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Layout of the thesis

This thesis is basicly intended as an exposure of fundamental results concerning the so-called

non-trivial zeros of the Riemann zeta-function ζ(s): these zeros are strictly connected with

the central problem of analytic number theory, i.e. the Riemann hypothesis. The starting

point is the epoch-making work of Bernhard Riemann, dated 1859 [1]: it was the only paper

of the German mathematician about number theory and, taking cue from Euler’s relation

ζ(s) =
∑
n≥1

1

ns
=
∏
p

[
1− p−s

]−1
,

valid for Re(s) = σ>1, showed a much more profound and deep relation between the com-

plex function ζ(s) and the prime numbers distribution.

The first chapter of this thesis exposes the main features of the zeta-function. In partic-

ular, in Section 1.1 we review the analytic continuation of ζ(s) as a meromorphic function in

the whole complex plane, whit a single simple pole at s = 1: this was the vital jump which,

thanks to Riemann, allowed to study ζ(s) in the half plane where the Euler product expan-

sion is not valid. Of course in this region, σ ≤1, the zeta-function cannot be expressed as a

series and this makes life quite difficult; fortunately, Riemann’s work included a functional

equation for ζ(s) which, showing a symmetry relatively the critical line Re(s) = σ = 1/2,

has become the starting point for investigating the behaviour of the function for σ ≤1. The



functional equation is

π−
1
2
sΓ

(
1

2
s

)
ζ(s) = π−

1
2

(1−s)Γ

(
1− s

2

)
ζ(1− s) (1)

and is derived in Chapter 1. In addition, the other conjectures contained in Riemann’s

paper are exposed in this Section: all but one were proven by Hadamard and von Mangoldt.

Section 1.2 is dedicated to introducing the delicate question of the zeros of ζ(s): from

the functional equation are easily derivable the “trivial zeros”, which occur at all negative

even integers s = −2,−4,−6, . . . , while the other (non-trivial) zeros are all located in the

“critical strip” {s∈C | 0 <Re(s) < 1}: Riemann conjectured that ζ(s) has infinitely many

zeros in the critical strip, a conjecture proved by Hadamard.

Section 1.3 summarizes, with modern terminology, the original paper written by Rie-

mann, whose title can be translated as “On the Number of Prime Numbers less than a

Given Quantity”, indicating the main intention of Riemann, that is the achievement of an

explicit formula for the prime counting function π(x), defined as

π(x) =
∑
p≤x

1 = # {p prime | p ≤ x} .

This explicit formula involves the zeta-function and, in particular, its non-trivial zeros.

The end of the chapter, Section 1.4, is about the famous Riemann hypothesis (RH), stat-

ing that all the non-trivial zeros lies on the critical line Re(s) = 1/2. This conjecture is the

only one of the five contained in the Riemann’s paper which remains unproved, nevertheless

it is taken as hypothesis for thousands of theorems (supporting the term “hypothesis” in

place of “conjecture”). Last but not least, RH is strictly connected with primes distribution:

some consequence of RH involving primes will be pointed out, the most important being the

link with the prime number theorem and the magnitude of the error for the Gauss’ estimate

for the prime counting function π(x), an error that would become the smallest possible

(meaning a somewhat “random” behaviour of prime numbers), in formulas

π(x) = Li(x) +O(
√
x log x) ,



where Li(x) is the logarithmic integral

Li(x) =

∫ x

2

dt

log t
.

At the end of the chapter, different reasons to believe that RH is true will be discussed

(most of the mathematicians think so) [6], together with some reasons for doubting of RH

[11], for the sake of completeness.

After this introductory chapter, the thesis is divided in two main parts. The first part

is outlined in Chapter 2 and is pertaining the “computational” aspect of locating the non-

trivial zeros of ζ(s). There’s no doubt that a strong reason for believing in RH is an

impressive numerical evidence: in 2004 Gourdon [26] claimed he was able to compute the

first 1013 non-trivial zeros and all of them lie on the critical line or, in other words, RH turns

out to be true for the first 1013 zeros. Calculations which are made the present day of course

involve a massive use of computers, but the underlying theoretical principles date back to the

beginning of XIX century: the pioneer of the field was Gram [15], who managed to calculate

the first 15 zeros on the critical line. This was done using the Euler-Maclaurin summation

method, which is described in Section 2.1, together with its application to estimate Γ(s)

and ζ(s): the numerical estimations performed in this way are vital for Gram’s strategy,

as explained in the next section of the chapter. In Section 2.2 indeed we start with the

function

ξ(s) =
1

2
s(s− 1)π−

1
2
sΓ

(
1

2
s

)
ζ(s) (2)

that is entire and zero only corresponding to the non-trivial zeros of ζ(s); moreover, starting

from the proof of the functional equation (1) in Chapter 1, it’s simple to show that ξ(s) is

real valued on the critical line, so wherever ξ(1/2 + it) changes sign we must observe a zero.

It’s standard notation to write

ζ

(
1

2
+ it

)
= Z(t) e−iϑ(t) = Z(t)cosϑ(t) + Z(t)sinϑ(t) ,



where the so-called Riemann-Siegel theta function is

ϑ(t) = Im log Γ

(
1

4
+

1

2
it

)
− t

2
log π .

Now Gram performed a smart reasoning, discussed in detail in Section 2.2, concerning the

behaviour of the real and imaginary part of ζ(1/2 + it), in order to prove the existence of 10

zeros on the line segment from 1/2 to 1/2+it; subsequently it is shown how the Gram points,

defined as the sequence of real numbers gn satisfying ϑ(gn) = nπ, gn ≥ 10 (n = 0, 1, 2, . . . ),

plays an important role in locating the zeros of ξ(s). Gram’s technique becomes quite vain

when trying to evaluate a larger number of roots. A first improvement is due to Backlund

[?], who compared the changes of sign of Z(t) in a certain range 0 < t < T with the number

of zeros on the corresponding limited portion of critical strip, namely N(T ): Backlund

proved that all the ξ(s) = 0 roots in the range 0 < Im(s) < 200 are on the critical line and

are simple zeros. The end of the Section is dedicated to some remarks about the so-called

“Gram’s law”, which indicates the typical behavior of the zeros of Z(t) in connection with

the zeros of ϑ(t).

In spite of the relevance of Gram and Backlund’s works, the most important contribution

to the computation of the ξ(s) = 0 roots belongs to Siegel, exposed in Section 2.3. Siegel

was the first mathematician who fully understood Riemann’s Nachlass (i.e. his posthumous

notes) in which he found what drove Riemann to state his famous conjecture: Siegel pub-

lished a paper in 1932 [20] explaining the results concerning a formula that he found in

Riemann’s private notes. Section 2.3 is dedicated to describe this results, one on an asymp-

totic formula for Z(t) and another about a new way of representing ζ(s) in terms of definite

integrals, which were fundamental to develop a new powerful method for computing the

zeros of ξ(s). Besides, Siegel’s discovery pushed back the widely diffused opinion of that

period that Riemann’s conjecture about the zeros on the critical line was the result of mere

intuitions not supported by any solid mathematical justification, giving credit to the great



understanding and calculation ability that Riemann possessed respect to the zeta-function.

Riemann-Siegel asymptotic formula is a very efficient tool used to compute ζ(1/2 + it) for

large t values, which is the range where Euler-Maclaurin summation formula is completely

unworkable: especially with the advent of computers, this formula has played a leading role

in checking RH for even larger values of Im(s), integrated with specific algorithms like the

Odlyzko-Schönhage algorithm [25]. The formula is

Z(t) = 2
N∑
n=1

n−1/2cos [ϑ(t)− tlog n] +R(t) ,

where N = [
√
t/2π] and the remainder term R(t) has the following asymptotic expansion

R(t) ∼ (−1)N−1

(
t

2π

)−1/4
[∑
k≥0

Ck

(
t

2π

)−k/2]
,

and the coefficient Ck are computable recursively starting from the first one C0.

The last section of the chapter, Section 2.4, is devoted to some considerations concern-

ing the Riemann-Siegel formula, which was in possess of Riemann himself, and the possible

birth of his famous and still unsolved conjecture.

The second part of the thesis, embodied by Chapter 3, pertains the estimations of the

portion of ξ(s) zeros which lies on the critical line.

Section 3.1 deals with Hardy’s Theorem [27]: in 1914 Hardy proved that there are

infinitely many roots of ξ(s) = 0 on the critical line or, equivalently, there exist infinitely

many real numbers γ such that ζ(1/2 + iγ) = 0. The main strategy in proving this theorem

is to use the inverse of the Mellin transform relationship that Riemann used to establish

the functional equation and perform complex integrations on suitable paths, together with

the estimate
∫ T

1
ζ(1/2 + it)dt = T +O(T 1/2). The section continues with the explanation of

the two other important contributions concerning the fraction of roots lying on the critical

line. The first result belongs to Hardy and Littlewood [28] and was an improvement of the



previous theorem because it states that the number of zeros on the line segment 1/2 to

1/2 + iT (indicated by N0(T )) is at least CT , for some positive constant C and sufficiently

large T , that i

N0(T ) > CT , ∀T ≥ T0 ,∃T0 > 0 ,∃C > 0 .

This was further improved by Selberg [29] who proved

N0(T ) > CT log T , ∀T ≥ T0 , ∃T0 > 0 ,∃C > 0 .

This brings to mind one of the Riemann’s conjectures contained in his memoir, subsequently

proved by von-Mangoldt:

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ) ,

where N(T ) stands for the numbers of zeros of ζ(s) in the region {s∈C | 0 < Re(s) < 1, 0 <

t ≤ T}1. Comparing these two expressions, we understand that, roughly speaking, Selberg

was the first to prove that a positive fraction of non-trivial zeros of ζ(s) lies on the critical

line.

Section 3.2 explains the ideas behind the Levinson’s work [30], i.e.

N0(T + U)−N0(T ) > C(N(T + U)−N(T )) ,

with U = TL−10, L = log (T/2π) and the value of C, unlike Selberg, has been determined

by Levinson with C = 1/3. In other words, Levinson was able to prove that more than one

third of the zeros of ξ(s) lie on the critical line, a very impressive result that, up to now,

represents one of the most important theoretical results in favor of the RH.

1Using this notation, RH simply becomes N0(T ) = N(T ) , ∀T > 0.



Notations

The following are the standard notations used in analytic number theory. In the whole

thesis we will use s to indicate the general complex variable, avoiding to write s∈C every

time. Moreover, we will use σ=Re(s) and t=Im(s), that is s=σ + it.

The greek letter ρ will indicate a non-trivial zero of ζ(s):

ρ∈{s∈C | ζ(s) = 0,Re(s)∈(0, 1)} ,

and, in order to distinguish between the non-trivial zero ρ and the generic s, we will indicate

the real and imaginary part as β=Re(ρ) and γ=Im(ρ) respectively, or ρ=β + iγ.

Every series with infinite terms starting from the natural n0, usually written as

∞∑
n=n0

a(n) ,

will be here indicated in the more compact way∑
n≥n0

a(n) .

The logarithmic integral li(x) here, unlike some authors, indicates the Cauchy principal

value of the integral

li(x) = lim
ε→0

[∫ 1−ε

0

dt

log t
+

∫ x

1+ε

dt

log t

]
while the notation Li(x) indicates the well-behaved (in the sense that no Cauchy principal

value is needed) integral

Li(x) =

∫ x

2

dt

log t
= li(x)− li(2) .



The term “region” here means a nonempty connected open set.
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Introduction

In 1859 Bernhard Riemann wrote a short paper titled “Über die Anzahl der Primzahlen unter

einer gegebenen Grösse”, which can be translated as “On the Number of Prime Numbers

less than a Given Quantity”. As the title suggests, it deals with prime numbers and, in

particular, with the prime counting function

π(x) =
∑
p≤x

1 = # {p prime | p ≤ x} .

It was the only paper written by Riemann on number theory but it is considered, together

with the Dirichlet’s theorem on the primes in arithmetic progression, the starting point of

modern analytic number theory. Riemann’s aim was to provide an explicit formula for π(x);

before him, Gauss already tried to find such a formula but he was only able to prove that

the function π(x) is well approximated by the logarithmic integral

Li(x) =

∫ x

2

dt

log t
.

Gauss’s estimate was motivated by the observation made by Euler about the divergence of

the series

S =
∑
p

1

p
=

1

2
+

1

3
+

1

5
+

1

7
+ . . . .

In Euler’s terminology, S = log (log∞), which was a consequence of the Euler’s product

formula for the harmonic series, ∑
n≥1

1

n
=
∏
p

1

1− p−1
,



so that

log
∑
n≥1

1

n
= −

∑
p

log (1− p−1) =
∑
p

(
1

p
+

1

2p2
+

1

3p3
+ . . .

)
and the right hand side is the sum of S plus convergent series. Now the harmonic series

diverges like log n for n → ∞, so that S must diverge like the log of it, from which S =

log (log∞). Probably, what pushed Gauss to use the logarithmic integral to estimate π(x)

is an adaptation of Euler’s ideas about the divergence of the series S to the case p ≤ x,

conjecturing that ∑
p≤x

1

p
∼ log (log x)

even for finite x, so that

log (log x) =

∫ log x

1

dt

t
=

∫ x

e

dy

y log y
,

which can be interpreted saying that “the integral of 1/y with the measure dy/log y suggests

that the density of primes less than y is about 1/log y”. This is what could have driven

Gauss towards the estimate

π(x) ∼ Li(x) . (3)

Riemann was intentioned to find an explicit formula for the prime counting function,

not only an estimate like Gauss did. In order to do that, he certainly based his work on

the excellent approximation (3) but, at the same time, he made use of a generalization of

the Euler’s product formula, introducing the most important function in analytic number

theory, the Riemann zeta-function 2 ζ(s), defined as

ζ(s) =
∑
n≥1

1

ns
,

for s = σ + it ∈ C. The zeta-function converges absolutely for Re(s) > 1, in which case we

can generalize the Euler’s product formula to

ζ(s) =
∏
p

1

1− p−s
, σ > 1 .

2Here we are ignoring the Dirichlet L-series which are a generalization of the Riemann zeta-function.



The function ζ(s) plays a fundamental role inside Riemann’s paper: “some” of its zeros

appear in the explicit formula that connects π(x) to Li(x), they are the basic ingredient

of the error term in Gauss’s approximation (3). The zeros we are talking about are the

so-called non-trivial zeros of ζ(s), in contrast with the trivial zeros of ζ(s) which happens

for s = −2,−4,−6, . . . : the non-trivial zeros, usually indicated with ρ = β+ iγ, are infinite

in number and they have Re(ρ) = β ∈ (0, 1), the region 0 < Re(s) < 1 is called critical strip

and the most important open problem in number theory, the Riemann Hypothesis (RH),

states that each non-trivial zero has β = 1
2
, that is they are all located along the critical

line, Re(s) = 1
2
. RH was first conjectured by Riemann in his paper, where he wrote that “it

is probable” that all non-trivial zeros have real part equal to 1
2
.

This thesis is intended as an exposition of the ideas contained in Riemann’s paper and as

a description of some of the most important developments in the study of the zeta-function

until today.

In particular, the first chapter contains the Riemann’s analytic continuation of ζ(s) to

a meromorphic function with a single simple pole at s = 1 with residue 1, the conjectures

by Riemann proved (with the exception of RH) some years later by von Mangoldt and

Hadamard, the description of the ideas behind the explicit formula for π(x) obtained by

Riemann and a list of consequences of RH, like the error term in the prime number theorem.

The second chapter investigates the computational aspects behind the RH: as a matter

of facts, the most impressive evidence in favor of RH arises from the computation of the

non-trivial zeros which lie on the critical line without any exception up to now (the actual

number of non-trivial zeros verifying RH is more than 1013). The efforts to locate the zeros

of ζ(s) inside the critical strip date back to Riemann himself (as Siegel found out, studying

Riemann’s private papers, almost a century after the publication of 1859’s article in which

no sign of computation were present). Until Siegel made light on the very deep knowledge



that Riemann possessed of ζ(s) and of the its behavior (zeros localization included), the first

known computation concerning the non-trivial zeros of ζ(s) is the one of Gram, who used

the Euler-Maclaurin summation method to verify that the first fifteen non-trivial zeros have

real part 1
2
, as explained in the first part of the second chapter. The second part of Chapter

2 deals with the Riemann-Siegel formula, named after the studies of Riemann’s unpublished

notes made by Siegel, which revealed a powerful method for finding non-trivial zeros already

known to Riemann but inexplicably not included by him in his paper. Riemann-Siegel

formula allows to perform calculations for large values of Im(s) inside the critical strip and

it is the theoretical basis of every modern computer algorithm for computing the non-trivial

zeros of ζ(s) and, at the same time, this formula is used in different proofs of theorems

concerning the zeta-function. The second chapter ends with a section containing some

considerations about the possible role that the Riemann-Siegel formula may have had in the

birth of the RH.

The third and last chapter of this thesis describes some of the most important theorems

about the displacement of non-trivial zeros inside the critical strip: even if each of these

theorems is far from proving the RH, still they are fundamental in shedding light on im-

portant questions about the zeta-function. The first theorem exposed is due to Hardy and

states that there are infinite non-trivial zeros lying on the critical line. The second is a much

stronger theorem, by Levinson, that collocates more than one third of non-trivial zeros on

the critical line.



Chapter 1

The Riemann’s paper: a first

introduction to the zeta-function ζ(s)

If I were to awaken after having slept for a thousand years,

my first question would be:

Has the Riemann hypothesis been proven?

D. Hilbert

1.1 Definition as formal series and analytic continua-

tion

The Riemann zeta-function is defined as

ζ(s) =
∑
n≥1

1

ns
, (1.1)

where s=σ+it ∈ C. For σ>1 the series converges absolutely, defining a holomorphic function

and we can use the Euler product (which is a direct consequence of the fundamental theorem

1



CHAPTER 1. THE RIEMANN’S PAPER: A FIRST INTRODUCTION TO THE
ZETA-FUNCTION ζ(S)

of arithmetic) in order to exploit a first connection between ζ(s) and prime numbers p:

ζ(s) =
∏
p

1

1− p−s
, σ > 1 , (1.2)

and since every factor in (1.2) is different from zero, we may conclude that ζ(s) 6= 0 in the

half plane σ>1.

It’s straightforward to show that ζ(s) can be extended to a meromorphic function with

a single simple pole at s=1 in the extended region σ>0: starting from the expression (1.1),

which makes sense if σ>1, we can write

ζ(s) =
∑
n≥1

1

ns
=
∑
n≥1

n

[
1

ns
− 1

(n+ 1)s

]
= s

∑
n≥1

n

∫ n+1

n

dx

xs+1
.

But if x∈(n, n+ 1) then n = [x], the integer part of x (i.e. the largest integer less or equal

to x) and

ζ(s) = s

∫ ∞
1

[x]

xs+1
dx = s

[∫ ∞
1

1

xs
dx−

∫ ∞
1

{x}
xs+1

dx

]
.

So

ζ(s) =
s

s+ 1
− s

∫ ∞
1

{x}
xs+1

dx , (1.3)

where {x} = x−[x] is the fractional part of x: (1.3) shows that ζ(s) is meromorphic for σ>0

(the integral converges absolutely for σ>0) with a pole in s=1 with residue Ress=1ζ(s) = 1.

In his famous eight paged work [1] Riemann showed that it is possible to analytically

continue ζ(s) over the whole complex plane (excluding the simple pole in s=1 with residue

1). To see this, we take a look at the elegant method1 used by Riemann to prove the

fundamental functional equation for ζ(s):

Theorem 1.1.1. The function ζ(s) satisfies the equation

π−
1
2
sΓ

(
1

2
s

)
ζ(s) = π−

1
2

(1−s)Γ

(
1− s

2

)
ζ(1− s) . (1.4)

1There are different methods for proving this functional equation for ζ(s), Riemann itself has proved it

in two distinct ways. The proof exposed here shall return useful in the future sections.

2



CHAPTER 1. THE RIEMANN’S PAPER: A FIRST INTRODUCTION TO THE
ZETA-FUNCTION ζ(S)

Proof: By definition, if σ > 0

Γ

(
1

2
s

)
=

∫ ∞
0

e−t t
1
2
s−1dt ;

substituting t = n2πx and summing over n∈N for σ > 1 we get

π−
1
2
sΓ

(
1

2
s

)
ζ(s) =

∑
n≥1

∫ ∞
0

e−n
2πx x

1
2
s−1dx .

We note that going back to t = n2πs, the integral becomes∫ ∞
0

e−t
(

t

n2π

) 1
2
s−1

dt

n2π
=

Γ(s/2)

(n2π)s/2
,

and the sum ∑
n≥1

∫ ∞
0

e−n
2πx x

1
2
s−1dx =

∑
n≥1

Γ(s/2)

(n2π)s/2

converges for σ > 1. This legitimates the inversion, for σ > 1:

∑
n≥1

∫ ∞
0

e−n
2πx x

1
2
s−1dx =

∫ ∞
0

x
1
2
s−1
∑
n≥1

e−n
2πxdx =

∫ ∞
0

x
1
2
s−1ψ(x)dx ,

where ψ(x) =
∑

n≥1 e
−n2πx. The integral can be split as∫ ∞

1

x
1
2
s−1ψ(x)dx+

∫ 1

0

x
1
2
s−1ψ(x)dx =

∫ ∞
1

(
x

1
2
s−1ψ(x) + x−

1
2
s−1ψ(1/x)

)
dx .

Introducing

ϑ(x) =
∑
n∈Z

e−n
2πx = 1 + 2ψ(x) ,

one can prove (see Corollary A.1.2 in Appendix A) that the function ϑ(x) satisfies

ϑ(x) =
1√
x
ϑ(1/x) ,

which gives

ψ(1/x) = −1

2
+

√
x

2
+
√
xψ(x) ,

yielding to ∫ ∞
1

(
x

1
2
s−1 + x−

1
2
s−1
)
ψ(x)dx+

∫ ∞
1

(
−1

2
+

√
x

2

)
x−

1
2
s−1dx .

3



CHAPTER 1. THE RIEMANN’S PAPER: A FIRST INTRODUCTION TO THE
ZETA-FUNCTION ζ(S)

The second integral can be computed explicitly giving 1/[s(s − 1)] (corresponding to the

poles of ζ(s) in s = 1 and of Γ(s/2) for s = 0). Eventually we managed to have the relation

π−
1
2
sΓ

(
1

2
s

)
ζ(s) =

1

s(s− 1)
+

∫ ∞
1

(
x

1
2
s + x

1
2

(1−s)
)
ψ(x)

dx

x
. (1.5)

Now the integral in (1.5) converges for all s because ψ(x) = O(e−πx), which is a consequence

of the observation that ψ(x) =
∑

n≥1 e
−n2πx ∼ e−πx for large x: in fact, since n2 ≥ n for

n ≥ 1, we get

ψ(x) ≤
∑
n≥1

(
e−πx

)n
=

e−πx

1− e−πx
=

1

eπx − 1
<

2

eπx
= O(e−πx) .

Hence the integral represents an entire function, and the whole second member exhibits the

symmetry s←→ 1− s, proving the functional equation (1.4). 2

Riemann, in his paper, also proved the functional equation for ζ(s) using an alternative

method, based on Cauchy’s theorem for complex integrals on closed curves. To be precise,

Riemann’s second proof (see Appendix A.2) gives the following functional equation:

ζ(s) = χ(s)ζ(1− s) , χ(s) = 2sπ1−ssin
(πs

2

)
Γ(1− s)ζ(1− s) , (1.6)

The equivalence between equations (1.4) and (1.6) is evident once we utilize the following

two properties of the Γ function:

Γ(s)Γ(1− s) =
π

sin πs
,

√
π Γ(2s) = 22s−1Γ(s)Γ(s+ 1/2) .

1.2 Trivial and non-trivial zeros: the function ξ(s)

Defining the function

ξ(s) =
1

2
s(s− 1)π−

1
2
sΓ

(
1

2
s

)
ζ(s) , (1.7)

Theorem 1.1.1 states that ξ(s) is an entire function and we may rewrite equation (1.4) in a

more compact way:

ξ(s) = ξ(1− s) . (1.8)
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Equation (1.8) shows a symmetry for ξ(s) respect to the critical line σ = Re(s) = 1/2

and it is very useful to deduce properties related with ζ(s) in the region σ < 0 starting from

the properties for σ > 1, where the Euler product holds.

The function ξ(s) is useful because it is entire: in fact, the terms s(s−1) cancel the pole

of ζ(s) in s= 1 and the pole of Γ(s/2) in s= 0 (or, in a simpler way, one can just observe

that multiplying the right hand side of (1.5) for s(s− 1), the resulting function has no poles

left).

Starting from this observation, we split the zeros of ζ(s) in two classes: the trivial zeros

and the non-trivial zeros. Trivial zeros occur for the values s =−2n , n ∈ N; it is easy to

derive their presence noticing that the left hand side of the functional equation (1.4) involves

the simple poles of Γ(s/2). That is, for s/2 = −1,−2,−3, . . . , these poles must cancel out

with the zeros of ζ(s). Every other zero of ζ(s) lies in the critical strip2 0 ≤ σ ≤ 1, because

from the Euler product (1.2), valid for σ>1, we have already emphasized that in this region

ζ(s) 6= 0: the zeros of ζ(s) lying on the critical strip are called non-trivial and their exact

location is the major problem in analytic number theory.

Looking in particular at (1.7), we note that ξ(s) is zero only in correspondence of the

non-trivial zeros of ζ(s). The fact that ξ(s) = 0 only within the critical strip can be seen in

another way: in the half plane σ > 1, the factors in ξ(s) other than ζ(s) have no zeros, so

ξ(s) 6= 0 in this region. But (1.8) implies that the same happens for σ<0, so every possible

zero of ξ(s) lies in the critical strip.

From now on, we will indicate the generic non-trivial zero with ρ = β + iγ. From the

definition (1.1) follows forthwith that ζ(s) = ζ(s) and combining this fact with equation

2Some authors use the term “critical strip” to refer to the region 0 < σ < 1, but concerning the zeros of

ξ(s) the substance is the same since it can be proved (as for the first proof of the Prime Number Theorem)

that ξ(s) 6= 0 on the line σ = 1 and therefore the same holds on the line σ = 0 because of (1.8).
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(1.8) it is plain that if ρ is a non-trivial zero for ζ(s), than also ρ, 1− ρ and 1− ρ are.

The connection between ξ(s) and the non-trivial zeros can be put in a much more

significant form. Riemann’s belief was that every analytic (meromorphic) function can be

defined by its singularities and boundary values. This idea drove Riemann in trying to make

explicit the dependance of ξ(s) from the non-trivial zeros ρ of ζ(s) in the following way:

suppose

ξ(s) = ξ(0)
∏
ρ

(
1− s

ρ

)
. (1.9)

The rough reasoning behind this formula could be the following: log ξ(s) has singularities

whenever a zero of ξ occurs, so it has the same singularities as

∑
ρ

log

(
1− s

ρ

)
. (1.10)

Now, if the sum (1.10) converges and if no problems arise concerning boundary conditions

(i.e. if the sum is well behaved at ∞ as log ξ(s)), then (1.10) and log ξ(s) should differ by a

constant; setting s = 0 we get log ξ(0) for the value of that constant, hence exponentiating we

arrive at (1.9). One could argue problems for the determination of the logarithmic branches

of the terms in (1.10): but for a fixes values of s, this problem eventually disappears for

sufficiently large ρ values, then in (1.10) we have only a finite number of terms involving a

possible undefined multiple of 2πi and, once exponentiated, they disappear in (1.9).

The main problem in connecting the sum (1.10) with the formula (1.9) is the convergence.

We know, in fact, that this kind of reasoning works only in the case of finite product.

In the case of infinite product we must, in general, introduce factors in order to provide

convergence3 (see [2], §5). Riemann, aware of that, conjectured the following:

3To be precise, concerning the case under consideration, these factors are not necessary, but this fact

becomes clear only after noticing that sum (1.10) converges absolutely because converges absolutely the

series
∑

Imρ>0
1

ρ(1−ρ) ∼
∫∞ 1

2πT 2 log T
2πdT < ∞, using the asymptotic zero-density d

(
T
2π log T

2π −
T
2π

)
, see

Theorem 1.2.4. For more details, see [4], §1.
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Theorem 1.2.1. The function ξ(s) has the product representation

ξ(s) = eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ , (1.11)

where A and B are constants and the sum runs over all the non-trivial zeros of ζ(s).

Theorem 1.2.1 is a first example of the profound relationship between primes, appearing

in the Euler product of ζ(s), and the non-trivial zeros ρ4. This theorem has been proven

by Hadamard in 1893 and the proof makes use of the theory on integral functions of finite

order, developed by Hadamard himself. An integral function F is of finite order if there

exists a positive real number a such that, as |z| → ∞,

F (z) = O(e|z|
a

) .

We set ordF = inf{a |F (z) = O(e|z|
a
)}, the order of the function F . In our case, the

integral function ξ(s) is of order 1: in fact, if |s| is large, we have (see [3], §12)

ξ(s) ∼ eC|s|log |s| , (1.12)

for some constant C (being Γ(s/2) the main term contributing in (1.12) and using the

Stirling’s approximation log (Γ(z)) = (z − 1/2) log z − z +O(1)), so for every ε > 0

ξ(s) < e|s|
1+ε

and the order of ξ(s) is exactly 1. Theorem 1.2.1 is just a specific case of a more general

and deep theorem by Hadamard:

Theorem 1.2.2. Every entire function f(z) of order 1 with zeros {z1, z2, z3, . . . } (counted

with multiplicity) has the product representation

f(z) = eA+Bz
∏
n≥1

(
1− z

zn

)
ez/zn , (1.13)

for some constants A and B. Moreover, if rn = |zn|, then

4This relationship will become more evident once the explicit formulas for the prime counting function

π(x) and the von Mangoldt ψ(x) will appear.
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1.
∑

n≥1 r
−1−ε
n <∞ for every ε > 0,

2. if
∑

n≥1 r
−1
n <∞ then |f(z)| < exp(C|z|) for |z| → ∞.

Theorem 1.2.2 has another fundamental implication for the zeros of ζ(s). Riemann

conjectured that ζ(s) has infinitely many zeros in the critical strip. Hadamard was able

to prove it using Theorem 1.2.2. If ξ(s) has a finite number of zeros, than the sum
∑

ρ
1
ρ

converges; but, in this case, we should have |ξ(s)| < exp(C|s|), in contradiction with what

we stated in equation (1.12) (again, this happens because we cannot state that |Γ(s)| <

exp(C|s|), everyone can easily convince himself using the Stirling asymptotic approximation

for Γ). So, using the observation made before on the symmetrical arrangement of the non-

trivial zeros of ζ(s), we can finally claim:

Theorem 1.2.3. The function ζ(s) has infinite many zeros in the critical strip, symmetri-

cally disposed with respect to the real axis and to the critical line σ = 1/2.

The two constants, A and B, in Theorem 1.2.1 can be calculated. Setting s = 0 we see

that eA = ξ(0) = ξ(1), because of the relation ξ(s) = ξ(1− s). Recalling the definition

ξ(s) =
1

2
s(s− 1)π−

1
2
sΓ

(
1

2
s

)
ζ(s) (1.14)

and using lims→1(s− 1)ζ(s) = 1, we arrive at

eA =
1

2
√
π

Γ(1/2) =
1

2
.

The calculation of B is not so easy. In order to do that, we perform the logarithmic derivative

of (1.14):

ξ′(s)

ξ(s)
=

1

s− 1
− 1

2
log π +

1

2

Γ′(1
2
s+ 1)

Γ(1
2
s+ 1)

+
ζ ′(s)

ζ(s)
. (1.15)

At the same time, doing the logarithmic derivative of ξ(s) in (1.11) brings

ξ′(s)

ξ(s)
= B +

∑
ρ

(
1

s− ρ
+

1

ρ

)
. (1.16)
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The complete calculation of B can be found in [3], §12, and the final result is

B = −1

2
γ − 1 +

1

2
log 4π ,

where γ is the Euler-Mascheroni constant

γ = lim
n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− log n

)
.

We have pointed out equations (1.15) and (1.16) for a more important reason: combining

the two forms of the logarithmic derivative of ξ(s) we have

ζ ′(s)

ζ(s)
= B − 1

s− 1
+

1

2
log π − 1

2

Γ′(1
2
s+ 1)

Γ(1
2
s+ 1)

+
∑
ρ

(
1

s− ρ
+

1

ρ

)
. (1.17)

This equation for the logarithmic derivative of ζ(s) is a key tool for the non-elementary

proof of the Prime Number Theorem (see the next two Sections) and for the calculation of

zero-free regions for ζ(s). But the importance of equation (1.17) goes beyond this: indeed it

is the starting point that von Mangoldt used to prove other two conjectures (now theorems)

contained in Riemann’s paper:

Theorem 1.2.4. The number of zeros ρ = β+iγ of ζ(s) in the critical strip with 0 < γ ≤ T

is asymptotically equal to

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ) . (1.18)

We recall that for every natural number n, the von Mangoldt function is defined as

Λ(n) = log p if n is a power of a prime p, Λ(n) = 0 otherwise.

Theorem 1.2.5. Define ψ(x) =
∑

n≤x Λ(n) and ψ0(x) = ψ(x)− 1
2
Λ(x) (so, ψ0(x) and ψ(x)

differ only when x = n ∈ N). Then the following explicit formula holds:

ψ0(x) = x−
∑
ρ

xρ

ρ
− ζ ′(0)

ζ(0)
− 1

2
log (1− x−2) , (1.19)

9
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where, in order to provide absolute convergence of the sum over the zeros ρ = β + iγ on the

critical strip, we intend ∑
ρ

xρ

ρ
= lim

T→+∞

∑
|γ|≤T

xρ

ρ
.

Theorem 1.2.5 can be shown to be equivalent to the Prime Number Theorem.

Up to now, every conjecture contained in Riemann’s paper has been proven to be true,

except the one that we are going to discuss from Section 1.4.

1.3 On the Number of Prime Numbers less than a

Given Quantity

The title of the current Section is the English translation of the Riemann’s paper one,“Über

die Anzahl der Primzahlen unter einer Gegebenen Grösse”. As the title suggests, the main

purpose of the paper was to find an explicit formula for the prime counting function

π(x) =
∑
p≤x

1 = #{p prime | p ≤ x} .

In order to do that, he used the function ζ(s), the complex extension of the real function

ζ(x) =
∑
n≥1

1

nx
, x > 1 ,

already used by Euler for his brilliant proof of the infiniteness of prime numbers, alternative

to the Euclid’s one.

Taking the logarithm of (1.1) and using the Taylor series of log (1− x), we write

log ζ(s) =
∑
p

∑
n≥1

1

n pns
, Re(s) > 1 . (1.20)

Introducing the function J(x) for x ≥ 0 which is 0 for x = 0, jumps of 1 at every prime

number p, then jumps of 1/2 at every prime square p2, then a jumps of 1/3 at every prime

10
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cube p3 and so on5, we rewrite (1.20) using Stieltjes integrals as

log ζ(s) =

∫ ∞
0

x−s dJ(x) = s

∫ ∞
0

x−s−1J(x) dx , Re(s) > 1 (1.21)

where the last equivalence follows once integrating by parts (at x = 0 the term x−sJ(x) is

null because J(x) ≡ 0 for 0 ≤ x < 2 and limx→∞ x
−sJ(x) = 0 for Re(s) > 1).

Now the basic steps to achieve the Riemann’s formula for π(x) are the following (for

accurate details, see [4], §1):

1. Use the Fourier inversion formula to reverse (1.21) into

J(x) =
1

2πi

∫ a+i∞

a−i∞
log ζ(s)xs

ds

s
= lim

T→∞

∫ a+iT

a−iT
log ζ(s)xs

ds

s
, a > 1 ; (1.22)

2. Integrate by parts to obtain

J(x) = − 1

2πi log x

∫ a+i∞

a−i∞

d

ds

[
log ζ(s)

s

]
xsds , a > 1 , (1.23)

which is valid because

lim
T→∞

log ζ(a± iT )

(a± iT )
xa±iT = 0

since

|log ζ(a± iT )| =

∣∣∣∣∣∑
n

∑
p

1

n
p−n(a±iT )

∣∣∣∣∣ ≤∑
n

∑
p

1

n
p−na = log ζ(a)

is a constant.

3. Looking back at the two forms of ξ(s)

ξ(s) =
1

2
s(s− 1)π−

1
2
sΓ

(
1

2
s

)
ζ(s) = eA+Bz

∏
n≥1

(
1− z

zn

)
ez/zn ,

5For the sake of clarity, we calculate J(x) for 0 ≤ x ≤ 5, keeping in mind that, as usual, in Stieltjes

integration theory we assign to the discontinuous function J(x) at each point of discontinuity x0 the left-

right average value J(x0) = 1
2 (J(x0)−+J(x0)+). So J(x) = 0 for 0 ≤ x < 2, J(x) = 1/2 at x = 2, J(x) = 1

for 2 < x < 3, J(x) = 1 + 1/2 = 3/2 at x = 3, J(x) = 2 for 3 < x < 4, J(x) = 2 + 1/4 = 9/4 at x = 4,

J(x) = 2 + 1/2 = 7/2 for 4 < x < 5 and J(x) = 3 at x = 5.

11
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using the property zΓ(z) = Γ(z + 1) and taking the log of both sides we obtain

log ζ(s) =
s

2
log π−log (s−1)−log Γ

(s
2

+ 1
)

+A+Bs+
∑
ρ

[
s

ρ
+ log

(
1− s

ρ

)]
(1.24)

and we insert this expression in (1.23) to express J(x) as a sum of different terms.

The main term of J(x) comes from the term log (s − 1) in (1.24) and, for x > 1, gives

rise to the logarithmic integral

li(x) = lim
ε→0

[∫ 1−ε

0

dt

log t
+

∫ x

1+ε

dt

log t

]
as the Cauchy principal value of the divergent integral

∫∞
0

dt
log t

. Computing the other terms

we obtain the complete formula for J(x):

J(x) = li(x)−
∑
ρ

li(xρ)− log 2 +

∫ ∞
x

dt

t(t2 − 1)log t
, (1.25)

where the last term is an indefinite integral which converges for x > 1 (which is of course

our case, being 2 the smallest prime number).

The second term involves the non-trivial zeros of ζ(s): this is an outstanding fact which

relates primes and the zeta-function in a much profound way than the Euler expansion of

ζ(s). We will see that the distribution of non-trivial zeros on the critical line influences,

somehow, the distribution of prime numbers among the natural numbers. Anyway, this

series is only conditionally convergent and, in order to sum up correctly the terms, it should

be intended as

lim
T→∞

∑
0<γ≤T

[
li(xρ) + li(x1−ρ)

]
,

and (1.25) remains valid, as proved by von Mangoldt. We will return on these terms involving

the non-trivial zeros later.

Turning back to the Riemann’s original aim, looking at the definition of J(x) quite

handily emerges a relation with π(x) given by the formula

J(x) = π(x) +
1

2
π(x1/2) +

1

3
π(x1/3) + · · ·+ 1

n
π(x1/n) + . . . (1.26)
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the sum being finite because, for any given x, once x1/n < 2 for a certain n (that is when

n > log 2x) we have π(x1/m) = 0 for every m ≥ n. Relation (1.26) can be inverted using

Möbius inversion formula:

π(x) = J(x)− 1

2
π(x1/2)− 1

3
J(x1/3) + · · ·+ µ(n)

n
J(x1/n) + . . . (1.27)

the sum being finite as before. Formula (1.25) and the relation (1.27) gives the desired

explicit formula for π(x). If we temporarily assume J(x) ∼ li(x), then we have a first

improvement on the Gauss conjecture π(x) ∼ li(x), i.e.

π(x) ∼ li(x) +
N∑
n=2

µ(n)

n
li(x1/n) , (1.28)

where N is such that x1/(N+1) < 2. Looking at (1.25), the error in (1.28) contains different

factors: the major contribution to it6 is of the form

π(x)−
N∑
n=1

µ(n)

n
li(x1/n) = O

(
N∑
n=1

∑
ρ

li(xρ/n)

)
. (1.29)

We have already emphasized that series of that kind are only conditionally convergent: it is

therefore quite surprising that, as Lehmer found out [5], the error (1.29) is relatively small.

Integrating repeatedly by parts, indeed, one obtain a series expansion for li(x)

li(x) =
x

log x
+

x

log 2x
+

2x

log 3x
+ · · · = x

log x

∑
k≥0

k!

log kx
;

so

|li(x)ρ| = O
(∣∣∣∣ xρ

log xρ

∣∣∣∣) = O
(

xβ

|ρ|log x

)
,

hence many terms grows at least as fast as x1/2/log x ∼ 2 li(x1/2) > li(x1/3) and are thus

comparable with the term −1
2
li(x1/2) and more significant than any other term in (1.28).A

more profound understanding of this unexpected good behaviour of the correction terms

to π(x) could be a carried by a deeper understanding of the distribution of the non-trivial

zeros of ζ(s).

6Despite of the remarkable explicit formula he had found, Riemann was not able to estimate the size of

the contribution of the terms in (1.25) to the calculation of π(x).
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1.4 The Riemann Hypothesis and its consequences

The failure of the Riemann hypothesis would create

havoc in the distribution of prime numbers.

E. Bombieri

Riemann’s paper, despite of its shortness, has been a major breakthrough in Number

Theory: Riemann Hypothesis (RH) is the only conjecture contained in it which remains

undecided so far. Technically speaking, RH is a conjecture like many other; still, it fully

deserves the designation “hypothesis” because many theorems take it as a starting point, i.e.

they are of the form: “suppose that the Riemann Hypothesis is true, then...”. This fact is

indicative of how much RH is trusted to be true by a large part of the modern mathematics

community. Then, proving RH would automatically prove thousands of theorems.

RH, together with its extension to the case of Dirichlet L-functions (the so-called Ex-

tended Riemann Hypothesis, ERH), is considered by many mathematicians as the most

important open problem in mathematics: it has been chosen by Hilbert as one of his fa-

mous 23 problems suggested during the International Congress of Mathematicians (8 August

1900, Paris) and is also one of the Clay Mathematics Institute Millennium Prize Problems

[6]. RH concerns the arrangement of the ξ(s) roots on the critical strip and has different

important implications in pure mathematics7, so it deserves this relevance because it is not

just a peculiarity of a holomorphic function, it is much more.

The Riemann conjecture can be stated as follows:

The Riemann conjecture: If ξ(s) = 0 for s = 1
2

+ iα, then Re(α) = 0.

(Equivalently, if ζ(ρ) = 0 with β = Re(ρ)∈(0, 1), then Re(ρ) = 1/2.)

7In the case of cryptography, it is not important if RH is true or not, but it could matter if the math-

ematics surrounding the eventual solution reveals quicker ways to factorize numbers. In particular, it will

only matter if it reveals much quicker ways to factorize numbers.
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Riemann himself, after computing some of the first non-trivial zeros of ζ(s) (see in next

Chapter the Riemann-Siegel formula), was conscious that the arrangement of the such zeros

on the critical line could be a peculiarity which holds for every of them. Quoting Riemann:

“It is very probable that all roots are real. Certainly one would wish for a stricter proof

here; I have meanwhile temporarily put aside the search for this after some fleeting futile

attempts, as it appears unnecessary for the next objective of my investigation.”

In the next Chapter we will see some explicit methods for locating the zeros of ξ(s),

but of course this cannot be the method to prove RH even with the help of computers8

(although it could be a method for disproving RH, by just finding a root for ξ(s) which

does not lie on the critical line). In order to prove RH, the results exposed in Chapter 3 are

much more significant, because the try to estimate a positive fraction of non-trivial zeros of

ζ(s) satisfying RH, in the hope that this fraction one day will become 100%, even if this of

course does not imply RH because we are dealing with infinite amount of zeros.

In this Section we want to mention that, besides the analytical aspects of the zeros of the

function ξ(s), the RH has several consequences in number theory and various statements

equivalent to RH can be formulated, some of them involving only aspect of “elementary

number theory” such as primes, the prime counting function π(x), the von Mangoldt function

ψ(x) or the Möbius function µ(n). Some “elementary” consequences of RH are listed in the

next:

8Few people knows that one of the main reason which pushed Alan Turing in developing the first examples

of computers was the calculation of the non-trivial zeros of ζ(s).
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Theorem 1.4.1. Assuming RH, the following estimates holds:

π(x) = li(x) +O(
√
x log x) ; (1.30)

ψ(x) = x+O(
√
x log 2x) ; (1.31)

pn = li−1(n) +O(
√
n log 5/2n) ; (1.32)∏

p≤x

(
1− 1

p

)
= e−γ

log x
+O(x−1/2) , (1.33)

where ψ(x) =
∑

n≤x Λ(n) is the von Mangoldt function, pn is the nth prime number and γ

the Euler constant.

The bound for π(x) in (1.30), for example, is maybe the most common way to express

the RH in a way which does not involve complex analysis and which takes into account

directly the primes (through the prime number counting function π(x)); in fact, condition

(1.30) is not just necessary for RH but also sufficient, i.e.[
ξ

(
1

2
+ iα

)
⇒ α ∈ R

]
⇐⇒

[
π(x) = li(x) +O(

√
x log x)

]
.

The error in estimating π(x) with li(x) in (1.30) is the smallest possible: this fact is very

significant, if RH is not true then the distribution of prime numbers among naturals is

somehow “less random” than one could expect.

Using the general concept of Dirichlet series, that is
∑

n≥1 an/n
s, where a(n) : N −→ C

is an arithmetic function and the fact that the convolution of two such series satisfies the

convolution property
∞∑

n,m=1

a(n)b(m)

(nm)s
=
∞∑
k=1

(a ∗ b)(k)

ks
,

with (a ∗ b)(k) indicating the convolution product of the two arithmetic functions a(n) and

b(m),

(a ∗ b)(k) =
∑
d|n

a(d)b
(n
d

)
,
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ZETA-FUNCTION ζ(S)

one finds the relation

1

ζ(s)
=
∑
n≥1

µ(n)

nn
, Re(s) > 1 (1.34)

being µ(n) the Dirichlet inverse of the identity function 1 (meaning 1(n) = 1 for all n). If

RH holds, then relation (1.34) is valid for Re(s) > 1/2. An equivalent of RH (see [23]) is

that ∣∣∣∣∣∑
x≤x

µ(n)

∣∣∣∣∣ < x
1
2

+ε , ∀ε > 0 . (1.35)

The tighter bound ∣∣∣∣∣∑
x≤x

µ(n)

∣∣∣∣∣ < x
1
2

is the famous Mertens conjecture, disproved by Odlyzko and te Riele [7].

The last elementary statement equivalent to RH involves another arithmetic function,

the Liouville function

λ(n) = (−1)ω(n)

where ω(n) represents the number of (non necessary distinct) prime factors in n (multiple

factors being counted multiply). A first connection between ζ(s) and λ(n) comes from the

identity

ζ(2s)

ζ(s)
=
∑
n≥1

λ(n)

ns
, Re(s) > 1 .

Theorem 1.4.2. RH holds if and only if, for every ε > 0,

lim
n→∞

λ(1) + λ(2) + · · ·+ λ(n)

n
1
2

+ε
= 0 . (1.36)

In other words, Theorem 1.4.2 states that RH is equivalent to the statement that a

natural number n has equal probability of having an odd or even number of distinct prime

factors (counted with multiplicity).

Another type of consequences of RH concerns the bounds, for t = Im(s) → ∞, on the

value of ζ(s) on the critical line (the so-called Lindelöf Hypothesis, LH [24]),

ζ(1/2 + it) = O(tε) , ∀ε > 0

17
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ZETA-FUNCTION ζ(S)

and on the line Re(s) = 1,

ζ(1 + it) = O(log log t) ,
1

ζ(1 + it)
= O(log log t) .

Beyond the numerical evidence coming from explicit calculation of the roots of ξ(s) and

the “primes randomness” implicit in formula (1.30), other motivations support the idea that

RH is true. The most convincing fact is the proof of the Weil conjecture by Deligne [8],

a theorem pertaining algebraic geometry but which can be viewed as the analogous of RH

in the case of local zeta-functions attached on algebraic varieties over finite fields: these

functions are rational, satisfy a functional equation and their zeros are displaced according

to an accurate pattern which is similar to the case of the non-trivial zeros of ζ(s) which

should lie, inside the critical strip, only on the critical line.

Although most of the mathematicians are quite optimistic on the truth of RH, some

doubts still persist. For example, the numerical evidence of RH is not an overwhelming

evidence, because for example a famous conjecture in number theory was that the Gauss

estimate π(x) ∼ li(x) was an upper bound, in the sense that for all x

π(x) < li(x) . (1.37)

The numerical evidence for (1.37) was impressive, nonetheless Littlewood [31] showed that

the inequality (1.37) is broken infinitely many times. The search for the lowest number xS

such that π(xS) > li(xS) gave birth to the concept of Skewes number, in honour of Skewes

who made (assuming RH!) the first estimate [9]

xS = 101010
34

,

later improved (without assuming RH) in [10]

xS = 101010
3

.

Enormous number like those make mathematicians very prudent about the truth of RH just

based on numerical evidence. Other reasonable doubts about RH can be found in [11].

18



Chapter 2

Numerical calculation of zeros on the

critical line

In this Chapter we will discuss some techniques involving the computation of non-trivial

zeros for ζ(s). Today efficient algorithms for computers have been able to prove that more

than 1013 of such zeros lie on the critical line [26], no exception has been found up to now.

Of course explicit computation cannot prove the validity of RH (at most a possible non-

trivial zero could disprove RH, even if most of the mathematicians do not consider this case

very likely), nevertheless it can support the belief in the truth of RH and the relative efforts

in proving it; moreover, the possibility of an outcome of interesting patterns of the zeros

arrangement on the critical line may be very useful in view of a deeper understanding of

the nature of the non-trivial zeros of ζ(s).
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CHAPTER 2. NUMERICAL CALCULATION OF ZEROS ON THE CRITICAL LINE

2.1 The Euler-Maclaurin summation

Euler-Maclaurin summation formula is an important method used in number theory. Basi-

cally, it is a tool which enables us to estimate a finite sum of the kind

B∑
k=A

f(k)

as the integral
∫ B
A
f(t)dt plus an error involving a sum of derivatives f (m)(x) of increasing

order m for x = A and x = B. Setting x0 = A, x1 = A+ 1,..., xn−1 = B − 1, xn = B, then

the “trapezoidal rule” gives∫ B

A

f(t)dt ∼
n∑
i=1

f(xi) + f(xi−1)

2
=

1

2
f(A) + f(A+ 1) + · · ·+ f(B − 1) +

1

2
f(B) .

So
B∑
k=A

f(k) ∼
∫ B

A

f(t)dt+
1

2
f(A) +

1

2
f(B) . (2.1)

To evaluate the error in estimate (2.1) we observe that, if [x] indicates the step function,

the Stieltjes integral∫ B

a

f(t)d([x]) =
1

2
f(A) + f(A+ 1) + · · ·+ f(B − 1) +

1

2
f(B)

allows to say that if we add

−
∫ B

A

f(t)dt+

∫ B

A

f([t])dt =

∫ B

A

f(t)d([t]− t)

to the right hand side of (2.1), we recover the identity

B∑
k=A

f(k) =

∫ B

A

f(t)dt+
1

2
f(A) +

1

2
f(B) +

∫ B

A

f(t)d([t]− t) . (2.2)

The Euler-Maclaurin approach consists of repeated integrations by parts of the last

integral in (2.2) to reach a better estimate of the initial approximation (2.1). Instead of

the measure d([t]− t) it is convenient to choose the symmetrical measure d([t]− t+ 1
2
) and
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integration by parts gives

B∑
k=A

f(k) =

∫ B

A

f(t)dt+
1

2
f(A) +

1

2
f(B)−

∫ B

A

([t]− t+
1

2
) df(t)

=

∫ B

A

f(t)dt+
1

2
f(A) +

1

2
f(B) +

∫ B

A

(t− [t]− 1

2
)f ′(t) dt , (2.3)

where, in the last equality, the Stieltjes measure df(t) becomes f ′(t) dt only if f ∈ C1([A,B]).

In view of subsequent integration of the last integral in (2.3) , we must exploit Bernoulli

numbers and Bernoulli polynomials. Bernoulli numbers bn are defined as the rational coef-

ficients in the Taylor series

x

ex − 1
=
∑
n≥0

bn
xn

n!
,

or, equivalently,

bn =
dn

dxn

(
x

ex − 1

)∣∣∣∣
x=0

.

Except b1 = −1/2, all odd Bernoulli numbers vanish: b2n+1 = 0 for all naturals n. The first

even Bernoulli numbers are

b0 = 1, b2 =
1

6
, b4 = − 1

30
, b6 =

1

42
, . . .

The nth Bernoulli polynomials Bn(x) is defined1 as the unique polynomial of degree n

satisfying ∫ t+1

t

Bn(x) dx = tn . (2.4)

1Another possible definition is similar to the one of Bernoulli numbers, that is through the generating

function

F (y, x) =
yeyx

ey − 1
=
∑
n≥0

Bn(x)
yn

n!
.

Setting x = 0, we instantly see that Bn(0) = bn. Setting instead x = 1,

F (y, 1) =
yey

ey − 1
=

y

1− e−y
=

−y
e−y − 1

= F (−y, 0) ,

so that Bn(1) = (−1)nBn(0) = (−1)nbn.
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The recursive relation

B′n(x) = nBn−1(x) (2.5)

follows once derived relation (2.4) to get Bn(t + 1) − Bn(t) = n tn−1 and, consequently,∫ t+1

t
B′n(x)/n dx = tn−1 =

∫ t+1

t
Bn−1(x) dx. The first Bernoulli polynomials are

B0(x) = 1, B1(x) = x− 1

2
, B2(x) = x2 − x+

1

6
, B3(x) = x3 − 3

2
x2 +

1

2
x, . . .

It will be handy, in our case, to deal with the so-called periodic Bernoulli polynomial B̄n(x) =

Bn({x}), where {x} = x− [x]; if x = 0 in the equation Bn(x + 1)− Bn(x) = nxx−1 we get

Bn(1) = Bn(0), so B̄n(x) is periodic with period 1 and continuous in R.

Turning back to the last integral in (2.3)∫ B

A

(t− [t]−1

2
)f ′(t) dt =

B−1∑
n=A

∫ 1

0

(
y − 1

2

)
f ′(n+ y) dy =

B−1∑
n=A

∫ 1

0

B1(y)f ′(n+ y) dy

=
B−1∑
n=A

[
1

2
B2(y)f ′(n+ y)

∣∣∣∣1
0

− 1

2

∫ 1

0

B2(y)f ′′(n+ y) dy

]

=− 1

2
B2(0)f ′(A) +

1

2
B2(1)f ′(A+ 1)− 1

2
B2(0)f ′(A+ 1)

+
1

2
B2(1)f ′(A+ 2)− · · ·+ 1

2
B2(1)f ′(B)− 1

2

∫ B

A

B2(x− [x])f ′′(x) dx

=
1

2
B2(0)f ′(x)

∣∣∣∣B
A

− 1

2

∫ B

A

B̄2(x)f ′′(x) dx .

Again, the second term involving the integral of B̄2(x)f ′′(x) can be integrated by part as

before:∫ B

A

(t− [t]− 1

2
)f ′(t) dt =

1

2
B2(0)f ′(x)

∣∣∣∣B
A

− 1

6
B3(0)f ′′(x)

∣∣∣∣B
A

+
1

6

∫ B

A

B̄3(x)f ′′′(x) dx .

Going on as before, the nth step applied to the original sum gives

B∑
k=A

f(k) =

∫ B

A

f(t)dt+
1

2
f(A) +

1

2
f(B) +

1

2
B2(0)f ′(x)

∣∣∣∣B
A

− 1

6
B3(0)f ′′(x)

∣∣∣∣B
A

+ · · ·+ (−1)n
1

n!
Bn(0)f (n−1)(x)

∣∣∣∣B
A

+ (−1)n+1 1

n!

∫ B

A

B̄n(x)f (n)(x) dx . (2.6)
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Euler-Maclaurin summation method is useful if we are able to control the error term, i.e.

the last integral in (2.6). To this final cause, we use the following:

Lemma 2.1.1. If k is an odd natural number, then the sign of B̄k(x) in the interval (0, 1
2
)

is opposite to the sign in the interval (1
2
, 1), with B̄k(x) = 0 for x = 0, 1

2
, 1.

The proof of Lemma 2.1.1 can be found in [4], §6. Roughly speaking, we could say that

B̄k(x) oscillates in the interval [0, 1] if k is odd. Hence, if f (n)(x) is monotone in the interval

[A,B], becomes easy to estimate the error in (2.6).

Example: suppose we intend to calculate

S =
100∑
k=10

log k ;

we try to estimate S with Euler-Maclaurin summation until the error term contains B̄3(x),

that is

S =

∫ 100

10

log t dt+
1

2
(log 100 + log 10) +

1

2
B2(0)

1

x

∣∣∣∣100

10

− 1

6
B3(0)

(
− 1

x2

)∣∣∣∣100

10

+R , (2.7)

where

R =
1

6

∫ 100

10

B̄3(x)
2

x3
dx =

1

3

∫ 100

10

x3 − 3
2
x2 + 1

2
x

x3
dx .

But B̄3(x) is positive on (0, 1
2
) and negative on (1

2
, 1), while 2

x3
decreases; hence R is made

by the sum of integrals (the first between 10 and 10.5, the second between 10.5 and 11 and

so forth) of oscillating sign, the greater in absolute value being the first one (which turns

out to be positive), so we have found the bound

|R| ≤ 1

3

∫ 10.5

10

x3 − 3
2
x2 + 1

2
x

x3
dx ' 0, 14 ,

and comparing with the explicit computation of the other terms in (2.7) which gives ap-

proximately 349,84, we see that the relative error is less than 0.14
349,84

' 4 · 10−4 (of course the

absolute error depends on the sum we are going to estimate and could be large at will, but
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here we emphasize the efficiency of Euler-Maclaurin method looking at the smallness of the

relative error already at the third order).

Going back to the general case, using Lemma 2.1.1 (in particular, the fact thatB2h+1(0) =

0 for every natural h) we can state the

Euler-Maclaurin summation formula: If f(x) ∈ C2m([A,B]), then

B∑
k=A

f(k) =

∫ B

A

f(t)dt+
1

2
f(A) +

1

2
f(B) +

1

2
B2(0)f ′(x)

∣∣∣∣B
A

+
1

4!
B4(0)f ′′′(x)

∣∣∣∣B
A

+ · · ·+ 1

(2m)!
B2m(0)f (2m−1)(x)

∣∣∣∣B
A

+R2m , (2.8)

with the remainder term R2m given by two possible expressions:

R2m = − 1

(2m)!

∫ B

A

B̄2m(x)f (2m)(x) dx ,

or, if f(x) ∈ C2m+1([A,B]),

R2m =
1

(2m+ 1)!

∫ B

A

B̄2m+1(x)f (2m+1)(x) dx ,

where, as before,l B̄k(x) = Bk(x− [x]).

Observation: It is not the spirit of Euler-Maclaurin method, but theoretically the finite

sum on the second member of equation (2.8) could become a series (of course with no

remainder term), i.e.

B∑
k=A

f(k) =

∫ B

A

f(t)dt+
1

2
f(A) +

1

2
f(B) +

∑
m≥1

1

(2m)!
B2m(0)f (2m−1)(x)

∣∣∣∣B
A

.

Depending on f(x) and the interval [A,B] we choose, in general the approximation

of S =
∑B

k=A f(k) through Euler-Maclaurin formula gets better if we do not stop the

computation after the first few steps, but we must keep in mind that this behaviour does

not last indefinitely. In fact, reminding the Euler formula for computing ζ(s) for even

positive integers,

ζ(2m) = (−1)m+1 b2m (2π)2m

2 · (2m)!
,
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and noticing that for large m values ζ(2m) ∼ 1 and that Bn(0) = bn is the nth Bernoulli

number, we find

|B2m(0)| ∼ 2 · (2m)!

(2π)2m
,

so that the remainder term in (2.8), as the order of computation 2m increases, despite of

an initial reduction, from a certain point gets bigger. Hence there exists a limit of accuracy

for the approximation of a sum S using Euler-Maclaurin formula.

Example: recovering the previous case, S =
∑100

k=10 log k, if we continue the process beyond

the third order where we stopped before, we will find an error term (at the order 2m of

computation) of absolute value bounded by

|R2m| =
1

(2m+ 1)!

∣∣∣∣∫ 100

10

B̄2m+1(x)
(2m)!

x2m+1
dx

∣∣∣∣ ≤ 1

(2m+ 1) 102m+1

∣∣∣∣∣
∫ 1/2

0

B2m+1(x) dx

∣∣∣∣∣
=

1

(2m+ 1) 102m+1

∣∣∣∣∣
∫ 1/2

0

B′2m+2(x)

2m+ 2
dx

∣∣∣∣∣ ≤
∣∣B2m+2

(
1
2

)
− b2m+2

∣∣
(2m+ 1)2 102m+1

=

∣∣B2m+2

(
1
2

)
+ b2m+2 − 2b2m+2

∣∣
(2m+ 1)2 102m+1

=
|2−2m−1b2m+2 − 2b2m+2|

(2m+ 1)2 102m+1
≤ 2 |b2m+2|

(2m+ 1)2 102m+1
,

where the identity Bn(2x) = 2n−1[Bn(x)+Bn(x+1/2)] has been used (see [4], §6). So |R2m|

is reasonably small until, for large m, we get

|R2m| .
(2m+ 2)!

(2m+ 1)2(20π)2m+1

which is no longer a meaningful estimate because it grows without bound with m.

Here follow two applications of Euler-Maclaurin method, the first one relative to Γ(s)

and the second one to ζ(s). In the next Section the importance of these two estimates for

locating the ξ(s) roots through Euler-Maclaurin will become clear.
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2.1.1 Computation of log Γ(s) using Euler-Maclaurin formula

The Γ function can be defined in the whole complex plane except the non-positive integers

through the Euler relation:

Γ(s) =
1

s

∏
n≥1

(
1 +

1

n

)s (
1 +

s

n

)−1

= lim
n→∞

n! (n+ 1)s

s(s+ 1) . . . (s+ n)
,

or simply

Γ(s) = lim
n→∞

n!ns

s(s+ 1) . . . (s+ n)
. (2.9)

For our final purpose, we need to evaluate Im[log Γ(s)], so we exploit Euler-Maclaurin to

estimate log Γ(s) from (2.9):

log Γ(s) = lim
n→∞

{
s log n+

n∑
k=1

log k −
n∑
k=0

log (s+ k)

}

= lim
n→∞

{
s log n+

∫ n

1

log x dx+
1

2
log n+

∫ n

1

B̄1(x)

x
dx

−
∫ n

0

log (s+ x) dx+
1

2
[log n+ log (s+ n)] +

∫ n

0

B̄1(x)

s+ x
dx

}
=

(
s− 1

2

)
log s+ C −

∫ ∞
0

B̄1(x)

s+ x
dx+ lim

n→∞

{(
s+ n+

1

2

)
log

(
n

n+ s

)}
,

where

C = 1 +

∫ ∞
1

B̄1(x)

x
dx

is a constant that will be evaluated immediately after having noticed that the last term

involving the limit reduces to −s, so that

Γ(s) = s s−
1
2 e−seCF (s) , (2.10)

where

F (S) = exp

[
−
∫ ∞

0

B̄1(x)

s+ x
dx

]
.

To compute A we remind the Legendre duplication formula,

Γ(s) Γ

(
s+

1

2

)
= 21−2s

√
π Γ(2s) ,
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which using (2.10) gives

eC =
√

2πe

(
s

s+ 1
2

)s
F (2s)

F (s)F
(
s+ 1

2

) .
Taking the limit s→∞ we obtain eC =

√
2π, being lims→∞ F (s) = 1. Hence

log Γ(s) =

(
s− 1

2

)
log s− s+

1

2
log 2π −

∫ ∞
0

B̄1(x)

s+ x
dx

=

(
s− 1

2

)
log s− s+

1

2
log 2π +

m∑
k=1

b2k

2k(s+ x)2k−1
+R2m , (2.11)

with

R2m = −
∫ ∞

0

B̄2m(x)

2m(s+ x)2m
dx = −

∫ ∞
0

B̄2m+1(x)

(2m+ 1)(s+ x)2m+1
dx .

Letting m→∞, (2.11) becomes the so-called Stirling series.

We are going to make use of the Stirling series in the next Section for complex s values,

in particular we will be concerned with the case s = 1
2

+ it. In the “slit plane” (i.e. the

complex plane without the non-positive real axis {s ≤ 0}) all terms in (2.11) are holomorphic

functions of s. But unlike the example in the previous Section, to estimate |R2m| we cannot

apply an alternating series method because we are dealing with complex quantities. A

method for estimating the remainder term of the Stirling series is due to Stieltjes [12] and

gives, for s = reiθ,

|R2m| ≤
(

1

cos (θ/2)

)2m+2 ∣∣∣∣ b2m+2

(2m+ 2)(2m+ 1)s2m+1

∣∣∣∣ . (2.12)

Looking at (2.11), we see that the estimate (2.12) entails that the error in the Stirling series

is at most cos (θ/2)−2m−2 times the order of magnitude of the first term omitted. In our

case, on the critical line Re(s) = 1
2
, we will have bounded errors because cos (θ/2) ≥

√
2/2.
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2.1.2 Computation of ζ(s) using Euler-Maclaurin formula

For estimating ζ(s) =
∑

n≥1 n
−s, the Euler-Maclaurin method is not directly feasible because

the remainder term is not small; in fact we find for Re(s) > 1

ζ(s) =

∫ ∞
1

x−sdx+
1

2
x−s
∣∣∞
1
− b2sx

−s

2

∣∣∣∣∞
1

+ · · ·+R2m

=
1

s− 1
+

1

2
+
b2s

2
+ · · ·+ b2ms(s+ 1) . . . (s+ 2m− 2)

(2m)!
+R2m ,

where

R2m =− s(s+ 1) . . . (s+ 2m− 1)

(2m)!

∫ ∞
1

B̄2m(x)x−s−2mdx

=− s(s+ 1) . . . (s+ 2m)

(2m+ 1)!

∫ ∞
1

B̄2m+1(x)x−s−2m−1dx .

Trying to estimate the remainder term using the alternating series technique, we get∣∣∣∣∫ ∞
1

B̄2m+1(x)x−s−2m−1dx

∣∣∣∣ ≤
∣∣∣∣∣
∫ 3/2

1

B̄2m+1(x)x−s−2m−1dx

∣∣∣∣∣ ≤ b2m+2

m+ 1
;

so, for large |s| values, we may have an error too big to consider valid the ζ(s) estimate

performed through a course use of Euler-Maclaurin formula.

The idea is then to split ζ(s) into a finite sum
∑N−1

n=1 n
−s, which will be summed directly,

plus a “tail”
∑∞

n=N n
−s on which Euler-Maclaurin method will be applied. The choice of

the natural N depends on |s| as we are going to see in a while. In formulas, if Re(s) > 1,

ζ(s) =
N−1∑
n=1

n−s +
∞∑
n=N

n−s =
N−1∑
n=1

n−s +
N−s

s− 1
+

1

2
N−s

+
b2s

2
N−s−1 + · · ·+ b2ms(s+ 1) . . . (s+ 2m− 2)

(2m)!
N−s−2m−1 +R2m , (2.13)

with the remainder term now given by the following two equivalent expressions:

R2m =− s(s+ 1) . . . (s+ 2m− 1)

(2m)!

∫ ∞
N

B̄2m(x)x−s−2mdx

=− s(s+ 1) . . . (s+ 2m)

(2m+ 1)!

∫ ∞
N

B̄2m+1(x)x−s−2m−1dx . (2.14)

28



CHAPTER 2. NUMERICAL CALCULATION OF ZEROS ON THE CRITICAL LINE

Backlund [13] was the first to show that

|R2m| ≤
∣∣∣∣s(s+ 1) . . . (s+ 2m+ 1) b2m+2N

−σ−2m−1

(2m+ 2)!(σ + 2m+ 1)

∣∣∣∣ ,
so, if N is chosen of the same size of |s|, the following estimate holds:

|R2m| ≤
∣∣∣∣(s+ 2m+ 1) b2m+2

(σ + 2m+ 1)

∣∣∣∣O(1) .

Equation (2.13) was originally valid only for Re(s) > 1, providing hence an absolute

convergence for ζ(s) written as the standard series; yet, (2.13) holds whenever R2m is well-

defined, that is whenever the integral converges. Looking at (2.13) it is therefore evident

that formula (2.13) remains valid in the halfplane Re(s) > −2m, which can be viewed as

an alternative proof of the analytical continuation of ζ(s) throughout C\{1}.

Concerning the roots of ξ(s) on the critical line, we focus our attention to complex

numbers with real part equal to 1/2. If s = 1
2

+ it with a large t value, we have seen

that it is mandatory to choose a sufficient large N in order to have a remainder terms in

(2.13) not too big. Unfortunately, at the same time we have to deal with the finite sum in

(2.13), consisting of 2−s, 3−s and so on forth until (N − 1)−s: each of them is of the form

n−s = n−1/2e−it logn = n−1/2[cos (t log n)− i sin (t log n)], thereby involving the computation

of a square root, a logarithm, a sine and a cosine, not at all a fast computation. This is

the reason why this method cannot be used to calculate ζ
(

1
2

+ it
)

for large values of t: to

search for the zeros of ζ
(

1
2

+ it
)

in a wider range we will need the Riemann-Siegel formula

of Section 2.3.

2.2 A first method for locating zeros on the critical

line

In order to use Euler-Maclaurin summation for finding a zero on the critical line, we start

from the following:
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Lemma 2.2.1. The function ξ(s) = 1
2
s(s−1)π−

1
2
sΓ
(

1
2
s
)
ζ(s) is real-valued for s = 1/2+ it,

t ∈ R.

Proof: We start from equation (1.5) and we rewrite it using the definition (1.7) of ξ(s):

ξ(s) =
1

2
+
s(s− 1)

2

∫ ