S4−) ε(S4+) ε(G24) ε(G18)

102 0.01s 0.8057 0.6706 0.8079 0.8126

103 0.3s 0.6552 0.5719 0.6578 0.6501

104 2.9s 0.6364 0.5296 0.6391 0.6287

105 30.8s 0.6433 0.5379 0.6459 0.6382

106 948.4s 0.6407 0.5340 0.6434 0.6358

k Time ε(A4) ε(D6) ε(S3) ε(C6)

102 0.01s 0.9412 0.7797 0.8991 0.8350

103 0.3s 0.7602 0.6636 0.7635 0.6869

104 2.9s 0.7466 0.6309 0.7544 0.6768

105 30.8s 0.7548 0.6341 0.7613 0.6844

106 948.4s 0.7519 0.6316 0.7591 0.6821

Table 4.16: (B) Comparing ε(G) with respect to k. Degree 6

k Time ε(S7) ε(A7) ε(PSL2(F7))

102 0.01s 0.3459 0.1069 0.3172

103 0.3s 0.3280 0.0346 0.3475

104 3.4s 0.3267 0.0131 0.3200

105 33.5s 0.3269 0.0113 0.3234

106 950.2s 0.3248 0.0036 0.3255

Table 4.17: (A) Comparing ε(G) with respect to k. Degree 7.
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k Time ε(F42) ε(F21) ε(D7) ε(C7)

102 0.01s 0.5741 0.6499 0.5918 0.5957

103 0.3s 0.5776 0.6666 0.6436 0.7049

104 3.4s 0.5675 0.6496 0.6273 0.6753

105 33.5s 0.5672 0.6488 0.6288 0.6778

106 950.2s 0.5679 0.6519 0.6318 0.6853

Table 4.18: (B) Comparing ε(G) with respect to k. Degree 7.

k Time ε(S11) ε(A11) ε(M11) ε(PSL2(F11))

102 0.3s 0.3428 0.2399 0.4033 0.4465

103 1.3s 0.2309 0.0769 0.3269 0.4521

104 9.2s 0.2149 0.0278 0.3232 0.4767

105 94.1s 0.2133 0.0093 0.3257 0.4775

106 1878s 0.2128 0.0034 0.3268 0.4770

k Time ε(F110) ε(F55) ε(D11) ε(C11)

102 0.3s 0.6208 0.7680 0.5892 0.6587

103 1.3s 0.5959 0.7784 0.6183 0.7622

104 9.2s 0.6075 0.8018 0.6206 0.7718

105 94.1s 0.6037 0.7965 0.6190 0.7698

106 1878s 0.6036 0.7966 0.6204 0.7722

Table 4.19: Comparing ε(G) with respect to k.
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The norm ε(G) can be regarded as a measure of the distance between the

theoretical and the empirical result.

Definition 4.1.5. We call ε(G) the relative error of G.

It’s clear that ε(G) = ε(G, k). From the analysis of the relative errors we

notice that

ε(An, 106) < 10−2 and ε(An, 103) < 10−1,

and, by induction, one may naively guess ε(G, 103t) < 10−t, t ≥ 1, where G

equals Gal(f). This observation shows that k ≥ 103 usually is a good bound

for the Chebotarëv test.

4.2 Groups of Prime Degree Polynomials

Computing Galois groups is still a difficult task. Even with the devel-

opment of new computer algebra systems this remains a challenge and can

be accomplished only for small degree polynomials. For example, Maple9

can only handle polynomials of degree ≤ 9 and GP/Pari up to degree 11.

Other computer algebra packages can handle polynomials whose degree is in

the same range. The existence of non–real roots of a polynomial makes the

computation of its Galois group much easier. Computing the Galois group

in this case, for polynomials of prime degree p, will be the focus of this

section. Checking whether a polynomial has non–real roots is very efficient

since numerical methods can be used. Once the existence of non–real roots

is established then from a theorem of Jordan (1871) it follows that if their

number is small enough with respect to the degree p of the polynomial, then

the Galois group is Ap or Sp. Furthermore, knowledge of the complete classi-

fication of transitive groups of prime degree enables us to provide a complete

list of possible Galois groups for every irreducible polynomial of prime degree

p which has non–real roots.

By degree of a permutation group G ⊆ Sn we mean the number of points

in {1, . . . , n} moved by G. The degree of a permutation α ∈ Sn is the number
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of points moved by 〈α〉. The minimal degree of G, denoted by m(G), is the

smallest of degrees of elements α 6= 1 in G. Let f(x) ∈ Q[x] be an irreducible

polynomial of degree n ≥ 5. Denote by r the number of non-real roots of

f(x). Since the complex conjugation permutes the roots then r is even, say

r = 2s, by a reordering of the roots and we may assume that if f(x) has r

non–real roots then

α := (1, 2)(3, 4) · · · (r − 1, r) ∈ Gal(f)

is the complex conjugation Since determining the number of non–real roots

can be very fast, we would like to know to what extent the number of non–

real roots of f(x) determines Gal(f). The complex conjugation assures that

m(G) ≤ r. The existence of α can narrow down the list of candidates for

Gal(f).

Example 4.2.1. Let f(x) = 48x7 − 56x6 + 7 be an irreducible polynomial.

From a simple computation we discover that the number of real roots of f(x)

is 3, and so there exists an elemente α ∈ Gal(f) of the form (1, 2)(3, 4),

which permutes 4 complex roots of f(x).

Looking at the Table 3.9 of transitive group of order 7, we find that possible

candidates for Gal(f) are S7, A7, PSL2(F7). Then one can use other tools,

like computation of ∆(f) and mod p reductions, to determine this group uni-

vocally.

In despite of the example above, it is unlikely that the group can be

determined only from this information unless p is ”large” enough. In this

case the number of non–real roots of f(x) can almost determine the Galois

group of f(x), as we will see. Nevertheless, the test is worth running for all

p since it is very fast and improves the algorithm overall.

