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Introduction

In the last twenty years, with the development of coding theory and

appearance of several cryptosystems, the study of �nite �elds has generated

much interest.

This impetus behind this interest has been the need to produce efficient

algorithms that can be implemented in the hardware or software used for

applications such as data encryption and public key distribution.

The necessity to produce efficient algorithms is translated into solving

mathematical problems involving computations in �nite �elds.

From many years, normal bases have been used to represent �nite �elds

and the advantages of this choice are been shown.

Hensel (1888) pioneered the study of normal bases for �nite �elds and

proved that they always exist. Eisenstein (1850) had already noted that

normal bases always exist. Hensel, and also Ore (1934), determine exactly

the number of these bases.

In particular, in this thesis, we will show that the complexity of several

hardware or software implementations, based on multiplication schemes, de-

pends on the choice of the normal bases used. Hence is essential to �nd

normal basis with �low complexity�.

So we are interested in �nding a lower bound for this complexity and we

will present a costruction of a normal basis with this complexity.

Such a normal basis is called optimal normal basis.

We will analyse the effects of optimal normal bases on computations in

�nite �elds, in particular on the �nite �eld Fp2 .
We will also describe how, using optimal normal basis, the computations

in Fp2 can be done efficently. In particular we will obtain that pth powers in

Fp2 does not require any arithmetic operations.

This last result, with others obtained in Fp2 , are at the base of a new

method that use arithmetic in Fp2 , the so-called XTR.
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XTR was introduced at Crypto 2000 [9] by Arjen K. Lenstra and Eric R.

Verheul, it stands for �ECSTR�, which is an abbreviation for E�cient and

Compact Subgroup Trace Representation.

XTR is a new method to represent elements of a subgroup of a multi-

plicative group of a �nite �eld.

XTR is based on the same idea introduced by Shannon that is to replace

a generator of the full multiplicative group of a �nite �eld by the generator

of a relatively small subgroup of sufficiently large prime order q.

XTR, infact, uses a subgroup of prime order q of the order p2 − p + 1

subgroup of F∗p6 .
The cyclic group F∗p6 has order p6 − 1, therefore only a cyclic subgroup

with order p2 − p + 1 exists. We will refer to this last group as the XTR

supergroup X, while to the order q subgroup, with q dividing p2 − p + 1, as

the XTR subgroup Y= 〈g〉.
We will show how XTR uses the trace over Fp2 to represent and calculate

powers of elements of the XTR subgroup.

In fact, the arbitrary powers of an element of g can be represented using a

single element of the sub�eld Fp2 and such powers can be computed e�ciently

using arithmetic operations in Fp2 while avoiding arithmetic in Fp6 .
This last result is useful for cryptographic purposes if there is a way to

e�cently compute Tr(gn) given Tr(g).

So we will �nd an algorithm that not only solves our last problem, but is

also three times faster than computing gn given g.

Naturally, we will have to choose appropriate parameters p and q to obtain

an optimal normal basis and such that the XTR subgroup Y, with order q,

cannot be embedded in the multiplicative group of any true subfield of Fp6 .
Given p, q > 3, we will �nd Tr(g) ∈ Fp2 for an element g ∈ Fp6 of order

q, through different methods.

From a security point of view, XTR is a traditional system based on the

di�culty of solving discrete logarithm problems in the multiplicative group

of a �nite �eld.
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Therefore XTR can be used in any cryptosystem that relies on the sub-

group discrete logarithm problem. To illustrate this, we will present the XTR

version of the Diffie Hellman key agreement protocol and ElGamal encryp-

tion and decryption protocols.

These versions follow by replacing the ordinary representation of subgroup

elements with the XTR representation of subgroup elements of a multiplica-

tive group that, as we have seen before, consists in replacing XTR group

elements by their trace.

We will also see that, through this representation, the computation of

Diffie Hellman Key agreement protocol and ElGamal encryption and de-

cryption protocols becomes three times faster than computing gn given g, as

in their traditional versions.

We know that the traditional versions base their security on the di�culty

to solve the discrete logarithm problem.

We will show that there is, also, the XTR discrete logarithm problem

version on wich the security of XTR - Diffie Hellman and XTR - ElGamal

protocols is based.

Moreover as Diffie Hellman problem and Diffie Hellman Decision prob-

lem are related to the Discrete Logarithm problem as, their XTR version, the

XTR - Diffie Hellman problem and XTR - Diffie Hellman Decision problem,

are related to XTR - Discrete Logarithm problem.

There are, also, some equivalences between old a new problems. We will

use these equivalences to prove that DL problem in XTR subgroup Y is as

hard as Fp6 .
Because of the facts above, we can conclude that application of XTR in

cryptographic protocols leads to the advantages in comunication and com-

putational overhead without compromising security.

Our work is organized in the following way.

In the Chapter 1 we present some necessary de�nitions and properties.

In particular it is necessary to de�ne �nite �elds, Frobenius automor�sm,

cyclotomic �elds, cyclotomic polynomials and roots of unity, all in the context
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in which they will be used in this thesis.

It is presented a proof that shows that a normal basis exists for every

�nite extension of a �nite �eld. The existence of a normal basis allows for

particularly simple multiplications of the elements of the �eld.

In fact, we show as it is possible to compute the multiplication between

two elements in Fpn , with respect to a normal bases N = {α, αp, ... , αpn−1},
using n× n-matrix TN = (ti,k)0≤i,k<n with entries in Fp, de�ned by:

αp
i · α =

∑
0≤k<n

ti,kα
pk

for 0 ≤ i < n

and as this multiplication is completely determined by TN.

This result is a consequence of the property of symmetry of the normal

basis N that allows to reduce the n n × n-matrices, Tk = (tki,j) for k =

0, ... , n− 1, obtained by traditional multiplication between A and B, to the

matrix T0.

Then through the relation:

t
(k)
i,j = ti−j,k−j

is set one correspondence between the matrix T0 and the matrix TN .

Therefore we use the matrix TN to compute the multiplication between

A and B.

This matrix is advantageous not only for the memory of the calculator

saving, but also from computational costs point of view. We see that these

costs depend by dN, the number of non-zero entries in TN.

Thus we de�ne as dN the complexity of normal basis N, along with a

proof that shows the lower bound for the complexity of any normal basis.

A particular type of normal basis, whose complexity value achieves the

lower bound, is called optimal normal basis. Then, by this last basis, we

obtain, also, a lower bound for the computational cost.

To construct the optimal normal basis, we prove the result:

Theorem 1.5 (Optimal normal bases, see [14]) Let n+ 1 be a prime and

p be a primitive root modulo n+1 (i.e. p modulo n+1 generates F∗n+1). Let ς
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be a primitive (n+ 1)-th root of unity in an extension �eld of Fp and α = ς.

Then N = {α, αp, αp2 , ... , αpn−1} is an optimal normal basis of Fpn over Fp.

Then knowing the conditions for which an optimal normal basis exists,

we obtain, also, the sempli�cation of the process of selecting �nite �elds for

speci�c applications.

In Chapter 2 we deal with the mathematic of XTR.

To this purpose, at �rst we present a representation of Fp2 and then we

describe how the computations in Fp2 can be done efficiently.

So we set p ≡ 2 (mod 3). Hence X2 +X + 1 is an irriducible polynomial

over Fp. We represent Fp2 as:

Fp2 ∼=
{
x1α + x2α

p : α2 + α + 1 = 0 , x1, x2 ∈ Fp
}

where {α, αp} are the zeros of the polynomialX2+X+1 and form an optimal

normal basis for Fp2 over Fp, since p ≡ 2 (mod 3) and p is a primitive root

modulo 3, i.e. p (mod 3) generates F∗3.
Considering the elements x, y, z ∈ Fp2 , we see as it is possible to compute

efficently xp, x2, x · y and x · z − y · zp in Fp. For comparison purposes, we

compute the same relation in the case x, y, z ∈ Fp6 .
These results follow, also, by the use of Karatsuba's trick and multi-

exponentation algorithm, described in the appendices.

In Chapter 3 we present the de�nition of the trace over Fp2 we show that

it is Fp2-linear. We show that the trace of the element g ∈ F∗p6 of order q that
divides p2 − p+ 1 is equal to the trace of its conjugates.

Set p a prime and set F (c,X) for c ∈ Fp2 be the polynomial X3 − cX2 +

cpX − 1 ∈ Fp2 [X]; for n ∈ Z we denote by cn the sum of the nth powers of

the roots of F (c,X) and so we prove the following result:

Theorem 3.1. The roots of X3 − Tr(g)X2 + Tr(g)pX − 1 are the

conjugates of g.

Then the minimal polynomial of any g ∈ Fp6 of order dividing p2 − p+ 1
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and > 3 is equal to F (Tr(g), X). Hence the fundamental idea of XTR is, as

illustrated, that the trace value fully specifies g's minimal polynomial and

thus the conjugates of g.

In a similar way we illustrate that this last result is true for any power

of n. In fact, for any integer n, the conjugates of gn are the roots of X3 −
Tr(gn)X2+Tr(gn)pX−1 ∈ Fp2 and the latter polynomial and the conjugates

of gn are determined by Tr(gn) ∈ Fp2 .
Vice versa we show that if F (c,X) ∈ Fp2 [X] is irreducible, then the roots

of F (c,X) take the form h, hp
2
, hp

4
for some h ∈ Fp6 of order dividing p2−p+1

and > 3.

This implies one of the property of cn, i.e. it is of the form Tr(hn) ∈ Fp2 .
Another result that we obtain on F (c,X) over Fp2 is the theorem:

Theorem 3.3 F (c,X) is reducible over Fp2 if and only if cp+1 ∈ Fp.

Then, let g ∈ Fp6 with order q for a prime q > 3 dividing p2 − p + 1,

it follows from the results cited above that F (Tr(gn), gn) = 0 and cn =

Tr(gn) ∈ Fp2 .
These results are useful for cryptographic purpose if, as we have said

above, there is a way to efficiently compute Tr(gn) given Tr(g). To this goal

we describe an Algorithm that computes cn for any n ∈ Z and such that is

three times faster than the algorithm that computes gn given g.

The efficiency of this algorithm it is based on properties of cn that have

been illustrated in this chapter.

In Chapter 4 we describe fast and pratical methods that satisfy these two

conditions:

1. p and n+ 1 are prime numbers and p is a primitive root (mod n+ 1).

2. Φ6(p) = p2 − p+ 1 has a prime factor q.

By these conditions we obtain that Fp2 has an optimal normal basis and

that the XTR subgroup Y, with the order q, cannot be embedded in the

multiplicative group of any proper sub�eld of Fp6 .
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So the primes p and q of appropriate sizes can be found using both

the methods that we present in this thesis. In particular through the �rst

one, we �nd a prime p that satis�es a second degree polynomial with small

coefficients. Moreover, for k = 1, the prime p assumes a very nice form.

Given p and q > 3, we must �nd Tr(g) ∈ Fp2 for an element g ∈ Fp6 of

order q.

We show that to �nd a proper Tr(g) it suffices to �nd c ∈ Fp2 \ Fp such
that F (c,X) ∈ Fp2 [X] is irreducible, such that c(p2−p+1)/q 6= 3 and to put

Tr(g) = c(p2−p+1)/q.

To �nd c ∈ Fp2 such that F (c,X) is irreducible we consider the following

result:

Lemma 4.1 For a randomly selected c ∈ Fp2 the probability that F (c,X) ∈
Fp2 [X] is irreducible is about one third.

We close the chapter presenting an algorithm that it is based on the above

Lemma and on the fact that F (c, x) is reducible if and only if cp+1 ∈ Fp, that
is a result of Chapter 3.

In the Chapter 5, we deal with the XTR version of the Diffie Hellman key

agreement protocol and ElGamal encryption and decryption protocols, since

XTR can be used in any cryptosystem that relies on the subgroup discrete

logarithm problems.

This version is di�erent to the traditional, since it is based on the XTR

representation of the XTR group elements that consists in replacing the XTR

elements with their trace.

In these protocols there are two users A and B that already agreed upon

XTR subgroup Y and on the XTR public key data (p, q, T r(g)), where the

two primes p and q are as in chapter 4, and Tr(g) is the trace of an generator

of XTR subgroup Y.

As is well-know, while in the XTR Diffie Hellman key agreement protocol

the two users want to agree on a secret key K, in ElGamal encryption and

decryption protocols, we suppose that B wants to encrypt a message M
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intended for A and that A decrypts the message (Tr(gb), E) that he has

received by B. For this reason, we suppose that in the key XTR public data

of A there is also the value Tr(gk) that is computed and made public by A,

for an integer k selected by A, that it is kept secret, the so-called private key.

Analysing these algorithms, we note that they compute Tr(gh), where gh

is an element in XTR subgroup with 0 < h < q − 2, using the algorithm

described in Chapter 3, to compute Tr(gh) given Tr(g).

For this reason the XTR Diffie Hellman key agreement protocol and XTR

ElGamal encryption and decryption protocols are three times faster than

their traditional versions.

Moreover these last versions base their security on the di�culty to solve

the Discrete Logarithm (DL) problem and we show that Diffie Hellman (DH)

problem and Diffie Hellman Decision (DHD) problem are related to DL

problem.

But since the XTR version of the protocols follows by replacing elements

of the XTR group by their traces, then the security of these protocols is no

longer based on the original DH, DHD or DL problems, but on their XTR

versions.

If we de�ne the equivalence between two problem through this result:

De�nition 5.1 We say that problem A is (a, b)-equivalent to problem B,

if any istance of problem A (or B) can be solved by at most a (or b) calls to

an algorithm solving problem B (or A).

We obtain this fundamental equivalences between old and new problems:

Theorem 5.1 The following equivalences hold:

i. The XTR-DL problem is (1, 1)-equivalent to the DL problem in G.

ii. The XTR-DH problem is (1, 2)-equivalent to the DH problem in G.

iii. The XTR-DHD problem is (3, 2)-equivalent to the DHD problem in

G.

Then thanks to this last result, we prove that DL problem in XTR sub-
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group Y is as hard as in F∗p6 .
In fact we show that the Discrete Logarithm problem in Fp6 , can be re-

duced to the discrete logarithm problems in multiplicative groups of proper

sub�elds Fp, Fp2 and Fp3 of Fp6 and in the subgroup of order p2− p+ 1 that

cannot be embedded in any proper subfield of Fp6 .
Since the �rst three problems are believed to be considerably easier than

the problem in F∗p6 , we conclude that the hardness of computing discrete

logarithm in the group F∗p6 must reside in its subgroup of order p2 − p+ 1.

From this result, considering the XTR subgroup Y that has order a large

prime q that divide p2− p+ 1 and that cannot be embedded into any proper

sub�eld of Fp6 , we have concluded that the discrete logarithm problem in Y

is as hard as it is Fp6 .
Then the XTR version of the Diffie Hellman key agreement protocol and

XTR ElGamal encryption and decryption protocols makes this protocol more

fast and secure.

At the end of this thesis there are two appendices, in which some of

algorithms, used in Chapter 2, are discussed.

In Appendix A, we describe the Karatsuba's trick for the multiplication

of two polynomials of degree less than n and we show that this trick makes

the computational cost of this multiplication lower.

In fact, while with the classic multiplication algorithm the number of mul-

tiplication is O(n2), with the Karatsuba's trick the number of multiplication

it is reduced to O(n1.59).

In Appendix B, we deal with the Pekmestzi's algorithm, that is a method

to compute the multi-exponentation, i.e. Z =
∏

0<i≤kX
ai
i mod N .

In particular we consider the computation of XaY b mod N and we show

how this method is faster than the traditional computation that computes

the two modular exponentations Xa mod N and Y b mod N separetely.

Naturally with the Pekmestzi's algorithm, the computational cost im-
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proves and so it can be used to implement fast modern cryptosystems that

have as a major task to obtain an efficient performance.
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Chapter 1

Background

In this chapter we present some basic facts about the algebraic structures

that we shall use. In particular we focus our attention on the existence of

normal bases over �nite �elds and in the construction of optimal normal

bases in an extension �nite �eld. We shall debate, also, on the advantages to

use normal and optimal normal basis from computational point of view.

1.1 Algebraic structures

We report in this section some basic de�nitions and basic facts of the

algebraic structures that are used in this thesis. For details and proofs we

refer to book of Lidl & Niederreiter (1983).

A �nite �eld F is a �nite ring satisfying the property that (F\ {0} , ·) is
a commutative group.

It is a standard fact that if F is a �nite �eld containing a sub�eld K

with p elements, then F has pn elements, where n = [F : K] is the degree of

extension of F over K.

Two �nite �elds with the same number of elements are isomorphic.

Thus we denote �nite �eld with q = pn elements, or the �nite �eld of

order q = pn by Fq, where the prime p is the characteristic of F and n is the

degree of F over its prime sub�eld.
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There are di�erent ways to represent a �nite �eld with pn elements, one

of these methods is to consider an irreducible polynomial over Fp of degree
n, f ∈ Fp[x] , then adjoining a root α of f to Fp we get �nite �eld with pn

elements and Fpn = Fp(α) (see [10], Theorem 2.14).

Every element of Fpn can be uniquely expressed as a polynomial in α over

Fp, of degree less than n (see [10], Theorem 1.86):

Fq =
Fp
(f)

=
{
A0 + ...+ An−1α

n−1 : Ai ∈ Fp for i = 0, ..., n− 1 and f(α) ≡ 0
}

1.2 Normal bases

The importance of the normal bases is due to the development of coding

theory and the implementation of several cryptosystems using �nite �elds.

We see, before, that the advantages of this choice reside in the improvement

of the computational cost (see [11]).

De�nition 1.1. Let Fpn be an extension of Fp and let α ∈ Fpn. Then the

elements α, αp, αp
2
, ... , αp

n−1
are called the conjugates of α with respect to

Fp

De�nition 1.2 (Normal basis, see [10]). Let Fpn be an extension of Fp.
Then a basis of Fpn over Fp of the form N = {α, ... , αpn−1} consisting of

the conjugates of a suitable element α ∈ Fpn with respect to Fp, is called a

normal basis of Fpn over Fp. The element α is then called normal in Fpn over

Fp.

Then every A ∈ Fpn may be uniquely expressed in term of N as

A = A0α + A1α
p + ... + An−1α

pn−1

=
n−1∑
i=0

Ai · αp
i
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with coef�cients A0, A1, ... , An−1 ∈ Fp

EXAMPLE (Normal and not normal elements)

Let f(x) = x3 + x+ 1 an irreducible polynomial on F2, then:

F8 =
F2

(x3 + x+ 1)
= {a0 + a1α + a2α

2 : a0, a1, a2 ∈ F2 and α3 + α + 1 ≡ 0}

= {0, 1, α, α2, α + 1, α2 + 1, α2 + α, α2 + α + 1}

Note that α is not normal since

{α, α2, α4 ≡ α2 + α}

is not a base.

While α + 1 is normal, since:

(α + 1) (mod f)

(α + 1)2 = α2 + 1 (mod f)

(α + 1)4 = (α2 + 1)2 = α4 + 1 = α2 + α + 1 (mod f)

is a basis for F2[α] over F2.

If we compute the conjugates of all the elements of F8, we obtain that:

{0, 1, α, α2, α2 + α}

are not normal elements, while

{α + 1, α2 + 1, α2 + α}

are normal elements.

Now we present a proof that shows the existence of a normal basis in a

�nite �eld extension and in the next section we show how the existence of a
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normal basis allows for particularly simple multiplication of the elements of

the �eld.

For this purpose we recall few useful de�nitions.

De�nition 1.3 (Frobenius automor�sm, see [11]). Let Fpn be an extension

of Fp, then the Frobenius automorphism is a map of Fpn over Fp of the form:

σ : η 7→ ηp, η ∈ Fpn

If we view Fpn as a vector space of dimension n over Fp then the Frobenius
map σ is a linear transformation of Fpn over Fp, since σ(α + β) = σ(α) + σ(β)

and σ(c · α) = c · σ(α) for all α, β ∈ Fpn and c ∈ Fp.

De�nition 1.4 (see [11]). Let Γ a linear transformation on a �nite-dimensional

vector space V over a (arbitrary) �eld F , a polynomial f(x) =
∑n

i=0Aix
i in

F [x] is said to annihilate Γ if

f(Γ) = AnΓn + An−1Γ
n−1 + ... + Γ0I = 0

where I is the identity map and 0 is the zero map on V .

The uniquely determined monic polynomial of least degree that satis�es

the last property is called the minimal polynomial for Γ.

In particular this polynomial divides any other polynomial in F [x] annihi-

lating Γ and the cheracteristic polynomial for Γ (Cayley-Hamilton theorem).

We say that a vector α ∈ V is a cyclic vector for T if the vectors T kα, k =

0, 1, ... span V

Lemma 1.1. (see [10])

Let T be a linear operator on the �nite-dimensional vector space V . Then

T has a cyclic vector if and only if the characteristic and minimal polynomials

for T are identical.
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Remark 1.1. We are not able to prove this last Lemma in the particular

case of �nite �elds.

Theorem 1.1 (Normal Basis Theorem, see [10, 11]). For any �nite �eld Fp
and any �nite extension Fpn of Fp there exists a normal basis of Fpn over Fp.

Proof . We have note before that the Frobenius automorphism σ is a linear

operator on Fpn .

Thus we know that σn(η) = ηp
n

= η for every η ∈ Fpn , then σn = 1 and

so σ sats�es the polynomial xn − 1.

We prove that xn − 1 is the minimal polynomial of σ.

We suppose that there is a polynomial

f(x) =
n−1∑
i=0

Aix
i ∈ Fp[x]

of degree less than n that annihilates σ, therefore we have:

f(x) =
n−1∑
i=0

Aiσ
i = 0

Then (
n−1∑
i=0

Aiσ
i

)
(η) =

n−1∑
i=0

Aiσ
i(η) =

n−1∑
i=0

ηp
i

= 0

for any η ∈ Fpn .

Thus η is a root of the polynomial f(x). This is absurd because the degree

of the polynomial f(x) is at most pn−1 and so f(x) cannot have pn > pn−1

roots in Fpn . Hence xn − 1 is the minimal polynomial of σ.

Moreover the minimal polynomial of σ divides the characteristic polyno-

mial of σ (Cayley-Hamilton theorem). But the characteristic polynomial of

σ is monic and of degree n then the characteristic polynomial of σ is equal

to the minimal polynomial of σ, namely xn − 1.

Thus there exists an element α ∈ Fpn such that α, σ(α), σ2(α), ... span

Fpn and form a basis of Fpn over Fp (cf. Lemma 1.1). But the elements of

this basis are α and its conjugates with respect to Fp so these elements form

a normal basis of Fpn over Fp �
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1.2.1 The multiplication matrix

The crucial point in normal basis arithmetic is multiplication. We �rst

consider the general multiplication scheme in Fpn .

Let Fpn be an extension of Fp, let B = {α0, α1, ... , αn−1} a basis over

Fp and let

A =
∑

0≤i<n

Aiαi and B =
∑

0≤j<n

Bjαj with Ai, Bj ∈ Fp

be two elements in Fpn with respect to B.

Because Fpn can be identi�ed as Fnp , i.e the set of all n−tuples over Fp,
so we can write A and B in the form

A = (A0, A1, ... , An−1) and B = (B0, B1, ... , Bn−1)

Hence multiplication is:

A ·B =
∑

0≤i,j<n

AiBjαi · αj

Set

αi · αj =
∑

0≤k<n

t
(k)
i,j αk with t

(k)
i,j ∈ Fp (1.1)

we obtain

C = A ·B =
∑

0≤i,j<n

AiBj · αi · αj =

=
∑

0≤i,j<n

AiBj

( ∑
0≤k<n

t
(k)
i,j αk

)
=

=
∑

0≤k<n

( ∑
0≤i,j<n

AiBjt
(k)
i,j

)
αk =

=
∑

0≤k<n

ckαk

where

ck =
∑

0≤i,j<n

AiBjt
(k)
i,j
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and Tk = (tki,j) is an n× n matrix over Fp.
Thus to implement the multiplication in Fpn is necessary to compute ck

for any k = 0, 1, ... , n − 1 and each ck require from computational point

of view dk multiplications in Fp where dk is the number of nonzero entries

in Tk for any k = 0, 1, ..., n − 1, then to compute C are necessary n · dk
multiplications for any k = 0, 1, ..., n− 1 and (dk − 1) · n additions in Fpn .

Now we consider a normal basis N = {α0, α1, ... , αn−1} of Fpn over Fp,
where we have set αi = αp

i
.

Let A =
∑

0≤i<nAiαi then

Ap = σ(A) = σ

( ∑
0≤i<n

Aiαi

)
=
∑

0≤i<n

Aiσ(αi) =
∑

0≤i<n

Ai−1αi

so the coordinate vectors of A are (An−1, A0, ... , An−2), then A
p is obtained

from A by one cyclic shift of the the coordinates of A and can be compute

without any operations in Fp.
If we now consider the identity (1.1) and we raise both sides of equation

to the p−m-th powers one �nds that:

t
(m)
i,j = t

(0)
i−m,j−m for any 0 ≤ i, j,m < n

Thus the matrix T0 that we use to compute c0 with the coordinates of A

and B is the same matrix that we use to compute cm with the coordinates of

Ap
−m

and Bp−m
, but we know that Ap

−m
as Bp−m

are obtain with m-cyclic

shift of the vector representations of A and B, then we can compute any ck

shifting the A and B vectors. From this property of symmetry of normal

basis N it follows that the computational cost of the multiplication between

A and B depend to the number of nonzero terms of T0 (see [11]).

Now we de�ne n× n−matrix TN = (ti,k)0≤i,k<n with entries in Fp by:

αp
i · α =

∑
0≤k<n

ti,kα
pk

for 0 ≤ i < n

this matrix is called the multiplication matrix of N and is denoted with TN.
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We shall show how is possible to compute the multiplication between A

and B using TN and how the computational cost of their multiplication with

this matrix improves.

Let

A =
∑

0≤i<n

Ai · αp
i

and B =
∑

0≤j<n

Bj · αp
j

be two elements in Fpn with respect to N, it follows:

C = AB =

( ∑
0≤i<n

Ai · αp
i

)
·

( ∑
0≤j<n

Bj · αp
j

)
=
∑

0≤i<n

∑
0≤j<n

AiBjα
pi

αp
j

(1.2)

We can write:

αp
i · αpj

=
(
αp

i−j · α
)pj

=

( ∑
0≤k<n

ti−j,kα
pk

)pj

=
∑

0≤k<n

ti−j,kα
pk+j

=
∑

0≤k<n

ti−j,k−jα
pk

(1.3)

and substituting in (1.2):

C = AB =
∑

0≤i<n

∑
0≤j<n

AiBjα
pi

αp
j

=
∑

0≤i, j<n

AiBj ·

( ∑
0≤k<n

ti−j,k−jα
pk

)

=
∑

0≤k<n

( ∑
0≤i, j<n

Ai ·Bj · ti−j,k−j

)
αp

k

=
∑

0≤k<n

Ckα
pk

(1.4)

where Ck =
∑

0≤i, j<nAi · Bj · ti−j,k−j are the coef�cients C0, ... , Cn−1 of

the product C = A ·B.
If we consider the identities (1.1) and (1.3), we obtain that

t
(k)
i,j = ti−j,k−j
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Therefore the number of non-zero entries in T0 is the number of non-zero

entries in TN and so the multiplication between A and B in the normal basis

representation of Fpn is completely determined by TN.

De�nition 1.5 (see [14]). Let dN = #
{

(i, k) ∈ {0, ... , n− 1}2 : ti,k 6= 0
}

be the number of non-zero entries in TN.

Then dN is the complexity of the normal basis N and the product of two

elements in Fpn with respect to this basis can be computed with at most

n · dN multiplication and at most (dN − 1) · n additions in Fp as in general

case.

But while in the last one we must memorize a n × n-matrix, in the �rst

case we must recall n n× n-matrix.

Obviously we wish to �nd a normal basis such that dN is the smallest

possible. The following theorem gives as a lower bound for dN.

Theorem 1.2 (see [12]). Let N be a normal basis in Fpn over Fp with density

dN. Then dN≥ 2n− 1 .

Proof . Let N = {α, αp, αp2 , ..., αpn−1} be the normal basis over Fp. Let
Tr(α) =

∑n−1
i=0 α

pi
be the trace of α over Fp and let TN = (ti,k)0≤i,k<n be the

multiplication matrix of N

Tr(α) · α =
∑

0≤i<n

(αp
i · α)

Since (αp
i · α) =

∑
0≤k<n ti,kα

pk
we have

Tr(α) · α =
∑

0≤i<n

∑
0≤k<n

ti,kα
pk

=
∑

0≤k<n

( ∑
0≤i<n

ti,k

)
αp

k

(1.5)

and comparing coefficients proves

∑
0≤i<n

ti,k =

{
Tr(α) if k = 0

0 else
(1.6)
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Thus the sum of rows of TN is an n-tuple with Tr(α) in position 1 and zeros

elsewhere.

Since α is nonzero and {ααpi
: 0 ≤ i < n} is also a basis of Fpn over Fp,

then the rows of TN are linearly indipendent. Therefore each column of TN

must contain at least one nonzero element. Moreover with respect to (1.6)

there are at least two nonzero elements in each column with the possible

exception of column one.

So the total number of nonzero elements in TN is at least 2n− 1 �

De�nition 1.6 (Optimal normal bases (1), see [12, 14]). We say that N is

an optimal normal basis of Fpn if dN = 2n− 1 .

Now we illustrate through an example a common way to compute the

multiplication matrix TN with respect to a normal basis N = {α, ... , αpn−1}.

EXAMPLE (Construction of TN)

1. We consider an irreducible minimal polynomial f ∈ F2[x] and let α be

one of its roots. Thus we have the �eld

F25 =
F2

(x5 + x2 + 1)
=

=

{∑
0≤i<5

ai · αi : ai ∈ F2 and f(α) ≡ 0

}

Set β = α3, then {β, β2, β4, β8, β16} is a normal basis, in fact

β = α3 (mod f)

β2 = α6 ≡ α3 + α (mod f)

β4 = α12 ≡ α3 + α2 + α (mod f)

β8 = α24 ≡ α4 + α3 + α2 + α (mod f)

β16 = α48 ≡ α4 + α + 1 (mod f)
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Then we have:

(β, β2, β4, β8, β16) = (1, α, α2, α3, α4) ·



0 0 0 0 1

0 1 1 1 1

0 0 1 1 0

1 1 1 1 0

0 0 0 1 1


and ∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 1

0 1 1 1 1

0 0 1 1 0

1 1 1 1 0

0 0 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 1

2. The computation of the products βp
i · β for 0 ≤ i < 5 in F25 gives

β · β = α3 · α3 ≡ α3 + α (mod f)

β2 · β = α6 · α3 ≡ α4 + α3 + α (mod f)

β4 · β = α12 · α3 ≡ α4 + α3 + α2 + α + 1 (mod f)

β8 · β = α24 · α3 ≡ α3 + α + 1 (mod f)

β16 · β = α48 · α3 ≡ α3 + α2 (mod f)

3. Now we write a matrix T such that in the left part contains the

coefficient of the polynomial basis representation of β2i
for i = 0, ..., 4,

while in the right part contains the coefficient of the polynomial repre-
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sentation of β2i · β.

T =



0 0 0 0 1
∣∣∣0 0 1 1 1

0 1 1 1 1
∣∣∣1 1 1 1 0

0 0 1 1 0
∣∣∣0 0 1 0 1

1 1 1 1 0
∣∣∣1 1 1 1 1

0 0 0 1 1
∣∣∣0 1 1 0 0


We can perform Gaussian elimination on T to write

β · β, β2 · β, β4 · β, β8 · β, β16 · β

as a linear combination of the conjugates of β. The output is then(
I4|T

)
with I5 the 5× 5-identity matrix and

T =



0 0 1 1 1

1 1 1 0 1

0 1 1 1 1

0 1 0 1 0

0 0 1 1 0


4. The multiplication matrix TN is the transposed matrix of T . Then

β · β = β2

β2 · β = β2 + β22

+ β23

β22 · β = β + β2 + β22

+ β24

β23 · β = β + β22

+ β23

+ β24

β24 · β = β + β2 + β22

and so the density of the matrix TN is dN = 15.

1.3 Construction of the optimal normal bases

We will now consider one construction of the optimal normal bases with

the help of roots of unity and cyclotomic polynomials, for this reason we

review some classical results:
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De�nition 1.7 (see [10]). Let n be a positive integer and let K(n) the splitting

�eld of xn− 1 over a �eld K. The roots of xn− 1 in K(n) are called the n-th

roots of unity over K and the set of this roots is denoted by E(n).

De�nition 1.8 (see [10, 14]). Let K a �eld of characteristic p and n a

positive integer not divisible by p. An element ς in a extension �eld of K is

called a primitive n-th root of unity if ςn = 1 and ςs 6= 1 for 0 < s < n .

Thus the primitive n-th root of unity over K is a generator of the cyclic

group E(n).

Under the same condition of De�nition 1.8 the polynomial

Φn(x) =
n∏
s=1

gcd(s,n)=1

(x − ςs)

is called the n-th cyclotomic polynomial over K and ς0, ς1, ... , ςϕ(n) are

the ϕ(n) primitive n-th roots of unity.

Moreover every n-th root of unity over K is a primitive d-th root of unity

over K, for exactly one positive divisor d of n.

In fact, let ς be a primitive n-th root of unity over K and let ςs be an

arbitrary n-th root of unity over K, then d = n/gcd(s, n) is the order of ςs,

but since:

xn − 1 =
n∏
s=1

(x− ςs)

If we collect the factors (x− ςs) for which ςs is a primitive dth root of unity

over K, we obtain the formula:

xn − 1 =
∏
d|n

Qd(x)

and so it follows that

Φn(x) =
xn − 1∏
d|n
d6=n

Φd(x)
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Theorem 1.3 (see [10, 13]). Let p be a prime power and let n be a positive

integer such that gcd(n, p) = 1. Let d be the last positive integer such that

pd ≡ 1 (mod n). Then Fpd is the splitting �eld of Φn and Φn is the product

of φ(n)/d distinct monic irreducible polynomials of degree d.

Proof . Let α be any primitive n-th root of unity over Fp. If α ∈ Fpk , αp
k

= α

and so pk ≡ 1 (mod n). Since d is the least positive integer exponent such

that pd ≡ 1 (mod n) then k is a multiple of d and so α ∈ Fpd .

Now, since n divides pd−1 then the cyclic group F∗
pd has a unique subgroup

of order n and so this subgroup contains all n-th roots of unity, i.e. all the

roots of Φn are in Fpd , then Fpd is the splitting �eld of Φn.

Since d is the least positive integer such that α ∈ Fpd then the minimal

polynomial of α over Fp has degree d and because there are φ(n) primitive

n-th roots of unity then Φn can be factorized in φ(n)/d distinct irreducible

polynomials of degree d, each one is a minimal polynomial of a primitive n-th

roots of unity �

We note that from the last theorem it follows that

Theorem 1.4. Φn is irreducible over Fp if and only if qφ(n) ≡ 1 (mod n).

Then from this we know when Φn is irreducible over a �nite �eld and

we shall use these results in the next theorem that describes some optimal

normal bases.

Theorem 1.5 (Optimal normal bases (2), see [14]). Let n + 1 be a prime

and p be a primitive root modulo n+ 1 (i.e. p modulo n+ 1 generates F∗n+1).

Let ς be a primitive (n + 1)-th root of unity in an extension �eld of Fp and

α = ς. Then N = {α, αp, αp2 , ... , αpn−1} is an optimal normal basis of Fpn

over Fp.

Proof . From Theorem 1.2 and Theorem 1.3 we have that since p is a

primitive root in Fn+1, the minimal polynomial of α is

Φn+1 =
(Xn+1 − 1)

(X − 1)
= Xn + Xn−1 + ... + 1 ∈ Fp[X]
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and the (n + 1)-th roots of unity are linearly indipendent. Thus the set of

the conjugates of α, N = {α, αp, ..., αpn}, is a normal basis for Fpn . This

basis, as we have shown, is equal to the basis {α, α2, ... , αn}.
Now we denote with M = {α · αi : i = 1, ... , n} the set of rows of TN

and we note that the number of nonzero terms in the matrix TN is also the

number of nonzero terms in the expansion of the set M in the basis N.

Thus we have

α · αi = αi+1 = αj for 1 ≤ j < n

and

α · αn = 1 = −
∑

1≤i≤n

αi

Therefore there are exactly (n− 1) +n = 2n− 1 nonzero terms in TN and so

N is an optimal normal basis �

Theorem 1.6 (see [4]). Let n+1 be a prime, let p be a primitive root modulo

n + 1 so that αi = αi (mod n+1). The basis {α, αp, αp2 , ... , αpn−1} for Fpn

over Fp is the same as the basis {α, α2, ... , αn} for Fpn over Fp.

Proof . It is suf�cient to show that {1, p, p2, ... , pn−1} = {1, 2, ... , n}
in Fn+1. Suppose 0 ≤ j ≤ i ≤ n− 1 and pi ≡ pj (mod n+ 1).

Then pj(pi−j − 1) ≡ 0 (mod n + 1) and so pi−j ≡ 1 (mod n + 1). Fur-

thermore the order of p, that is n, divides i− j.
But i− j < n then i = j.

Hence {1, p, p2, ... , pn−1} are all distinct and {1, p, p2, ... , pn−1} =

{1, 2, ... , n} �

We note, also, that the basis {α, α2, ... , αn} is di�erent but similar

to the traditional power basis {1, α, ... , αn−1} for Fpn over Fp. For switch
quickly between these two bases we use the identities:

αn = −αn−1 − αn−2 − ...− α− 1 and α0 = −αn − αn−1 − ...− α

Moreover we can reduce the exponents of α that are > n using the relation

αi = αi (mod n+1) and the relation α0 = −αn − αn−1 − ... − α can be used
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for exponents of α that are zero modulo n + 1. Thus as a consequence of

the optimality of the bases the reduction stage of the multiplication in Fpn

requires only 2n− 1 additions in Fp (see [7]).
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Chapter 2

Arithmetic operations in Fp2

Now we describe how the computations in Fp2 can be done e�ciently; for

this purpose a rapresentation of Fp2 is needed that allows e�cient arithmetic

operations.

Let p ≡ 2 (mod 3), it follows that (X3 − 1)/(X − 1) = X2 + X + 1

is irriducibele over Fp.
In fact we have that one root of the polynomial has the form

α =
−1 +

√
−3

2

and so X2 + X + 1 is irriducible if and only if −3 is a quadratic

non-residue modulo p. Using the Legendre symbol1 it follows that:(
−3

p

)
=

(
−1

p

)
·
(

3

p

)
= (−1)

p−1
2 ·

(
3

p

)
then

1We recall that if a is an integer and p > 2 a prime, we de�ne the Legendre symbol(
a
p

)
to equal 0, 1 or −1, as follows:

(
a

p

)
=


0 if p|a
1 if a is a quadratic residue (mod p)

−1 if a is a nonresidue (mod p)

(see [5])
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• if p−1
2

is even ⇒ p ≡ 1 (mod 4) and so (−1)
p−1
2 ·
(

3
p

)
= −1

• if p−1
2

is odd ⇒ p ≡ 3 (mod 4) and so (−1)
p−1
2 ·
(

3
p

)
= (−1) · (1) = −1

Therefore −3 is a quadratic non-residue modulo p and X2 + X + 1 is

irriducible over Fp[X], so Fp2 ∼= Fp[X]/(X2 + X + 1).

Moreover, since p ≡ 2 (mod 3), p is a primitive root modulo 3, i.e. p

(mod 3) generates F∗3. Then considering Theorem 1.5 the zeros α and αp of

the polynomial (X3 − 1)/(X − 1) = X2 + X + 1 form an optimal normal

basis for Fp2 over Fp, i.e.

Fp2 ∼= {x1α + x2α
p : x1, x2 ∈ Fp} .

From αi = αi (mod 3) it follows that αp = α2+3k = α2 · 1k = α2 and so

Fp2 ∼=
{
x1α + x2α

2 : α2 + α + 1 = 0 , x1, x2 ∈ Fp
}
.

Note that in this representation of Fp2 an element t of Fp is represented by

−tα − tα2, e.g. 3 is represented by −3α− 3α2 (see [8]).

Arithmetic operations in Fp2 are carried out as follows.

Lemma 2.1 (see [8]). Let x, y, z ∈ Fp2 with p ≡ 2 (mod 3) prime. Not

couting additions or subtractions in Fp:
i. Computing xp is for free.

ii. Computing x2 takes two multiplications in Fp.
iii. Computing x · y takes three multiplications in Fp.
iv. Computing x · z − y · zp takes four multiplications in Fp.

Proof . Let x = x1α + x2α
2 ∈ Fp2 we have that:

xp = xp1α
p + xp2α

2p = x2α + x1α
2

It follows that pth powering in Fp2 does not require arithmetic operations and

thus can be considered to be for free, this prove i.
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For squaring, we write:

(x1α + x2α
2)2 = x2

1α
2 + x2

2α
4 + 2x1x2α

3 (∗)

because α3 ≡ 1 ≡ −α − α2 and α4 ≡ α both modulo α2 + α + 1 it follows

(∗) = x2
1α

2 +x2
2α − 2x1x2α − 2x1x2α

2 = x1(x1 − 2x2)α
2 + x2(x2 − 2x1)α

that prove ii.

Let x = x1α + x2α
2 and y = y1α + y2α

2 ∈ Fp2 and we compute

x · y = (x1α + x2α
2) · (y1α + y2α

2) =

= (x1y1α
2 + x1y2 + x2y1 + x2y2α) =

= (x2y2 − x1y2 − x2y1)α + (x1y1 − x1y2 − x2y1)α
2

using Karatsuba method (see Appendix A), �rst compute x1 · y1, x2 · y2 and

(x1 + x2)(y1 + y2), after which x1 · y2 + x2 · y1 and thus x · y follow using

four subtractions.

Finally let x = x1α + x2α
2, y = y1α + y2α

2, z = z1α + z2α
2 ∈ Fp2 ,

it follows that:

x · z − y · zp =

= (x1α + x2α
2) · (z1α + z2α

2) − (y1α + y2α
2) · (z1α + z2α

2)p =

= (x1α + x2α
2) · (z1α + z2α

2) − (y1α + y2α
2) · (zp1αp + zp2α

2p) =

= (x1α + x2α
2) · (z1α + z2α

2) − (y1α + y2α
2) · (z1α

2 + z2α)

with α2 + α + 1 ≡ 0 it follows

= x1 · z1α
2 + x1 · z2 + x2 · z1 + x2 · z2α −

− y1 · z1 − y1 · z2α
2 − y2 · z1α − y2 · z2 =

= x1 · z1α
2 + x1 · z2 · (−α − α2) + x2 · z1 · (−α − α2) + x2 · z2α −

− y1 · z1 · (−α − α2)− y1 · z2α
2 − y2 · z1α − y2 · z2 · (−α − α2) =

= (z1 · (y1 − x2 − y2) + z2 · (x2 − x1 + y2))α +

+ (z1 · (x1 − x2 + y1) + z2 · (y2 − x1 − y1)α
2)
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that prove iv. �

For comparison purposes we review the following results.

Lemma 2.2 (see [9]). 2

Let x, y, z ∈ Fp6 with p ≡ 5 (mod 7), and let s, t ∈ Z with 0 < s, t < p.

i. Computing x · y takes 18 multiplications in Fp.
ii. Computing x2 takes 18 squarings in Fp.
iii. Computing xs takes an expected 9 log2 s multiplications and 18 log2 s

squarings in Fp.
iv. Computing xs · xt takes an expected 13.5 log2 max(s, t) multiplications

and 18 log2 max(s, t) squarings in Fp.

Proof . Since p ≡ 5 (mod 7), p generates F∗7 and Φ7(X) = X6 +X5 +X4 +

X3 +X2 +X + 1. Let α denote a root of Φ7(X), then Fp6 can be represented

using the optimal normal bases {α, α2, ... , α6} over Fp.
So multiplication and squarings in Fp6 can be done in 18 multiplications

and squarings in Fp respectively, rather than 36 as it is required by the classic

algorithm for the multiplications.

In fact, let

x =
5∑
i=0

xiα
i+1 and y =

5∑
j=0

yjα
j+1

using the Karatsuba algorithm, with proper adjustment of the powers of α,

i.e.

x = X0 α +X1 α
4 and y = Y0α + Y1α

4

where X0, X1, Y0, Y1 are the second degree polynomials, we have that:

x · y = (X0α + X1α
4) · (Y0α + Y1α

4)

= X1Y1α
8 + (X0Y1 + X1Y0)α

5 + X0Y0α
2

2We remark that in the article [9] p is 2 (mod 3).

Instead, our choice to take p ≡ 2 (mod 7) is a �trick� to have an optimal normal basis,

as con�rmed by a e-mail sent us by Martijn Stam, a A. K. Lenstra's student.
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so that with z0 = X0Y0, z1 = X1Y1 and z2 = (X0 + X1) · (Y0 + Y1)

x · y = z1α
8 + (z2 − z1 − z0)α

5 + z0α
2

Each of this zi can be computed using 6 multiplication, in fact, because

X0 = x0 + x1α + x2α
2 and Y0 = y0 + y1α + y2α

2 we have that:

z0 = X0Y0 =

= x0y0 + (x0y1 + x1y0)α + (x0y2 + x1y1 + x2y0)α
2 +

+ (x1y2 + x2y1)α
3 + x2y2α

4

so that using Karatsuba method again, we set:

z0 = x0y0, z1 = x1y1, z2 = x2y2,

z3 = (x0 + x1) · (y0 + y1),

z4 = (x0 + x2) · (y0 + y2),

z5 = (x1 + x2) · (y1 + y2)

thus

z0 = z0 + (z3 − z0 − z1)α + (z1 + z4 − z0 − z2)α
2 +

+ (z5 − z1 − z2)α
3 + z2α

4

z1 and z2 can be computed in a similar way. It follows that 18 multiplications

(or squarings) are su�ce to compute x · y (or x2) and this proves i and ii.

For iii we use the ordinary square and multiply method. Therefore we

get log2 s squarings and expected 0.5 log2 s multiplications in Fp6 and so

considering the result of i and ii we have 9 log2 s multiplications and 18 log2 s

squarings in Fp.
For iv we use standard multi-exponentiation (see Appendix B) and so we

obtain log2(max(s, t)) squarings and 0.75 log2(max(s, t)) multiplications in

Fp6 which are equivalent to 13.5 log2(max(s, t)) multiplications and 18 log2(max(s, t))

squarings in Fp. �
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Chapter 3

XTR supergroup and XTR

subgroup

The XTR work environment is the multiplicative group of the �nite �eld

Fp6 . This cyclic group has order p6 − 1, therefore only one cyclic subgroup

with order p2 − p+ 1 exsist (see [8]).

The latter group is reffered to as the XTR supergroup, X . Because p2 −
p + 1 not divide any ps − 1 for s = 1, 2, 3, X cannot be embedded in the

multiplicative group of any true sub�eld of Fp6 .
Let g be an element of order q > 3 dividing p2 − p + 1. The order q

subgroup Y = 〈g〉 genereted by g is referred to as XTR subgroup (see [8]).

We show, here below, that arbitrary powers of g can be represented using

a single element of the sub�eld Fp2 , and that such powers can be computed

e�ciently using arithmetic operations in Fp2 , avoiding arithmetic in Fp6 (see
[9]).

3.1 Traces

De�nition 3.1. The trace Tr(h) over Fp2 of h ∈ Fp6 is the sum of the

conjugates over Fp2 of h, i.e.,

Tr(h) = h+ hp
2

+ hp
4
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Because h ∈ Fp6 , the order of h divides p6− 1 and so hp
6

= hp
6−1 · h = h,

it follows that

Tr(h)p
2

= (h+ hp
2

+ hp
4

)p
2

= hp
2

+ hp
4

+ hp
6

= hp
2

+ hp
4

+ h = Tr(h)

so that Tr(h) ∈ Fp2 (see [8, 9]).

Proposition 3.1. The function Tr from Fp6 to Fp2 is an Fp2-linear applica-
tion, i.e.

Tr(h+ k) = Tr(h) + Tr(k)

Tr(c · h) = c · Tr(h)

Proof . Let c ∈ Fp2 such that cp
2

= c, and let h, k ∈ Fp6 we have that

Tr(h + k) = (h + k) + (h + k)p
2

+ (h + k)p
4

= h + k + hp
2

+ kp
2

+ hp
4

+ kp
4

= Tr(h) + Tr(k)

Tr(c · h) = c · h + cp
2 · hp2 + cp

4 · hp4

= c · h + c · hp2 + c · hp4

= c · ( h + hp
2

+ hp
4

)

= c · Tr(h)

�

Now let g ∈ F∗p6 be an element of order q > 3 and such that q divides

p2−p+1. The conjugates of g which order divide p2−p+1 are g, gp
2

= gp−1,

since p2 ≡ p − 1 (mod p2 − p + 1), gp
4

= g−p, since p4 ≡ (p − 1)2 ≡
p2 − 2p+ 1 ≡ p− 1− 2p+ 1 ≡ −p (mod p2 − p+ 1) and so

Tr(g) = g + gp
2

+ gp
4

= g + gp−1 + g−p

Mereover, since the order of g divides p6 − 1 the trace over Fp2 of g equals

the trace of the conjugates over Fp2 of g:
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Tr(g) = Tr(gp
2

) = Tr(gp
4

)

From this last result and since in XTR elements of X are represented by

their trace over Fp2 , it follows that XTR makes no distinction between an

element of Y = 〈g〉 and its conjugates over Fp2 (see [16]).

3.2 The polynomials F (c,X)

De�nition 3.2 (see [9]). For c ∈ Fp2 de�ne the polynomial

F (c,X) = X3 − cX2 + cpX − 1 ∈ Fp2 [X]

with (not necessarily distinct) roots h0, h1, h2 ∈ Fp6 [X], and de�ne

cn = hn0 + hn1 + hn2 for n ∈ Z.

Now we considered c of the form Tr(g) for g of order > 3 and dividing

p2 − p+ 1. We have the following result:

Theorem 3.1 (see [9]). The roots of X3 − Tr(g)X2 + Tr(g)pX − 1 are

the conjugates of g.

Proof . We compare the coefficients of X3 − Tr(g)X2 + Tr(g)pX − 1

with the coefficients of the polynomial (X − g)(X − gp − 1)(X − g−p).

The coefficients of X2 follows from g + gp − 1 + g−p = Tr(g).

The coefficients of X equals:

g · g−p + g · gp − 1 + g−p · gp − 1 = gp + g1 − p + g−1

Since 1 − p ≡ − p2 mod p2 − p + 1 and −1 ≡ p2 − p mod p2 − p + 1

we �nd that:

gp + g1 − p + g−1 = gp + g−p
2

+ gp
2 − p = (g + g−p + gp − 1)p = Tr(g)p
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The constant coefficients is the product of the conjugates:

g · g−p · gp − 1 = g1 − p + p − 1 = g0 = 1

which completes the proof. �

Therefore

(X − g)(X− gp − 1)(X − g−p) = X3 − Tr(g)X2 + Tr(g)pX − 1 ∈ Fp2 [X]

is actually the minimal polynomial of g over Fp2 and so this polynomial and

the conjugates of g are fully determined by Tr(g) ∈ Fp2 .
The same holds for any power of g, in fact for any integer n the conjugates

of gn are the roots of X3 − Tr(gn)X2 + Tr(gn)pX − 1 ∈ Fp2 [X], and the

latter polynomial and the conjugates of gn are determined by Tr(gn) ∈ Fp2 .
This observation is useful for cryptographic purposes if there is a way to

e�ciently compute Tr(gn) given Tr(g). In cryptographic protocols, then,

gn ∈ Fp6 can be replaced by Tr(gn) ∈ Fp2 , thereby obtaining a saving of a

factor 3 in the rapresentation size (see [8]).

We will show that Tr(gn) can indeed be computed quickly given Tr(g),

so that a considerable speed advantage is obtained.

For this purpose now we consider the properties of the polynomial X3 −
cX2 + cpX − 1 for general c ∈ Fp2 as in De�nition 3.2. .

3.3 Properties of F (c,X) and its roots

Lemma 3.1. �Properties of F (c,X), see [9]�

i. F (c, h−pj ) = 0 for j = 0, 1, 2.

ii. Either all hj have order dividing p
2 − p + 1 and > 3 or all hj ∈ Fp2.

Proof i. From F (c, hj) = h3
j − ch2

j + cphj − 1 = 0 it follows that hj 6= 0
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and that

0 = F (c, hj)
p =

= h3p
j − cph2p

j + cp
2

hpj − 1 =

= −h3p
j · (−1 + cph−pj − ch−2p

j + h−3p
j ) =

= −h3p
j · F (c, h−pj )

where hj 6= 0 and cp
2

= c. Therefore F (c, h−pj ) = 0 and thus for all root hj,

its power h−pj is also root of the polynomial F (c,X).

Proof ii. From i it follows, without loss of generality, that we have three

possibility:

1. hj = h−pj for j = 0, 1, 2 .

2. h0 = h−p0 , h1 = h−p2 , h2 = h−p1 .

3. hj = h−pj+1 mod 3 for j = 0, 1, 2 .

In the �rst case all hj have order dividing p + 1 and thus in Fp2 , in fact we

have:

hp+1
j = hj · hpj = hj · h−1

j

In the second case, h0 has order dividing p + 1 because h0 = h−p0 . While

h1 = h−p2 = hp
2

1 and h2 = h−p1 = hp
2

2 , so that h1 and h2 both have orders

dividing p2 − 1 and thus h1, h2 ∈ Fp2 .
In the last case it follows from 1 = h0 · h1 · h2 that

1 = h0 · h1 · h2 = h0 · h−p2 · h
−p
0 = h0 · hp

2

0 · h
−p
0 = hp

2 − p + 1
0

so that h0 and similarly h1 and h2 have order dividing p2 − p + 1

Moreover if either one, say h0, has order at most 3, then h0 has order 1

or 3 since p2 − p + 1 is odd.

Since 3 divide p2 − 1, in fact p2 ≡ 1 mod 3, it follows that the order of

h0 divides p2 − 1 so that h0 ∈ Fp2 . But then h1 and h2 are in Fp2 as well,

because they are power of h0.
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It follows that while in the �rst and second case the roots are in Fp2 , in
the last case either all hj have order dividing p

2 − p + 1 and > 3, i.e. hj ∈
X for j = 0, 1, 2, or all hj are in Fp2 .

Recall that, as in De�nition 3.2, cn = hn0 + hn1 + hn2 . Now we show its

properties.

Lemma 3.2. �Properties of cn, see [9]�

i. c = c1.

ii. c−n = hn0 · hn1 + hn0 · hn2 + hn1 · hn2 for n ∈ Z.
iii. c−n = cnp = cpn for n ∈ Z.
iv. cn ∈ Fp2 for n ∈ Z.
v. cu+v = cu · cv − cpv · cu−v + cu−2v for u, v ∈ Z.

Proof . The proof follows from the de�nition of cn in De�nition 3.2, in fact

it follows that

c1 = h0 + h1 + h2 = c

For ii, because h0 · h1 · h2 = 1 it follows that

h1 · h2 = h−1
0 ⇒ (h1 · h2)

n = h−n0

h0 · h2 = h−1
1 ⇒ (h0 · h2)

n = h−n1

h0 · h1 = h−1
2 ⇒ (h0 · h1)

n = h−n2

therefore

(h1 · h2)
n + (h0 · h2)

n + (h0 · h1)
n = hn1 · hn2 + hn0 · hn2 + hn0 · hn1 =

= h−n0 + h−n1 + h−n2 = c−n

Now we consider the three cases of the proof of ii in Lemma 3.1 (Properties

of F (c,X)):

1. If hj = h−pj for j = 0, 1, 2 then hnpj = h−nj and thus c−n = h−n0 +

h−n1 + h−n2 = hnp0 + hnp1 + hnp2 = cnp.
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2. If h0 = h−p0 , h1 = h−p2 and h2 = h−p1 then c−n = h−n0 + h−n1 + h−n2 =

hnp0 + hnp1 + hnp2 = cnp.

3. if hj = h−pj+1 mod 3 for j = 0, 1, 2 then c−n = h−n0 + h−n1 + h−n2 =

hnp1 + hnp2 + hnp0 = cnp.

Moreover cnp = (hn0 + hn1 + hn2 )p = cpn that proves iii.

If all hj ∈ Fp2 , then iv is immediate. Otherwise, it follows from Lemma

3.1.ii that1 F (c,X) ∈ Fp2 [X] is irreducible if and only if its roots have order

dividing p2 − p + 1 and are > 3, so we have that F (c,X) is irreducible and

its roots are the conjugates of h0. Thus cn = Tr(hn0 ) ∈ Fp2 , which concludes

the proof of iv.

By the de�nition of cn, c−n = cpn (cf. Property iii) and the relationship

hn0 + hn1 + hn2 = 1, the proof of v follows from a staightforward computation.

In fact we have that

cu · cv − cpv · cu−v + cu−2v =

= (hu0 + hu1 + hu2) · (hv0 + hv1 + hv2) − (hv0 + hv1 + hv2)p ·

· (hu−v0 + hu−v1 + hu−v2 ) + (hu−2v
0 + hu−2v

1 + hu−2v
2 ) =

By the relationship c−n = cpn it follows

= hu+v0 + hu+v1 + hu+v2 + hu0 · hv1 + hu0 · hv2 + hu1 · hv0 + hu1 · hv2 +

+ hu2 · hv0 + hu2 · hv1 − (h−v0 + h−v1 + h−v2 ) · (hu−v0 + hu−v1 + hu−v2 ) +

+ (hu−2v
0 + hu−2v

1 + hu−2v
2 ) =

= hu+v0 + hu+v1 + hu+v2 + hu0 · hv1 + hu0 · hv2 + hu1 · hv0 + hu1 · hv2 +

+ hu2 · hv0 + hu2 · hv1 − hu−2v
0 − hu−2v

1 − hu−2v
2 − h−v0 · hu−v1 +

− h−v0 · hu−v2 − h−v1 · hu−v0 − h−v1 · hu−v2 − h−v2 · hu−v0 +

+ h−v2 · hu−v1 + hu−2v
0 + hu−2v

1 + hu−2v
2 = (∗)

1We remember that The polynomial f ∈ F [X] of degree 2 or 3 is irriducible in F [X]

if and only if f has no root in F (see [10], Theorem 1.69).
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Now if we use the relation hn0 + hn1 + hn2 = 1, it follows that

− hu−2v
0 − hu−2v

1 − hu−2v
2 = −1

hu−2v
0 + hu−2v

1 + hu−2v
2 = 1.

Moreover

h−v0 = hv1 · hv2, h−v1 = hv0 · hv2, h−v2 = hv0 · hv1

thus

(∗) = hu+v0 + hu+v1 + hu+v2 + hu0 · hv1 + hu0 · hv2 + hu1 · hv0 + hu1 · hv2 +

+ hu2 · hv0 + hu2 · hv1 − hu1 · hv2 − hv1 · hu2 − hu0 · hv2 − hv0 · hu2 +

+ hu0 · hv1 − hv0 · hu1 =

= hu+v0 + hu+v1 + hu+v2 = cu+v.

�

Theorem 3.2 (see [9]). F (cn, h
n
j ) = 0 for j = 0, 1, 2 and n ∈ Z.

Proof . We compute the coefficients of (X − hn0 )(X − hn1 )(X − hn2 ) and

compare this coefficients with the coefficients of the polynomial

F (cn, X) = X3 − cnX
2 + cpnX − 1 ∈ Fp2 .

We have:

(X − hn0 )(X − hn1 )(X − hn2 ) =

= (X2 − hn1X − hn0X + hn0h
n
1 )(X − hn2 ) =

= X3 − hn1X
2 − hn0X

2 − hn2X
2 + hn0h

n
1X + hn1h

n
2X + hn0h

n
2X +

+ hn0h
n
1h

n
2 =

= X3 − (hn0 + hn1 + hn2 )X2 + (hn0h
n
1 + hn0h

n
2 + hn1h

n
2 )X − hn0h

n
1h

n
2

We �nd that the coef�cient of X2 equals − (hn0 + hn1 + hn2 ) = −cn,the
coefficient of X equals (hn0h

n
1 + hn0h

n
2 + hn1h

n
2 ) = c−n = cpn (cf. Lemma 3.2.iii)

and �nally the constant coef�cient equals − hn0h
n
1h

n
2 = −(h0h1h2)

n = −1
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Thus it follows that (X − hn0 )(X − hn1 )(X − hn2 ) = F (cn, X) and so

F (cn, h
n
j ) = 0 for j = 0, 1, 2. �

Theorem 3.3 (see [9]). F (c,X) is riducible over Fp2 if and only if cp+1 ∈ Fp.

Proof .(⇒) If F (c,X) is riducible then all hj are in Fp2 for j = 0, 1, 2 (Lemma

3.1.ii) (We remember the equivalence in proof iv of the (Lemma 3.2)).

It follows that

(hp+1
j )p = hp

2+p
j = hp+1

j ⇒ hp+1
j ∈ Fp for j = 0, 1, 2 and so also their sum

hp+1
0 + hp+1

1 + hp+1
2 = cp+1 ∈ Fp.

(⇐) If cp+1 ∈ Fp then cpp+1 = cp+1 and F (cp+1, X) = X3 − cp+1X
2 +

cp+1X − 1 thus 1 is root of F (cp+1, X), i.e. F (cp+1, 1) = 0.

Since the roots of F (cp+1, X) are the (p + 1)th powers of the roots of

F (c,X) (cf. Theorem 3.2), it follows that F (c,X) has a root of order dividing

p+ 1 and so p2 − 1, i.e. an element of Fp2 , so that F (c,X) is riducible over

Fp2 . �

We conclude this section observing that the Theorem 3.2 is fundamental.

From this theorem follows that for cn = Tr(gn) the conjugates of gn are the

roots ofX3 − Tr(gn)X2 + Tr(gn)pX − 1 ∈ Fp2 [X] and this polynomial with

gn's conjugates are fully determined by Tr(gn), as we claimed on the other

hand with this result we have a compact rappresentation of every powers of

g replacing gn ∈ F∗p6 with Tr(gn) ∈ Fp2 .

3.4 The computation of cn

In the last section, we have show the properties of cn, the same properties

that lead to a fast algorithm to compute cn for any n ∈ Z.
In fact we have the following results:

Corollary 3.1 (see [9]). Assume that c, cn−1, cn and cn+1 are given. Then

i. Computing c2n = c2n − 2cpn takes two multiplications in Fp.
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ii. Computing cn+2 = c · cn+1 − cp · cn + cn−1 takes four multiplications

in Fp.
iii. Computing c2n−1 = cn−1 ·cn − cp ·cpn + cpn+1 takes four multiplications

in Fp.
iv. Computing c2n+1 = cn+1 · cn − c · cpn + cpn−1 takes four multiplications

in Fp.

Proof . The identities follows from Lemma 3.2 .iii, .iv .

In fact from

cu+v = cu · cv − cpv · cu−v + cu−2v

for i, let u = v = n and c0 = 3. We have

c2n = cn · cn − cpn · 3 + c−n

and since c−n = cpn following c2n = c2n − 2cpn.

For ii, let u = n+ 1 and v = 1. We have

cn+2 = cn+1 · c − cp · cn + cn−1

For iii, let u = n− 1 and v = n. We have

c2n−1 = cn−1 · cn − cpn · c−1 + c−(n+1)

and since c−n = cpn it follows c2n−1 = cn−1 · cn − c · cpn + cpn−1.

Finally for iv, let u = n+ 1 and v = n. We have

c2n+1 = cn+1 · cn − cpn · c + c−(n−1)

and since c−n = cpn it follows c2n+1 = cn+1 · cn − cpn · c + cp(n−1).

Now we compute the computational costs of these last four identities,

considering the Lemma 2.1.

In the �rst identity, since p ≡ 2 mod 3, we compute only c2n and that

takes two multiplications in Fp, while to compute the cost of the three last

identities we consider the relation x·z − y ·zp that takes four multiplications

in Fp, setting x = cn+1, y = cn and z = c for ii, x = cn−1, y = cp and z = cn

for iii, and �nally x = cn+1, y = c and z = cn for iv.
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De�nition 3.3. Let Sn(c) = (cn−1, cn, cn+1) ∈ (Fp2)3

Algorithm 3.1 (Computation of Sn(c) given n and c, see [8, 9])

1. If n < 0 apply this algorithm to −n and c, and apply the relation

c−n = cnp = cpn to the resulting value, obtaining

Sn(c) =
(
c−(n+1), c−n, c−(n−1)

)
=
(
cpn+1, c

p
n, c

p
n−1

)
2. If n = 0 apply the relation c−n = cnp = cpn and with c0 = 3,

obtaining

S0(c) = (c−1, c0, c) = (cp, 3, c)

3. If n = 1 apply the identity c2n = c2n − 2cpn, obtaining

S1(c) = (c0, c, c2) =
(
3, c, c2 − 2cp

)
4. if n = 2 use the identity cn+2 = c · cn+1 − cp · cn + cn−1 and

S1(c) to compute c3 and thereby

S2(c) = (c, c2, c3)

5. if n > 2 to compute Sn(c) let m = n

If m is even then replace m by m− 1.

Let m = 2m + 1, Sm(c) = Sm(c), k = 1 and compute Sk(c) =

S3(c) using the identity cn+2 = c · cn+1 − cp · cn + cn−1 and

S2(c).

Let m =
∑r

j=0mj2
j with mj ∈ {0, 1} and mr = 1.

For j = r−1, r−2, ...., 1, 0 in succession do the following:

� If mj = 0 then use Sk(c) = (c2k, c2k+1, c2k+2) to compute S2k(c) =

(c4k, c4k+1, c4k+2), using:
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• The identity c2n = c2n − 2cpn to compute c4k and c4k+2.

• The identity c2n−1 = cn−1 · cn − cp · cpn + cpn+1 to compute

c4k+1.

and replace k by 2k.

� If mj = 1 then use Sk(c) = (c2k, c2k+1, c2k+2) to compute S2k+1(c) =

(c4k+2, c4k+3, c4k+4), using:

• The identity c2n = c2n − 2cpn to compute c4k+2 and c4k+4.

• The identity c2n+1 = cn+1 · cn − c · cpn + cpn−1.

and replace k by 2k + 1.

After this iterations we have that k = m and Sm(c) = Sm(c).

If n is even use Sm(c) = (cm−1, cm, cm+1) to compute Sm+1(c) =

(cm, cm+1, cm+2) using the identity cn+2 = c · cn+1 − cp · cn +

cn−1 and replace m by m+ 1.

As a result we have Sn(c) = Sm(c).

Remark 3.1. The only difference between the two cases in the last algorithm

is the application of the identity c2n−1 = cn−1 · cn − cp · cpn + cpn+1 if the bit

is off and of the identity c2n+1 = cn+1 · cn − c · cpn + cpn−1 if the bit is on. The

two computations are very similar and take the same number of instructions.

This great similarity makes this algorithm much less susceptible to attacks

(see [9]).

Theorem 3.4 (see [8]). Given the sum c of the roots of F (c, X), computing

the sum cn of the nth powers of the roots takes 8 · log2 (n) multiplications in

Fp.

Proof . The proof of this theorem follows immediately from Algorithm above

and Corollary 3.1 .
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In fact log2 (n) is the number of bits necessary to represent n in binary

base, and so it is the number of iterations in algorithm necessary to compute

Sn(c), moreover for each iteration are necessary 8 multiplications to compute

the two ck, four multiplications for each ck computed with the identities of

the Corollary 3.1 .

Now setting c = Tr(g) and remembering the two Theorem 3.1 and 3.2, it

follows that

Sn(Tr(g)) =
(
Tr(gn−1), T r(gn), T r(gn+1))

)
Therefore, the algorithm above can be used to compute Sn(Tr(g)) for any n,

given Tr(g).

Moreover, considering the Theorem 3.4, given the representation Tr(g) ∈
Fp2 of the conjugates of g, the representation Tr(gn) ∈ Fp2 of the nth power

of g can be computed at the cost of 8 log2 (n) multiplications in Fp, for any
integer n.

If we assume, as the experts, that a squaring in Fp takes 80% of the time

of a multiplication in Fp (see [2]), then, according to Lemma 2.2., computing

gn given g can be expected to take 23.4 log2 (n) multiplications in Fp.
Thus, comparing these two last results we obtain that computing Tr(gn)

given Tr(g) is almost three times faster than computing gn given g.

We will see ahead that the ability to quickly compute Tr(gn) based on

Tr(g) su�ces for the implementation of many cryptographic protocols.
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Chapter 4

XTR parameter and key selection

In the previous chapters we have seen that, to construct XTR, primes

p, q must be satisfy the following conditions:

1. p and n+ 1 are prime numbers and p is a primitive root (mod n+ 1).

2. Φ6(p) = p2 − p+ 1 has a prime factor q.

By the �rst condition we obtain that Fp2 has an optimal normal basis

(cf. Theorem 1.5), while by the second condition the XTR subgroup Y, with

order q, cannot be embedded in the multiplicative group of any true sub�eld

of Fp6(see [7], Lemma 2.4).

Therefore in the �rst section we are going to present any algorithm to

�nd the primes p and q that satisfy the two conditions above, while in the

second section we are going to consider the problem to �nd, with an element

g ∈ Fp6 with order q, a proper Tr(g).

4.1 Selection of p and q

Now let us describe fast and practical methods that satisfy the two previ-

ous conditions. Moreover, to use the fast Fp2 arithmetic described in chapter

2, the prime p should be 2 (mod 3).
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Let P and Q denote the bit lengths of the primes p and q to be generated,

respectively.

Algorithm 4.1 (Selection of �nice� p and q, see [8])

1. Find r ∈ Z such that q = r2 − r + 1 is a Q-bit prime 1.

2. Find k ∈ Z such that p = r + k · q = kr2 + (1− k)r + k is

a P-bit prime that is 2 (mod 3).

Trough this algorithm we can �nd primes p that satisfy a second degree

polynomial with small coefficients.

We note that if we �nd k = 1, then we search r such that both r2 − r + 1

and r2 + 1 are prime and such that p ≡ r2 + 1 ≡ 2 (mod 3) and so the

prime p has a �very nice� form.

In this case to obtain p prime, r must be even, i.e. r = 2k with k ∈ Z,
therefore p = r2 + 1 = 4k2 + 1 and so p ≡ 1 (mod 4).

Another method to generate p and q is the following:

Algorithm 4.2 (Selection of p and q, see [8, 9])

1. Select a Q-bit prime q ≡ 7 (mod 12) 2.

2. Find the roots r1 andr2 of X2 − X + 1 (mod q).

3. Find k ∈ Z such that

p = ri + k · q for i = 1, 2

1It is conjectured there are in�nitely many primes of the form r2 − r + 1.
2Exists for the Dirichlet's theorem, this theorem states that for any two positive coprime

integers a and b, there are in�nitely many primes of the form a + nb, i.e. there are in�nitely

many primes which are congruent to a mod b.
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is a P-bit prime that is 2 (mod 3).

It follows from q ≡ 7 (mod 12) that q ≡ 1 (mod 3) and q ≡ 3 (mod 4).

Now let us compute the roots of X2 − X + 1 which have the form:

r1/2 =
1±
√
−3

2
(mod q);

then r1 and r2 exsist if and only if −3 is a quadratic residue modulo q, i.e(
−3

q

)
=

(
−1

q

)
·
(

3

q

)
= (−1)

q−1
2

(
3

q

)
= −

(
3

q

)
.

The last identity follows since q ≡ 3 (mod 4) and so q−1
2

is odd. Moreover

from Quadratic Reciprocity Law (see [5]), since both 3 and q are≡ 3 (mod 4),

we have that:

−
(

3

q

)
=
(q

3

)
that is equal to 1 since q ≡ 1 (mod 3).

Thus we have proved that the roots exsist.

Moreover, since q ≡ 3 (mod 4), r1 and r2 can be found using a single

((q + 1)/4)th powering modulo q (see [5]).

Finally if p = ri + kq for i = 1, 2 then q divide p2 − p+ 1.

4.2 Selection of the subgroup

Given p and q > 3, we must �nd Tr(g) ∈ Fp2 for an element g ∈ Fp6 of

order q.

We observe that an actual representation of g is not required and it su�ces

to know its trace.

But if we know Tr(g) for an unspeci�ed g, we can compute a generator

of XTR subgroup determining any root of F (Tr(g), X) (cf. De�nition 3.2).

One of the approach to �nd Tr(g) is to represent Fp6 using a third degree

irreducible polynomial over Fp2 and to choose an element k ∈ Fp6 such that

k(p6−1)/q 6= 1. Set g = k(p6−1)/q, it is possible to compute Tr(g) (see [9]).
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We obtain another approach recalling that F (c,X) ∈ Fp2 [X] is irreducible

if and only if its roots in F∗p6 have order dividing p2 − p + 1 and are > 3

(cf. Proof iv Lemma 3.2). It follows that if c ∈ Fp2 is such that F (c,X) is

irriducible, then c is the trace of an element in F∗p6 of order > 3 dividing

p2 − p+ 1.

If furthermore c(p2−p+1)/q 6= 3 then c(p2−p+1)/q (cf. De�nition 3.2) is the

trace of an element of order q. In fact, we have:

let k an element in XTR supergroup Y such that c = Tr(k), then h =

k(p2−p+1)/q 6= 1 since Tr(h) = c(p2−p+1)/q 6= 3. Moreover, since k ∈ Y, hq =

k(p2−p+1) = 1 and so the order of h is q (see [9]).

Now it remains to �nd c ∈ Fp2 such that F (c,X) is irreducible. For this

purpose let us consider the following result:

Lemma 4.1. (see [8]) For a randomly selected c ∈ Fp2 the probability that

F (c,X) ∈ Fp2 [X] is irreducible is about one third.

Proof . Recalling that almost all the elements of the XTR supergroup Y

are roots of a monic irreducible polynomials of the form F (c,X), except the

elements with order ≤ 3 (cf. Lemma 3.1, Theorem 3.1 and 3.3). There are

about p2−p elements of the subgroup of order p2−p+1 of F∗p6 that are roots
of the irreducible polynomials F (c,X).

But, since each of these polynomials has three distinct roots (cf. De�ni-

tion 3.2), there must be (p2 − p)/3 different values for c ∈ Fp2 \ Fp such that

F (c,X) is irreducible. �

Now we present an algorithm that is based on the fact that F (c, x) is

reducible if and only if cp+1 ∈ Fp (cf. Theorem, 3.3) and on the method to

�nd Tr(g) above.

Algorithm 4.3 (Computation of Tr(g), see [8])

1. Pick c ∈ Fp2 \ Fp at random.
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2. Compute cp+1 using Algorithm 3.1, if cp+1 ∈ Fp then return to

Step 1.

3. Compute c(p2−p+1)/q using Algorithm 3.1, if c(p2−p+1)/q = 3 then

return to Step 1.

4. Let Tr(g) = c(p2−p+1)/q.

The Algorithm 4.3 computes Tr(g) ∈ Fp2 for some g ∈ Fp6 of order q.

By the following theorem we compute the number of applications that this

Algorithm requires.

Theorem 4.1. The Algorithm 4.3 can be expected to require:

• 3q
(q−1)

applications of Algorithm 3.1 with n = p+ 1.

• q
(q−1)

applications of Algorithm 3.1 with n = (p2 − p+ 1)/q.

Then the total number of multiplications that the Algorithm 4.3 requires is:

q

q − 1

(
24 · log2 (p− 1 mod q) + 8 · log2

(
p2 − p+ 1

q
mod q

))

See [9] for the proof.
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Chapter 5

Cryptographic applications

XTR can be used in any cryptosystem that relies on the subgroup discrete

logarithm problem. Therefore, we consider some applications of XTR, in

particular we are going to present the XTR version of the Diffie Hellman key

agreement protocol and ElGamal encryption and decryption protocols (see

[8, 9]).

In the �rst section of this chapter we will present the XTR versions of

these protocols. They follow by replacing the ordinary representation of sub-

group elements with the XTR representation of subgroup elements of a mul-

tiplicative group. In the XTR version, in fact, the XTR group elements are

replaced by their traces.

In the second section we will show the Discrete Logarithm problem and

other two problems that are related to it and we will consider their XTR

version.

5.1 XTR - Diffie Hellman and XTR - ElGamal

The Diffie-Hellman key agreement protocol is the �rst published solution

to the key distribution problem, that allows two parties, never met, to es-

tablish a shared secret key by exchanging information over an open channel

(see [9]).
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In the traditional DH scheme there are two users that agree on a multi-

plicative group F∗p of a prime field Fp and on a generator g of F∗p. Each user

sends a random power of g to the other one and raises, the value received

from the other part, to the same power and so each user obtains the shared

secret key.

In the protocols that we present below there are two users A and B that

have already agreed upon XTR subgroup Y and on the XTR public key data

containing two primes, p and q as in Chapter 4 (cf. Section 4.1), and the

trace of a generator of the XTR subgroup (cf. Section 4.2).

Algorithm 5.1 (XTR - DH key agreement, see [9])

Let (p, q, T r(g)) be XTR public key data. We suppose that this key

is shared by two users, A and B, that want to agree on a secret key

K. Then they must proceed as follows:

1. A selects a random integer a with 1 < a < q − 2 and computes

Sa(Tr(g)) = (Tr(ga−1), T r(ga), T r(ga+1)) ∈ (Fp2)3

using Algorithm 3.1 with n = a and c = Tr(g).

A sends Tr(ga) ∈ Fp2 to B.

2. B selects a random integer b with 1 < b < q − 2 and computes

Sb(Tr(g)) = (Tr(gb−1), T r(gb), T r(gb+1)) ∈ (Fp2)3

using Algorithm 3.1 with n = b and c = Tr(g).

B sends Tr(gb) ∈ Fp2 to A.

3. A receives Tr(gb) from B and computes

Sa(Tr(g)b) = (Tr(g(a−1)b), T r(gab), T r(g(a+1)b)) ∈ (Fp2)3

using Algorithm 3.1 with n = a and c = Tr(gb).

Then A obtains a shared secret key K = Tr(gab) ∈ Fp2.
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4. B receives Tr(ga) from A and computes

Sb(Tr(g)a) = (Tr(g(b−1)a), T r(gab), T r(g(b+1)a)) ∈ (Fp2)3

using Algorithm 3.1 with n = b and c = Tr(ga).

Then B obtains the shared secret key K = Tr(gab) ∈ Fp2.

We recall that in Chapter 3 we have seen that, using Algorithm 3.1, to

compute Tr(gn) given Tr(g) is almost three times faster than to compute gn

given g.

We note that in each step of the Algorithm 5.1 we compute Tr(gh), where

gh is an element in XTR subgroup with 0 < h < q − 2, using the Algorithm

3.1. Then each step of the Algorithm 5.1 is almost three times faster than each

step of the traditional Diffie-Hellman protocol that is based on subgroup of

multiplicative group of �nite �eld and that in each step computes the power

of the elements of this last subgroup (see [6]).

Now, we consider the ElGamal cryptosystem, named after its inventor,

Taher ElGamal, this cryptosystem consists of two components:

the encryption algorithm and the decryption algorithm.

In the traditional ElGamal encryption the public key, of a user A, is the

triplet (p, g, gx), where p is a prime, g is a generator of F∗p and the integer x,

such that 1 < x < p− 1, is a private key.

If the user B want to send a message M to A then must to encrypt a

plaintextM , then he selects a random integer k relatively prime to p−1 and

computes the following values:

K ←− gk (mod p)

E ←− M(gx)k (mod p)

Then the ciphertext consists of the pair (K,E) computed above.
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To retrieve the plaintext M , A uses the ElGamal decryption scheme,

computing:

M ←− E · (Kx)−1 (mod p)

It is easy to verify that:

E · (Kx)−1 = Mgxk(gxk)−1 = M (mod p)

(see [1])

Now we describe the XTR version of ElGamal cryptosystem and we will

show the differences respect to the traditional version.

In the protocol below we have that XTR public key data may also contain

a public point Tr(gk) for an integer k that is kept secret, the so-called private

key (see [9]).

Algorithm 5.2 (see [8])

Let (p, q, T r(g), T r(gk)) be XTR public key data of A, where Tr(gk)

is a value computed and made public by A, for some integer k selected

by A.

Then the private key of A is k.

(XTR - ElGamal encryption).

We suppose that B wants to encrypt a message M intended for A,

then B proceeds as follows:

1. B selects a random b such that 1 < b < q − 2 and computes:

Sb(Tr(g)) = (Tr(gb−1), T r(gb), T r(gb+1)) ∈ (Fp2)3

using Algorithm 3.1 with n = b and c = Tr(g), to obtain Tr(gb).

2. B computes

Sb(Tr(g
k)) = (Tr(g(b−1)k), T r(gbk), T r(g(b+1)k)) ∈ (Fp2)3

using Algorithm 3.1 with n = b and c = Tr(gk), to obtain Tr(gbk).
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3. B determines a symmetric encryption key K based on Tr(gbk) ∈
Fp2 and uses an agreed upon symmetric encryption method with

key K, to encrypt M. Then B obtains the encrypt message E.

4. B sends (Tr(gb), E) to A

(XTR - ElGamal decryption).

A decrypts the message (Tr(gb), E) that he has received by B in

the following way:

1. A computes

Sk(Tr(g
b)) = (Tr(gb(k−1)), T r(gbk), T r(g(b+1)k)) ∈ (Fp2)3

using Algorithm 3.1 with n = k and c = Tr(gb), to obtain Tr(gbk).

2. A determines the symmetric encryption key K based on Tr(gbk) ∈
Fp2

3. A decrypts E using the agreed upon symmetric encryption method

with key K and so A obtain the message M that B has sent him.

Now if we compare XTR - ElGamal with the traditional ElGamal en-

cryption we note that, while in the �rst the key K is used in conjunction

with an agreed upon symmetric key encryption method, in the traditional

ElGamal encryption the message is encrypt using multiplication by the key.

This property of the traditional ElGaml encryption would amount to require

in XTR - ElGamal encryption that E = K ·M .

For ElGamal - decryption it is implicitly assumed that the �rst component

of an ElGamal encrypted message represents Tr(gb).

As we have noted for XTR - DH Key agreement protocol, in XTR -

ElGamal encryption and decryption we use the Algorithm 3.1 to compute
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the trace Tr(gk) given Tr(g). So Algorithm 5.2 is three times faster than the

traditional ElGamal encryption and decryption that computes gk given an

element g of subgroup of multiplicative of �nite �eld.

5.2 Discrete logarithm

We recall that the traditional version of the two protocols, that we have

seen before, bases their security on the di�culty to solve the discrete loga-

rithm problem.

Now we are going to show how there is, also, the XTR logarithm problem

version on which the security of XTR - Diffie Hellman and XTR - ElGamal

protocols is based.

Let G be a multiplicative group of order n. Given g, y ∈ G, the discrete
logarithm of y to the base g is an integer x such that:

gx ≡ y ∈ G

and it is written as

x = logg y

If g generates G then such an x with 0 ≤ x < n exsists.

Now we consider a moltiplicative group G = 〈g〉 of prime order q.

We know that it is easy to raise numbers to large power using repeted

squaring, while to compute x, given g and y, can be quite hard.

We de�ne the Discrete Logarithm (DL) problem in 〈g〉, the computation,

for a given y ∈ 〈g〉, of the unique x ∈ {0, 1, ... , q − 1} such that gx = y and

we write x = DL(y) (see [8, 16]).

Related to the Discrete Logarithm (DL) problem are Diffie Hellman (DH)

problem and Diffie Hellman Decision (DHD) problem.

The Diffie Hellman (DH) problem is the problem, given gx and gy, to

compute gxy. We write DH(gx, gy) = gxy.

Instead, the Diffie Hellman Decision (DHD) problem is the problem,

given a, b, c ∈ G, to determine whether c = DH(a, b).
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It is widely believed and assumed that if DL problem in G is intractable,

then the other two are so.

On the other hand, it is easy to observe that if one is able to solve the

Discrete Logarithm (DL) problem, then himself can solve Diffie Hellman

(DH) problem and Diffie Hellman Decision (DHD) problem (see [8]).

As we have seen before, the XTR version of the protocols follows by

replacing elements of the XTR group by their traces and so the sicurity of

these protocols is no longer based on the original DH, DHD or DL problems

but on their XTR versions (see [9]).

For this reason we will deal with the XTR-DL, XTR-DH and XTR-DHD

problems.

The XTR-DL problem, given Tr(y) with y ∈ Y = 〈g〉, is to �nd x ∈
{0, 1, , ... , q−1} such that Tr(gx) = Tr(y). We write that x = XDL(Tr(y)).

We observe that, since Tr(g) = Tr(gp
2
) = Tr(gp

4
) (see Chapter 3) for

a given y ∈ 〈g〉, if x = XDL(Tr(y)), then so are x · p2 (mod q) and x · p4

(mod q).

The XTR-DH problem is to compute Tr(gxy), given Tr(gx) and Tr(gy)

and we can write XDH(Tr(gx), T r(gy)) = Tr(gxy).

Finally the last problem is to determine whether XDH(a, b) = c for

a, b, c ∈ Tr(〈g〉)
Before we prove the equivalence between old and new problems, we con-

sider the following result:

De�nition 5.1. (see [9]) We say that problem A is (a, b)-equivalent to pro-

blem B, if any istance of problem A (or B) can be solved by at most a (or b)

calls to an algorithm solving problem B (or A).

Theorem 5.1. (see [9]) The following equivalences hold:

i. The XTR-DL problem is (1, 1)-equivalent to the DL problem in G.

ii. The XTR-DH problem is (1, 2)-equivalent to the DH problem in G.

iii. The XTR-DHD problem is (3, 2)-equivalent to the DHD problem in

G.
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Proof .We denote with r(Tr(y)) the root of F (Tr(y), X), given y ∈ Y = 〈g〉
(see De�nition 3.2). In order to prove i, we must to compute DL(y).

Let x = XDL(Tr(y)), then DL(y) = x ·p2j (mod q) for either j = 0, j =

1 or j = 2.

Conversely for Tr(y) ∈ Fp2 then XDL(Tr(y)) = DL(r(Tr(y))), that

proves i.

Now we set a = gx and b = gy and we want to compute DH(a, b) =

DH(gx, gy).

So we compute di = XDH(Tr(a·gi), T r(b)) = XDH(Tr(gx·gi), T r(gy)) =

Tr(g(x+i)y) for i = 0, 1, then

r(di) ∈ {(DH(gx, gy) · giy)p2j

: j = 0, 1, 2}

from which DH(gx, gy) follows.

Conversely XDH(Tr(gx), T r(gy)) = Tr(DH(r(gx), r(gy))), that com-

pletes the proof of ii.

Finally, the fact that the XTR-DHD problem is (3, 2)-equivalent to the

DHD problem in G, follows from these equivalences:

DH(gx, gy) = gxy if and only if XDH(Tr(gx), T r(gy)) = Tr(gxy) and

XDH(Tr(gx · g), T r(gy)) = Tr(gxy · gy).

Conversely, let a, b, c ∈ Tr(〈g〉)

XDH(a, b) = c if and only if DH(r(a), r(b)) = r(c)p
2j

for either j = 0, j = 1 or j = 2.

These two equivalences prove iii. �

We recall that, thanks to Pohling-Hellman algorithm (see [15]), given a

group G of order an integer n, the Discrete Logarithm problem in G can be

reduced to the Discrete logarithm problem in all prime order subgroups of

G.
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Algorithm 5.3 (Pohling-Hellman's algorithm)

Let q = pn, q − 1 =
∏

1≤i≤s pi
ei, let g be a generator of F∗q and

let y ∈ F∗q. We will compute x = logg y.

1. To compute xi for i = 1, 2, ... , s as follows:

1.1 Set α = 1, l−1 = 0 and g = g
q−1
pi (mod q).

1.2 For j = 0, ... , ei − 1, compute:

α ←− α · glj−1pi
j−1

(mod q)

α ←− (α−1 · y)
q−1
pi

j+1

(mod q)

lj ←− logg y (mod q)

1.3 Then xi = l0 + l1pi + ... + lei−1pi
ei−1.

2. Find a solution of the system of congruance equation:
x ≡ x1 (mod p1

e1)
...

x ≡ xs (mod ps
es)

3. Return x = logg y.

It follows that, to obtain a secure cryptosystem, the group order should

contain at least one large prime factor.

Now we are going to show that, if q is sufficiently large, DL problem in

XTR subgroup Y is as hard as in F∗p6 .
This last multiplicative group has order p6 − 1 and its factors are Φt(p)

where t is a divisor of 6 and Φt(p) is the t-th cyclotomic polynomial evaluated

in p (see Chapter 1).

So

p6 − 1 = (p− 1)(p+ 1)(p2 + p+ 1)(p2 − p+ 1).
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We observe that the subgroups of order Φt(p) for t = 1, 2, 3 , i.e. (p −
1), (p + 1) and (p2 + p + 1), can be e�cently embedded in multiplicative

group of the proper sub�elds Fpt of Fp6 , for t = 1, 2, 3.

In fact we know that:

• The subgroup of order p− 1 can be embedded in Fp.

• Since p+1 divides p2−1, the subgroup of order p+1 can be embedded

in Fp2 .

• Since p2 + p+ 1 divides p3− 1, the subgroup of order p2 + p+ 1 can be

embedded in Fp3 .

Instead the subgroup of order Φ6(p) = p2− p+ 1 cannot be embedded in

any proper sub�eld of Fp6 .
Then if we want to solve the discrete logarithm problem in F∗p6 , we must

be solve four discrete logarithm problems.

Three of these discrete logarithm problems can be reformulated as the dis-

crete logarithm problems in multiplicative groups of proper sub�elds Fp, Fp2
and Fp3 of Fp6 and these problems are believed to be considerably easier than

the problem in F∗p6 (see [17]).

For this reason we can conclude that the hardness of computing discrete

logarithm in the group F∗p6 must reside in its cyclotomic subgroup of order

Φ6(p) = p2 − p+ 1.

Now we consider the XTR subgroup Y that has order a large prime q

which divides p2 − p+ 1.

The subgroup Y cannot be embedded into any proper sub�eld of Fp6 and
this fact is due the following lemma (see [16]):

Lemma 5.1. (see [7])

Let q > s be a prime factor of Φs(p). Then q does not divide any Φt(p)

for divisors t of s with t < s.
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Proof . Since q divides Φs(p) then p
s − 1 ≡ 0 (mod q).

Moreover since q is prime and q > s, it follows that s divides q − 1.

Therefore Φs(X) and the Φt(X)'s are among the distinct irreducible fac-

tors of Xq−1 − 1.

But this last polynomial factors into q− 1 distinct linear factors in Fq[X]

and one of these is (X − p mod q), since q divides Φs(p) and so p is a root of

Φs(X) in Fq[X].

We obtain that only one factor of Xq−1 − 1 is equal (X − p mod q) and

so p is not a root of any of the Φt(X)'s, then lemma follows. �

From this last result we can conclude that, with a proper choice of q

dividing p2− p+ 1, the discrete logarithm problem in Y is as hard as it is in

Fp6 .
Finally, recalling that XTR - DL problem is equivalent to the DL problem

(cf. Theorem 5.1) and considering the XTR - DH key agreement and XTR

- ElGamal encryption and decryption , we note that the security of these

protocols is based on the di�culty to solve the discrete logarithm problem

in Y.

Then as we have just shown, the security of the XTR - DH key agreement

and XTR - ElGamal encryption and decryption protocols is based on the

hardness to solve the discrete logarithm in F∗p6 .
So we can conclude that the necessity to use XTR subgroup is due, not

only for the speed to execute of the calculations, in particular that of nth

powers of an element, but also for the greater security of the protocols which

implement these calculations.
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Appendix A

Karatsuba Algorithm

We will describe the Karatsuba's trick for the multiplication of two poly-

nomials of degree less than n and we will show how, through this trick, the

computational costs, to compute this multiplication, improve.

For this purpose, we �rst consider the classic multiplication algorithm.

Let

A =
∑

0≤i<n

Aix
i and B =

∑
0≤i<m

Bix
i ∈ Fp[x]

then

A ·B =

( ∑
0≤i<n

Aix
i

)
·

( ∑
0≤i<m

Bix
i

)

=
∑

0≤i≤(n−1)+(m−1)

(∑
j∈Ii

Ai ·Bi−j

)
xi

where Ii = {0 ≤ j ≤ m : 0 ≤ i− j < n}.
So we can compute the product between A and B with at most m · n

multiplication and (m− 1) · (n− 1) additions in Fp.

De�nition A.1. (Multiplication time, see [14])

The function

M : N>0 → R>0
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is called a multiplication time for Fp[x], if two polynomials in Fp[x] of

degree less than n can be multiplied using at most M(n) operations in Fp.

Then if we consider two polynomials of degree n − 1 and m − 1 that,

as we have seen before, can be multiplied with n · m multiplications and

(m− 1)(n− 1) additions in Fp and we suppose that n > m , it follows that

the number of operations in Fp is

n2 + (n− 1)2 = 2n2 − 2n+ 1

and so

M(n) = O(n2)

Thus, we are going to show, how, with the Karatsuba algorithm, the number

of operations to compute the multiplications between this two polynomials

of degree less than n decrease.

A.1 Karatsuba's algorithm

Algorithm A.1 (Karatsuba's multiplication algorithm, [14])

Let A and B be polynomials over Fp[x] of degree less than n ∈
N≥1.

1. If n = 1 then compute C = A ·B in Fp[x].

2. Else if n 6= 1:

2.1 Set m =
⌈
n
2

⌉
.

2.2 Write

A = a1x
m + a0 and B = b1x

m + b0

with a0, a1, b0, b1 ∈ Fp[x] of degree less than m.

Then

A ·B = (a1x
m + a0) · (b1xm + b0) (A.1)

= (a1 · b1)x2m + (a1 · b0 + a0 · b1)xm + a0 · b0
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2.3 Call the algorithm recursively to compute:

c0 ← a0 · b0
c1 ← a1 · b1
c2 ← (a0 + a1) · (b0 + b1)

(Note: (a1 · b0 + a0 · b1) = c2 − c1 − c0)

2.4 Compute

c2 ← c2 − c1 − c0

2.5 Compute

C ← c1x
2m + c2x

m + c0

3. Return C.

Correctness of this last Algorithm follows directly by these two relations:

C = A ·B = a1 · b1x2m + ((a0 + a1) · (b0 + b1)− a0b0 − a1b1)x
m + a0 · b0

and

(a1 · b0 + a0 · b1) = (a0 + a1)(b0 + b1)− a1 · b1 − a0 · b0

Through this algorithm, Karatsuba reduce the number of polynomial mul-

tiplication in (A.1) from 4 to 3.

The Algorithm A.1 is recursive since it can be applied again for the mul-

tiplications of the elements a0, a1, b0, b1 ∈ Fp[x] in step 2.

Lemma A.1. (see [14])

Given two polynomials in Fq[x] of degree less than 2k, where k ∈ N≥1.

The Algorithm A.1 computes theirs product with

M(2k) ≤ 9 · (3k)− 8 · 2k (A.2)

operations in Fq.
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Proof .

We prove the bound

M(2k) ≤ 9 · (2k)log2 3 − 8 · 2k = 3k+2 − 2k+3

by induction on k ∈ N≥0.

For k = 0 we have M(20) = 32 − 23 = 1 multiplication in step 1.

Now we suppose that the relation (A.2) is true for 0 ≤ k′ < k.

Since m =
⌈

2k

2

⌉
= 2k−1, to compute (a0 +a1) and (b0 +b1) we have 2 ·2k−1

additions in Fq and three recursive calls of input size 2k−1 in step (2.3), then

we must perform 3M(2k−1) operations in Fq.
In step (2.4), for the computation of c2, we count at most 2 · 2k additions

of coefficients.

Finally the computation of c1x
2m + c2x

m + c0 causes 2k additions in

Fq, we note that since deg(c0) < 2 · 2k−1, c0 not causes operations in Fq.
Summing up, we obtain:

M(2k) ≤ 3M(2k−1) + 4 · 2k

and by induction hypothesis it follows:

M(2k) ≤ 3(3k+1 − 2k+2) + 2k+2 = 3k+2 − 3 · 2k+2 + 2k+2

= 3k+2 − 2k+2

as claimed. �

From the Lemma A.1 it follows:

Corollary A.1. Two polynomials in Fq[x] of degree less than n ∈ N≥1 can

be multiplied with at most:

M(n) ≤ 9 · (n)log2 3 − 8 · 2k = O(n1.59)

operations in Fq.

So we can conclude that if we use the Karatsuba's algorithm, for the

multiplication of two polynomials, the number of operations in Fq decrease.
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Appendix B

Multi-exponentiation algorithm

It is well known that modular exponentiations or module multi-exponentiations

can be used to implement fast moderm cryptosystems (see [19]). The major

task to obtain an efficient performance of these cryptosystems, is to reduce

the times needed to perform the operations of modular exponentiation and

module multi-exponentiation (see [19]).

Given the base X, the exponent a and the module N , the modular expo-

nentiation problem is to compute Xa mod N .

One of the common method to compute Xa mod N is binary method that

only use square and multiply operations.

With this method the exponent X must be represented in a binary form

and each of these bits are scanned from left to right or right to left.

If a = (an−1, an−2, ... , a1, a0)2, then we have the following algorithm.

Algorithm B.1 (see [3])

1. Set A = 1 and i = 0.

2. If ai = 1 then compute A = A ·X mod N.

3. Compute X = X ·X (mod N).
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4. Set i = i + 1, if i ≤ n − 1 return to step 2 otherwise output

A.

Since the average number of ones in a binary representation of a is equal

to log2 a
2

, to compute Xa mod N through Algorithm B.1 are necessary log2 a

squarings and log2 a
2

multiplications and so

3

2
log2 a

multiplications (see [3]).

While, given the module N , the bases Xi and the exponents ai for i =

1, 2, ... , k, the multi-exponentiation problem is to compute Z =
∏

0<i≤kX
ai
i mod

N (see [19]).

In this appendix we concentrate our attention on the case k = 2, that is,

given integers a and b, compute Z = XaY b mod N .

The most common solution of this last problem is to compute exponen-

tiations individually and then to multiply these computations together.

Then, if we use Algorithm B.1 to compute the two modular exponen-

tiations Xa mod N and Y b mod N , the number of multiplications required

is
3

2
log2 a+

3

2
log2 b < 3 log2(max(a, b))

.

To decrease this number of multiplications for multi-exponentiation, we

present the so called Pekmestzi's algorithm that computes XaY b mod N

faster than the method above.

Algorithm B.2 (Pekmestzi's algorithm , see [19])

Let X, Y, a, b, N positive integers, to compute Z = XaY b mod N:
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1. Compute a = (ak−1, ak−2, ... , a0) and b = (bk−1, bk−2, ... , b0),

the binary representation of a and b, with k = max(log2a, log2b);

2. Set Z = 1 and Z ′ = X · Y mod N;

3. Set h = k − 1

4. Consider the following cases:

• if (ah, bh) = (1, 0) then Z = Z ·X;

• if (ah, bh) = (0, 1) then Z = Z · Y ;

• if (ah, bh) = (1, 1) then Z = Z · Z ′;

• if h ≥ 1 then Z = Z · Z;

5. Set h = h− 1

6. If h ≥ 0 go to step 4 otherwise output Z.

Then, with the last algorithm, to compute XaY b mod N are necessary

log2(max(a, b)) squarings and 3
4

log2(max(a, b)) multiplications and so

7

4
log2(max(a, b))

multiplications.
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