Next theorem determines the Galois group of a prime degree polynomial f(x)

with r non–real roots when the degree of f(x) is large enough with respect

to r. We refer to [Ser03] for a more extensive description of the following

results.
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Theorem 4.2.2. Let f(x) ∈ Q[x] be an irreducible polynomial of prime

degree p ≥ 3 and r = 2s be the number of non–real roots of f(x). If s

satisfies

s(slogs + 2logs + 3) ≤ p

then Gal(f) = Ap, or Sp.

Proof. Since p is prime, every transitive subgroup of Sp is primitive (see [Rot95]).

Let G denote the Galois group of f(x) and m(G) its minimal degree. By re-

ordering the roots we can assume that

(1, 2)(3, 4) · · · (r − 1, r) ∈ Gal(f).

Hence, m := m(G) ≤ r. From the theorem of Jordan discussed in [Jor72] we

have that

m2

4
log

m

2
+ m

(
log

m

2
+

3

2

)
≤ p ⇒ G = Ap or Sp.

Hence, if we consider r = 2s instead of m, we have that if

s(slogs + 2logs + 3) ≤ p

then G = Ap or Sp.

For a fixed p the above bound is not sharp as we will see below. However,

Theorem 4.2.2 can be used successfully if s is fixed. We denote the above

lower bound on p by N(r) := [s(slogs + 2logs + 3)] for r = 2s. Hence, for a

fixed number of non–real roots and for p ≥ N(r) the Galois group is always

Ap or Sp.

Corollary 4.2.3. Let a polynomial of prime degree p and assume that r

denotes the number of its non-real roots. If one of the following holds:

(i) r = 2 and p > 2,

(ii) r = 4 and p > 7,

(iii) r = 6 and p > 13,
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(iv) r = 8 and p > 23,

(v) r = 10 and p > 37,

then Gal(f) = Ap or Sp.

Remark 4.2.4. The above results gives a very quick way of determining

the Galois group for polynomials with non–real roots. Whether or not the

discriminant is a complete square can be used to distinguish between Ap and

Sp. In the case (i), (iii), (v), it’s very easy to choose between Ap and Sp; in

fact we have obviously that Gal(f) = Sp, since the complex conjugation is an

odd permutation.

If p < N(r) then some exceptional cases occur. We remark that if we

consider f(x) such that ∂f = p ≤ 29, no two groups have the same cycle

structure, and so the Galois group can be determined uniquely by reduction

modulo p for all polynomials of prime degree ≤ 29 with non–real roots.

Example 4.2.5. Let f(x) = x7−4x6−20x5+4x4+20x3+2. This polynomial

is irreducible over Q and has exactly 2 non–real roots. We can easily check

these facts in Maple9 using the commands

f:=x^7-4*x^6-20*x^5+4*x^4+20*x^3+2;

factor(f);

realroot(f);

From Corollary 4.2.3, Gal(f) is S7 or A7. Its discriminant is ∆(f) = −(2)6 ·
(3)3 · (47031541) · (4289), which is ≤ 0; therefore it is not a square in Q and

the Galois group of f(x) is S7, as we can verify with the command

galois(x^7-4*x^6-20*x^5+4*x^4+20*x^3+2);

"7T7", {"S(7)"}, "-", 5040;

Combining the above results we have the following algorithm for comput-

ing the Galois group of prime degree polynomials with non–real roots. Note

that even in the case p < N(r) we know that a permutation of the type (2)
r
2
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is in the group. Hence, the list of transitive subgroups is much shorter than

in general. This information was obtained by computing the number of real

roots rather then by some factorization modulo p. Thus, even in this case

the algorithm can be improved.

Algorithm: Computing the Galois group of prime degree polynomials with

few non–real roots.

Input: an irreducible monic polynomial f(x) ∈ Z[x] of prime degree p.

Output: Galois group of f(x) over Q.

begin

r:=Number Of Real Roots(f(x));

if p > N(r) {

if D(f) is a square {

Gal(f)=A_p;

else Gal(f) = S_p;

}

else Chebotarev test(f(x));

}

end;

Example 4.2.6. Let f(x) = x11 +4x10−14x9−56x8 +50x7 +200x6−50x5−
200x4 + 49x3 + 196x2 − 36x− 143 be irreducible over Q. We get

nops(realroot(f));

7

In fact f(x) has been produced expanding (x4+1)(x+4)
∏3

j=1(x±j)+1, which

is proved to be irreducible. In this case r = 11 − 7 = 4 and N(r) ≈ 8.41,

which is ≤ p = 11. We are in the conditions of Corollary 4.2.3, hence

Gal(f) = S11 or A11. Computing discriminant we observe that it’s not a

square and therefore

Gal(f) * A11 ⇒ Gal(f) = S11.
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Appendix A

Roots on Finite Fields

In this appendix we study the form of the roots of an irreducible polyno-

mial in a finite fields of characteristic q. The following results are from [LN94].

Theorem A.0.7. Let f(x) ∈ Fq[x] be an irreducible polynomial of degree m;

then f(x) has a root in Fqm. Moreover, if f(α) = 0, all the m distinct roots

of f have molteplicity 1 and they are of the form

αqh ∈ Fqm , for all 0 ≤ h ≤ m− 1.

Proof. Let α be such that f(α) = 0; then [Fq(α) : Fq] = m, i.e. Fq(α) ' Fqm

and we can consider α as an element in Fqm . We will show that f(β) = 0

implies (βq), for any β ∈ Fqm . Let f(x) =
∑m

i=0 aix
i, ai ∈ Fq; then

f(βq) = amβqm + am−1β
q(m−1) + · · ·+ a1β

q + a0

= aq
mβqm + aq

m−1β
q(m−1) + · · ·+ aq

1β
q + aq

0

= (amβm + am−1β
m−1 + · · ·+ a1β + a0)

q

= [f(β)]q

= 0.

From this observation we conclude that if α is a root, then αp, αp2
, . . . , αqm−1

are roots of f . We will show that these roots are distinct. If there exist j, k

such that αqj
= αqk

, with 0 ≤ j < k ≤ m − 1, then αqj+m−k
= αqm

and
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therefore αqj+m−k
= α, that is, α is a root of xqj+m−k −x. Hence f(x) must di

divide xqj+m−k−x, but from Lemma A.0.8 f |xqj+m−k−x ⇔ ∂f = m|m−j+k.

Now, 0 < m− k + j < m, and if m|m− k + j we have an absurd.

Lemma A.0.8. Let f(x) ∈ Fq[x] be an irreducible polynomial of degree m;

then f(x)|xqn − x ⇔ ∂f = m|n.

Proof. (⇒) We assume that f(x)|xqn − x; let α be a root of f(x); then

αqn
= α ⇔ α ∈ Fqn ⇔ Fq(α) ⊆ Fqn . But [Fq(α) : Fq] = m and [Fn

q : Fq] = n

imply that n = [Fn
q : Fq(α)] ·m, and so m|n.

(⇐) It is easily seen that m|n ⇔ Fqn ⊃ Fqm . If α is a root of f(x), then

[Fq(α) : Fq] = m, and therefore Fq(α) = Fqm ⊂ Fqn . So α ∈ Fqn or, in

other words, αqn
= α, that is, α is a root of xqn − x ∈ Fq[x]. In short,

f(x)|xqn − x.
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Appendix B

Galois Groups on Finite Fields

Let Fp = Z/pZ, the field of p elements. Any other field E of characteristic

p contains a copy of Fp, namely, {m1E : m ∈ Z}. No harm results if we

identify Fp with this subfield of E. Let E be a field of degree n over Fp.

Then E has q = pn elements, and so E∗ = E −{0} is a group of order q− 1.

Hence the nonzero elements of E are roots xq−1 − 1, and all elements of E,

including 0, are roots of xq − x. Hence E is a splitting field for xq − x, and

so any two fields with q elements are isomorphic.

Now let E be the splitting field of f(x) = xq − x, q = pn. The formal

derivative f ′(x) ≡ −1 mod p is relatively prime to f(x) and so f(x) has q

distinct roots in E. Let S be the set of its roots. Then S is obviously closed

under multiplication and the formation of inverses, but it is also closed under

subtraction; if aq = a and bq = b, then

(a− b)q = aq − bq = a− b.

Hence S is a field, and so S = E. In particular, E has pn elements.

Proposition B.0.9. For each power q = pn there is a field Fq with q ele-

ments. It is the splitting field of xq − x, and hence any two such fields are

isomorphic. Moreover, Fq is Galois over Fp with cyclic Galois group gener-

ated by the Frobenius automorphism σ : a 7→ ap.
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Proof. The field Fq is Galois over Fp because it is the splitting field of a

separable polynomial f(x), namely xq − x. We noted that σ : x 7→ xp is

an automorphism of Fq, sending each root f(x) into another one, for Theo-

rem A.0.7. An element a ∈ Fq is fixed by σ if and only if ap = a; but Fp

consists exactly of such elements, and so the fixed field of 〈σ〉 is Fp. This

proves that Fq is Galois over Fp and that 〈σ〉 = Gal(Fq/Fp).
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Appendix C

The Chebotarëv Test in Maple

Here we implement the modulo p reductions test suggested by Chebo-

tarëv’s theorem. The reader can run this program just by copying the code

below in a Maple Worksheet and writing

Chebotarev(f(x),k);

where f(x) is an irreducible polynomial of degree n ∈ {3, 4, 5, 6, 7, 11} and

k is the upper bound for the size of prime numbers that we want to consider.

If we increase k, on the one hand our result will be more precise, on the other

hand Maple will need more time to produce the output.

This tool allows us to make several experiments in finding polynomial with

a given Galois group. In our attempts, we ran this program for all the

polynomials in Table 4.1 and 4.2, with k = 1000, obtaining always the correct

output, as shown in Section 4.1.

with(linalg);

Chebotarev3:=proc(list,nu)

local i,dt3,dt2,dt1,perc;

dt3:=0;dt2:=0;dt1:=0;

for i from 1 to nu do

if member(3,list[i]) then dt3:=dt3+1 else
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if verify(list[i],[0,1,2],sublist) then dt2:=dt2+1 else

if verify(list[i],[0,1,1,1],sublist) then dt1:=dt1+1 fi;

fi;fi;

od;

print((0,0,3)=dt3/nu);

print((0,1,2)=dt2/nu);

print((1,1,1)=dt1/nu);

perc:=array(1..nu,[dt1/nu,dt2/nu,dt3/nu]);

getGroup3(perc);

end:

getGroup3:=proc(a)

local i,b,c;

c:=array(1..3,[1/3,0 ,2/3]);

b:=array(1..3,[1/6,1/2,1/3]);

for i from 1 to 3 do

b[i]:=a[i]-b[i];c[i]:=a[i]-c[i];

od;

if evalf(norm(c,frobenius))<evalf(norm(b,frobenius)) then

print("Gruppo A(3)") else print("Gruppo S(3)") fi;

end:

Chebotarev4:=proc(list,nu)

local i,dt5,dt4,dt3,dt2,dt1,perc;

dt5:=0;dt4:=0;dt3:=0;dt2:=0;dt1:=0;

for i from 1 to nu do

if member(4,list[i]) then dt5:=dt5+1 else

if verify(list[i],[0,1,3],sublist) then dt4:=dt4+1 else

if verify(list[i],[0,2,2],sublist) then dt3:=dt3+1 else

if verify(list[i],[0,1,1,2],sublist) then dt2:=dt2+1 else
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if verify(list[i],[0,1,1,1,1],sublist) then dt1:=dt1+1 fi;

fi;fi;fi;fi;

od;

print((0,0,0,4)=dt5/nu);

print((0,0,1,3)=dt4/nu);

print((0,0,2,2)=dt3/nu);

print((0,1,1,2)=dt2/nu);

print((1,1,1,1)=dt1/nu);

perc:=array(1..nu,[dt1/nu,dt2/nu,dt3/nu,dt4/nu,dt5/nu]);

getGroup4(perc);

end:

getGroup4:=proc(a)

local i,s,b,c,d,e,f;

b:=array(1..5,[1/24,1/4,1/8,1/3,1/4]);

c:=array(1..5,[1/12,0 ,1/4,2/3,0 ]);

d:=array(1..5,[1/4 ,0 ,1/4,0 ,1/2]);

e:=array(1..5,[1/8 ,1/4,3/8,0 ,1/4]);

f:=array(1..5,[1/4 ,0 ,3/4,0 ,0 ]);

c:=array(1..5,[1/12,0 ,1/4,2/3,0 ]);

for i from 1 to 5 do

b[i]:=a[i]-b[i];c[i]:=a[i]-c[i]; d[i]:=a[i]-d[i];

e[i]:=a[i]-e[i];f[i]:=a[i]-f[i];

od;

s:=sort([evalf(norm(b,frobenius)),evalf(norm(c,frobenius)),

evalf(norm(d,frobenius)),evalf(norm(e,frobenius)),

evalf(norm(f,frobenius))]);

if s[1]= evalf(norm(b,frobenius))

then print("Gruppo S(4)") fi;

if s[1]= evalf(norm(c,frobenius))

then print("Gruppo A(4)") fi;

94



if s[1]= evalf(norm(d,frobenius))

then print("Gruppo C(4)") fi;

if s[1]= evalf(norm(e,frobenius))

then print("Gruppo D(4)") fi;

if s[1]= evalf(norm(f,frobenius))

then print("Gruppo C(2)xC(2)") fi;

end:

Chebotarev5:=proc(list,nu)

local i,dt7,dt6,dt5,dt4,dt3,dt2,dt1,perc;

dt7:=0;dt6:=0;dt5:=0;dt4:=0;dt3:=0;dt2:=0;dt1:=0;

for i from 1 to nu do

if member(5,list[i]) then dt7:=dt7+1 else

if verify(list[i],[0,1,4],sublist) then dt6:=dt6+1 else

if verify(list[i],[0,1,1,3],sublist) then dt5:=dt5+1 else

if verify(list[i],[0,2,3],sublist) then dt4:=dt4+1 else

if verify(list[i],[0,1,2,2],sublist) then dt3:=dt3+1 else

if verify(list[i],[0,1,1,1,2],sublist)

then dt2:=dt2+1 else

if verify(list[i],[0,1,1,1,1,1],sublist)

then dt1:=dt1+1 fi;fi;

fi;fi;fi;fi;fi;

od;

print((0,0,0,0,5)=dt7/nu);

print((0,0,0,1,4)=dt6/nu);

print((0,0,0,2,3)=dt5/nu);

print((0,0,1,1,3)=dt4/nu);

print((0,0,1,2,2)=dt3/nu);

print((0,1,1,1,2)=dt2/nu);

print((1,1,1,1,1)=dt1/nu);

perc:=array(1..nu,[dt1/nu,dt2/nu,dt3/nu,
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dt4/nu,dt5/nu,dt6/nu,dt7/nu]);

getGroup5(perc);

end:

getGroup5:=proc(a)

local i,s,b,c,d,e,f,g,h;

b:=array(1..7,[1/120,1/12,1/8,1/6,1/6,1/4,1/5]);

c:=array(1..7,[1/60 ,0 ,1/4,0 ,1/3,0 ,2/5]);

d:=array(1..7,[1/20,0 ,1/4,0 ,0 ,1/2,1/5]);

e:=array(1..7,[1/10,0 ,1/2,0 ,0 ,0 ,2/5]);

f:=array(1..7,[1/5 ,0 ,0 ,0 ,0 ,0 ,4/5]);

for i from 1 to 7 do

b[i]:=a[i]-b[i];c[i]:=a[i]-c[i]; d[i]:=a[i]-d[i];

e[i]:=a[i]-e[i];f[i]:=a[i]-f[i];

od;

s:=sort([evalf(norm(b,frobenius)),evalf(norm(c,frobenius)),

evalf(norm(d,frobenius)),evalf(norm(e,frobenius)),

evalf(norm(f,frobenius))]);

if s[1]= evalf(norm(b,frobenius))

then print("Gruppo S(5)") fi;

if s[1]= evalf(norm(c,frobenius))

then print("Gruppo A(5)") fi;

if s[1]= evalf(norm(d,frobenius))

then print("Gruppo F(20)") fi;

if s[1]= evalf(norm(e,frobenius))

then print("Gruppo D(5)") fi;

if s[1]= evalf(norm(f,frobenius))

then print("Gruppo C(5)") fi;

end:

Chebotarev6:=proc(list,nu)
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local i,dt11,dt10,dt9,dt8,dt7,dt6,dt5,

dt4,dt3,dt2,dt1,perc;

dt11:=0;dt10:=0;dt9:=0;dt8:=0;dt7:=0;dt6:=0;

dt5:=0;dt4:=0;dt3:=0;dt2:=0;dt1:=0;

for i from 1 to nu do

if member(6,list[i]) then dt11:=dt11+1 else

if verify(list[i],[0,1,5],sublist) then dt10:=dt10+1 else

if verify(list[i],[0,2,4],sublist) then dt9:=dt9+1 else

if verify(list[i],[0,1,1,4],sublist) then dt8:=dt8+1 else

if verify(list[i],[0,3,3],sublist) then dt7:=dt7+1 else

if verify(list[i],[0,1,2,3],sublist) then dt6:=dt6+1 else

if verify(list[i],[0,1,1,1,3],sublist)

then dt5:=dt5+1 else

if verify(list[i],[0,2,2,2],sublist) then dt4:=dt4+1 else

if verify(list[i],[0,1,1,2,2],sublist)

then dt3:=dt3+1 else

if verify(list[i],[0,1,1,1,1,2],sublist)

then dt2:=dt2+1 else

if verify(list[i],[0,1,1,1,1,1,1],sublist) then dt1:=dt1+1

fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;

od;

print((0,0,0,0,0,6)=dt11/nu);

print((0,0,0,0,1,5)=dt10/nu);

print((0,0,0,0,2,4)=dt9/nu);

print((0,0,0,1,1,4)=dt8/nu);

print((0,0,0,0,3,3)=dt7/nu);

print((0,0,0,1,2,3)=dt6/nu);

print((0,0,1,1,1,3)=dt5/nu);

print((0,0,0,2,2,2)=dt4/nu);

print((0,0,1,1,2,2)=dt3/nu);

print((0,1,1,1,1,2)=dt2/nu);
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print((1,1,1,1,1,1)=dt1/nu);

perc:=array(1..nu,[dt1/nu,dt2/nu,dt3/nu,dt4/nu,

dt5/nu,dt6/nu,dt7/nu, dt8/nu,dt9/nu,dt10/nu,dt11/nu]);

getGroup6(perc);

end:

getGroup6:=proc(a)

local i,ss,b,c,d,e,f,g,h,ii,l,m,n,o,p,q,r,s;

b:=array(1..11,[1/720,15/720,45/720,15/720,40/720,120/720,

40/720,90/720,90/720,144/720,120/720]);

c:=array(1..11,[1/360,0,45/360,0,40/360,0,

40/360,0,90/360,144/360,0]);

d:=array(1..11,[1/120,0,15/120,10/120,0,0,

20/120,30/120,0,24/120,20/120]);

e:=array(1..11,[1/72,6/72,9/72,6/72,4/72,

12/72,4/72,0,18/72,0,12/72]);

f:=array(1..11,[1/60,0,15/60,0,0,0,20/60,0,0,24/60,0]);

g:=array(1..11,[1/48,3/48,9/48,7/48,0,0,

8/48,6/48,6/48,0,8/48]);

h:=array(1..11,[1/36,0,9/36,0,4/36,0,4/36,0,18/36,0,0]);

ii:=array(1..11,[1/36,0,9/36,6/36,4/36,0,

4/36,0,0,0,12/36]);

l:=array(1..11,[1/24,0,3/24,6/24,0,0,8/24,6/24,0,0,0]);

m:=array(1..11,[1/24,0,9/24,0,0,0,8/24,0,6/24,0,0]);

n:=array(1..11,[1/24,3/24,3/24,1/24,0,0,8/24,0,0,0,8/24]);

o:=array(1..11,[1/18,0,0,3/18,4/18,0,4/18,0,0,0,6/18]);

p:=array(1..11,[1/12,0,3/12,0,0,0,8/12,0,0,0,0]);

q:=array(1..11,[1/12,0,3/12,4/12,0,0,2/12,0,0,0,2/12]);

r:=array(1..11,[1/6,0,0,3/6,0,0,2/6,0,0,0,0]);

s:=array(1..11,[1/6,0,0,1/6,0,0,2/6,0,0,0,2/6]);

for i from 1 to 11 do
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b[i]:=a[i]-b[i];c[i]:=a[i]-c[i]; d[i]:=a[i]-d[i];

e[i]:=a[i]-e[i];f[i]:=a[i]-f[i]; g[i]:=a[i]-g[i];

h[i]:=a[i]-h[i];ii[i]:=a[i]-ii[i];l[i]:=a[i]-l[i];

m[i]:=a[i]-m[i];n[i]:=a[i]-n[i];o[i]:=a[i]-o[i];

p[i]:=a[i]-p[i];q[i]:=a[i]-q[i];r[i]:=a[i]-r[i];

s[i]:=a[i]-s[i];

od;

ss:=sort([evalf(norm(b,frobenius)),

evalf(norm(c,frobenius)),

evalf(norm(d,frobenius)),evalf(norm(e,frobenius)),

evalf(norm(f,frobenius)),evalf(norm(g,frobenius)),

evalf(norm(h,frobenius)),evalf(norm(ii,frobenius)),

evalf(norm(l,frobenius)),evalf(norm(m,frobenius)),

evalf(norm(n,frobenius)),evalf(norm(o,frobenius)),

evalf(norm(p,frobenius)),evalf(norm(q,frobenius)),

evalf(norm(r,frobenius)),evalf(norm(s,frobenius))]);

if ss[1]= evalf(norm(b,frobenius))

then print("Gruppo S(6)") fi;

if ss[1]= evalf(norm(c,frobenius))

then print("Gruppo A(6)") fi;

if ss[1]= evalf(norm(d,frobenius))

then print("Gruppo PGL(2,5)") fi;

if ss[1]= evalf(norm(e,frobenius))

then print("Gruppo G(72)") fi;

if ss[1]= evalf(norm(f,frobenius))

then print("Gruppo PSL(2,5)") fi;

if ss[1]= evalf(norm(g,frobenius))

then print("Gruppo G(48)") fi;

if ss[1]= evalf(norm(h,frobenius))

then print("Gruppo G2(36)") fi;

if ss[1]= evalf(norm(ii,frobenius))
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then print("Gruppo G1(36)") fi;

if ss[1]= evalf(norm(l,frobenius))

then print("Gruppo S(4)-") fi;

if ss[1]= evalf(norm(m,frobenius))

then print("Gruppo S(4)+") fi;

if ss[1]= evalf(norm(n,frobenius))

then print("Gruppo G(24)") fi;

if ss[1]= evalf(norm(o,frobenius))

then print("Gruppo G(18)") fi;

if ss[1]= evalf(norm(p,frobenius))

then print("Gruppo A(4)") fi;

if ss[1]= evalf(norm(q,frobenius))

then print("Gruppo D(6)") fi;

if ss[1]= evalf(norm(r,frobenius))

then print("Gruppo S(3))")fi;

if ss[1]= evalf(norm(s,frobenius))

then print("Gruppo C(6)")fi;

end:

Chebotarev7:=proc(list,nu)

local i,dt15,dt14,dt13,dt12,dt11,dt10,dt9,dt8,dt7,dt6,dt5,

dt4,dt3,dt2,dt1,perc;

dt15:=0;dt14:=0;dt13:=0;dt12:=0;dt11:=0;dt10:=0;dt9:=0;

dt8:=0;dt7:=0;dt6:=0;dt5:=0;dt4:=0;dt3:=0;dt2:=0;dt1:=0;

for i from 1 to nu do

if member(7,list[i]) then dt15:=dt15+1 else

if verify(list[i],[0,1,6],sublist) then dt14:=dt14+1 else

if verify(list[i],[0,2,5],sublist) then dt13:=dt13+1 else

if verify(list[i],[0,1,1,5],sublist)

then dt12:=dt12+1 else

if verify(list[i],[0,3,4],sublist)

100



then dt11:=dt11+1 else

if verify(list[i],[0,1,2,4],sublist)

then dt10:=dt10+1 else

if verify(list[i],[0,1,1,1,4],sublist)

then dt9:=dt9+1 else

if verify(list[i],[0,1,3,3],sublist)

then dt8:=dt8+1 else

if verify(list[i],[0,2,2,3],sublist)

then dt7:=dt7+1 else

if verify(list[i],[0,1,1,2,3],sublist)

then dt6:=dt6+1 else

if verify(list[i],[0,1,1,1,1,3],sublist)

then dt5:=dt5+1 else

if verify(list[i],[0,1,2,2,2],sublist)

then dt4:=dt4+1 else

if verify(list[i],[0,1,1,1,2,2],sublist)

then dt3:=dt3+1 else

if verify(list[i],[0,1,1,1,1,1,2],sublist)

then dt2:=dt2+1 else

if verify(list[i],[0,1,1,1,1,1,1,1],sublist)

then dt1:=dt1+1

fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi

od;

print((0,0,0,0,0,0,7)=dt15/nu);

print((0,0,0,0,0,1,6)=dt14/nu);

print((0,0,0,0,0,2,5)=dt13/nu);

print((0,0,0,0,1,1,5)=dt12/nu);

print((0,0,0,0,0,3,4)=dt11/nu);

print((0,0,0,0,1,2,4)=dt10/nu);

print((0,0,0,1,1,1,4)=dt9/nu);

print((0,0,0,0,1,3,3)=dt8/nu);
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print((0,0,0,0,2,2,3)=dt7/nu);

print((0,0,0,1,1,2,3)=dt6/nu);

print((0,0,1,1,1,1,3)=dt5/nu);

print((0,0,0,1,2,2,2)=dt4/nu);

print((0,0,1,1,1,2,2)=dt3/nu);

print((0,1,1,1,1,1,2)=dt2/nu);

print((1,1,1,1,1,1,1)=dt1/nu);

perc:=array(1..nu,[dt1/nu,dt2/nu,dt3/nu,dt4/nu,dt5/nu,

dt6/nu,dt7/nu,dt8/nu,dt9/nu,dt10/nu,dt11/nu,dt12/nu,

dt13/nu,dt14/nu,dt15/nu]);

getGroup7(perc);

end:

getGroup7:=proc(a)

local i,s,b,c,d,e,f,g,h;

b:=array(1..15,[1/5040,21/5040,105/5040,105/5040,

70/5040,420/5040,210/5040,280/5040,210/5040,630/5040,

420/5040,504/5040,504/5040,840/5040,720/5040]);

c:=array(1..15,[ 1/2520,0,105/2520,0,70/2520,0,210/2520,

280/2520,0,630/2520,0,504/2520,0,0,720/2520]);

d:=array(1..15,[1/168,0,21/168,0,0,0,0,56/168,

0,42/168,0,0,0,0,48/168]);

e:=array(1..15,[1/42,0,0,7/42,0,0,0,14/42,0,0,

0,0,0,14/42,6/42]);

f:=array(1..15,[1/21,0,0,0,0,0,0,14/21,0,0,0,0,0,0,6/21]);

g:=array(1..15,[1/14,0,0,7/14,0,0,0,0,0,0,0,0,0,0,6/14]);

h:=array(1..15,[1/7,0,0,0,0,0,0,0,0,0,0,0,0,0,6/7]);

for i from 1 to 15 do

b[i]:=a[i]-b[i];c[i]:=a[i]-c[i]; d[i]:=a[i]-d[i];

e[i]:=a[i]-e[i];f[i]:=a[i]-f[i]; g[i]:=a[i]-g[i];

h[i]:=a[i]-h[i];
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od;

s:=sort([evalf(norm(b,frobenius)),evalf(norm(c,frobenius)),

evalf(norm(d,frobenius)),evalf(norm(e,frobenius)),

evalf(norm(f,frobenius)), evalf(norm(g,frobenius)),

evalf(norm(h,frobenius))]);

if s[1]= evalf(norm(b,frobenius))

then print("Gruppo S(7)") fi;

if s[1]= evalf(norm(c,frobenius))

then print("Gruppo A(7)") fi;

if s[1]= evalf(norm(d,frobenius))

then print("Gruppo PSL(2,7)") fi;

if s[1]= evalf(norm(e,frobenius))

then print("Gruppo F(42)") fi;

if s[1]= evalf(norm(f,frobenius))

then print("Gruppo F(21)") fi;

if s[1]= evalf(norm(g,frobenius))

then print("Gruppo D(7)") fi;

if s[1]= evalf(norm(h,frobenius))

then print("Gruppo C(7)") fi;

end:

Chebotarev11:=proc(list,nu)

local i,dt,perc;

dt:=array(1..56,[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0]);

for i from 1 to nu do

if verify(list[i],[0,1,1,1,1,1,1,1,1,1,1,1],sublist)

then dt[1]:=dt[1]+1 else

if verify(list[i],[0,1,1,1,1,1,1,1,1,1,2],sublist)
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then dt[2]:=dt[2]+1 else

if verify(list[i],[0,1,1,1,1,1,1,1,2,2],sublist)

then dt[3]:=dt[3]+1 else

if verify(list[i],[0,1,1,1,1,1,2,2,2],sublist)

then dt[4]:=dt[4]+1 else

if verify(list[i],[0,1,1,1,2,2,2,2],sublist)

then dt[5]:=dt[5]+1 else

if verify(list[i],[0,1,2,2,2,2,2],sublist)

then dt[6]:=dt[6]+1 else

if verify(list[i],[0,1,1,1,1,1,1,1,1,3],sublist)

then dt[7]:=dt[7]+1 else

if verify(list[i],[0,1,1,1,1,1,1,2,3],sublist)

then dt[8]:=dt[8]+1 else

if verify(list[i],[0,1,1,1,1,2,2,3],sublist)

then dt[9]:=dt[9]+1 else

if verify(list[i],[0,1,1,2,2,2,3],sublist)

then dt[10]:=dt[10]+1 else

if verify(list[i],[0,2,2,2,2,3],sublist)

then dt[11]:=dt[11]+1 else

if verify(list[i],[0,1,1,1,1,1,3,3],sublist)

then dt[12]:=dt[12]+1 else

if verify(list[i],[0,1,1,1,2,3,3],sublist)

then dt[13]:=dt[13]+1 else

if verify(list[i],[0,1,2,2,3,3],sublist)

then dt[14]:=dt[14]+1 else

if verify(list[i],[0,1,1,3,3,3],sublist)

then dt[15]:=dt[15]+1 else

if verify(list[i],[0,2,3,3,3],sublist)

then dt[16]:=dt[16]+1 else

if verify(list[i],[0,1,1,1,1,1,1,1,4],sublist)

then dt[17]:=dt[17]+1 else
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if verify(list[i],[0,1,1,1,1,1,2,4],sublist)

then dt[18]:=dt[18]+1 else

if verify(list[i],[0,1,1,1,2,2,4],sublist)

then dt[19]:=dt[19]+1 else

if verify(list[i],[0,1,2,2,2,4],sublist)

then dt[20]:=dt[20]+1 else

if verify(list[i],[0,1,1,1,1,3,4],sublist)

then dt[21]:=dt[21]+1 else

if verify(list[i],[0,1,1,2,3,4],sublist)

then dt[22]:=dt[22]+1 else

if verify(list[i],[0,2,2,3,4],sublist)

then dt[23]:=dt[23]+1 else

if verify(list[i],[0,1,3,3,4],sublist)

then dt[24]:=dt[24]+1 else

if verify(list[i],[0,1,1,1,4,4],sublist)

then dt[25]:=dt[25]+1 else

if verify(list[i],[0,1,2,4,4],sublist)

then dt[26]:=dt[26]+1 else

if verify(list[i],[0,3,4,4],sublist)

then dt[27]:=dt[27]+1 else

if verify(list[i],[0,1,1,1,1,1,1,5],sublist)

then dt[28]:=dt[28]+1 else

if verify(list[i],[0,1,1,1,1,2,5],sublist)

then dt[29]:=dt[29]+1 else

if verify(list[i],[0,1,1,2,2,5],sublist)

then dt[30]:=dt[30]+1 else

if verify(list[i],[0,2,2,2,5],sublist)

then dt[31]:=dt[31]+1 else

if verify(list[i],[0,1,1,1,3,5],sublist)

then dt[32]:=dt[32]+1 else

if verify(list[i],[0,1,2,3,5],sublist)
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then dt[33]:=dt[33]+1 else

if verify(list[i],[0,3,3,5],sublist)

then dt[34]:=dt[34]+1 else

if verify(list[i],[0,1,1,4,5],sublist)

then dt[35]:=dt[35]+1 else

if verify(list[i],[0,2,4,5],sublist)

then dt[36]:=dt[36]+1 else

if verify(list[i],[0,1,5,5],sublist)

then dt[37]:=dt[37]+1 else

if verify(list[i],[0,1,1,1,1,1,6],sublist)

then dt[38]:=dt[38]+1 else

if verify(list[i],[0,1,1,1,2,6],sublist)

then dt[39]:=dt[39]+1 else

if verify(list[i],[0,1,2,2,6],sublist)

then dt[40]:=dt[40]+1 else

if verify(list[i],[0,1,1,3,6],sublist)

then dt[41]:=dt[41]+1 else

if verify(list[i],[0,2,3,6],sublist)

then dt[42]:=dt[42]+1 else

if verify(list[i],[0,1,4,6],sublist)

then dt[43]:=dt[43]+1 else

if verify(list[i],[0,5,6],sublist)

then dt[44]:=dt[44]+1 else

if verify(list[i],[0,1,1,1,1,7],sublist)

then dt[45]:=dt[45]+1 else

if verify(list[i],[0,1,1,2,7],sublist)

then dt[46]:=dt[46]+1 else

if verify(list[i],[0,2,2,7],sublist)

then dt[47]:=dt[47]+1 else

if verify(list[i],[0,1,3,7],sublist)

then dt[48]:=dt[48]+1 else
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if verify(list[i],[0,4,7],sublist)

then dt[49]:=dt[49]+1 else

if verify(list[i],[0,1,1,1,8],sublist)

then dt[50]:=dt[50]+1 else

if verify(list[i],[0,1,2,8],sublist)

then dt[51]:=dt[51]+1 else

if verify(list[i],[0,3,8],sublist)

then dt[52]:=dt[52]+1 else

if verify(list[i],[0,1,1,9],sublist)

then dt[53]:=dt[53]+1 else

if verify(list[i],[0,2,9],sublist)

then dt[54]:=dt[54]+1 else

if verify(list[i],[0,1,10],sublist)

then dt[55]:=dt[55]+1 else

if member(11,list[i])

then dt[56]:=dt[56]+1

fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;

fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;

fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;

fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;fi;

od;

for i from 1 to 56 do

perc[i]:=dt[i]/nu;

print(perc[i]);

od;

getGroup11(perc);

end:

getGroup11:=proc(a)

local i,s,b,c,d,e,f,g,h,l;
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b:=array(1..56,[1/39916800, 1/725760, 1/40320, 1/5760,

1/2304, 1/3840, 1/120960, 1/4320, 1/576, 1/288, 1/1152,

1/2160, 1/216, 1/144, 1/324, 1/324, 1/20160, 1/960,

1/192, 1/192, 1/288, 1/48, 1/96, 1/72, 1/192,

1/64, 1/96, 1/3600, 1/240, 1/80, 1/240, 1/90, 1/30,

1/90, 1/40, 1/40, 1/50, 1/720, 1/72, 1/48, 1/36, 1/36,

1/24, 1/30, 1/168, 1/28, 1/56, 1/21, 1/28, 1/48, 1/16,

1/24, 1/18, 1/18, 1/10, 1/11] );

c:=array(1..56,[1/19958400, 0, 1/20160, 0, 1/1152, 0,

1/60480, 0, 1/288, 0, 1/576, 1/1080, 0, 1/72, 1/162, 0,

0, 1/480, 0, 1/96, 0, 1/24, 0, 0, 1/96, 0, 1/48, 1/1800,

0, 1/40, 0, 1/45, 0, 1/45, 0, 1/20, 1/25, 0, 1/36, 0, 0,

1/18, 1/12, 0, 1/84, 0, 1/28, 2/21, 0, 0, 1/8, 0, 1/9, 0,

0, 2/11]);

d:=array(1..56,[1/7920, 0, 0, 0, 1/48, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1/18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/8, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1/5, 0, 0, 0, 0, 1/6, 0, 0, 0,

0, 0, 0, 0, 0, 1/4, 0, 0, 0, 0, 2/11]);

e:=array(1..56,[1/660, 0, 0, 0, 1/12, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1/6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 2/5, 0, 0, 0, 0, 1/6, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 2/11]);

f:=array(1..56,[1/110, 0, 0, 0, 0, 1/10, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 2/5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 2/5, 1/11]);

g:=array(1..56,[1/55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 4/5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 2/11]);

h:=array(1..56,[1/22, 0, 0, 0, 0, 1/2, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 5/11]);

l:=array(1..56,[1/11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 10/11]);

for i from 1 to 56 do

b[i]:=a[i]-b[i];c[i]:=a[i]-c[i]; d[i]:=a[i]-d[i];

l[i]:=a[i]-l[i];e[i]:=a[i]-e[i];f[i]:=a[i]-f[i];

g[i]:=a[i]-g[i]; h[i]:=a[i]-h[i];

od;

s:=sort([evalf(norm(b,frobenius)),evalf(norm(c,frobenius)),

evalf(norm(d,frobenius)), evalf(norm(e,frobenius)),

evalf(norm(f,frobenius)), evalf(norm(g,frobenius)),

evalf(norm(h,frobenius)), evalf(norm(l,frobenius))]);

if s[1]= evalf(norm(b,frobenius))

then print("Gruppo S(11)") fi;

if s[1]= evalf(norm(c,frobenius))

then print("Gruppo A(11)") fi;

if s[1]= evalf(norm(d,frobenius))

then print("Gruppo M(11)") fi;

if s[1]= evalf(norm(e,frobenius))

then print("Gruppo PSL(2,11)") fi;

if s[1]= evalf(norm(f,frobenius))

then print("Gruppo F(110)") fi;

if s[1]= evalf(norm(g,frobenius))

then print("Gruppo F(55)") fi;

if s[1]= evalf(norm(h,frobenius))

then print("Gruppo D(11)") fi;

if s[1]= evalf(norm(l,frobenius))
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then print("Gruppo C(11)") fi;

end:

Chebotarev1:=proc(f,n)

local i,j,s,num,type,primes,dec,e;

s:=NULL;num:=0;

for i from 1 to n do

if isprime(i) then s:=s,i fi;

od;

primes:=[s];

primes;

dec:=NULL;

for i from 1 to nops(primes) do

if gcd(primes[i],discrim(f,x))=1 then num:=num+1;

dec:=dec,(Factor(f)mod primes[i]) fi;

od;

dec:=[dec];

for i from 1 to nops(dec) do

e:=array(1..degree(f));

e:=convert(dec[i],’list’);

type[i]:=NULL;

for j from 1 to nops(e) do type[i]:=type[i],degree(e[j]) od;

type[i]:=sort([type[i]]);

od;

if degree(f)=3 then

Chebotarev3(type,num) else

if degree(f)=4 then

Chebotarev4(type,num) else

if degree(f)=5 then

Chebotarev5(type,num) else
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if degree(f)=6 then

Chebotarev6(type,num) else

if degree(f)=7 then

Chebotarev7(type,num) else

if degree(f)=11 then

Chebotarev11(type,num)

fi;fi;fi;fi;fi;fi;

end:

Chebotarev:=proc(f,n)

if irreduc(f) then

Chebotarev1(f,n); print(galois(f)) else

print("Errore: il polinomio è riducibile!") fi;

end:
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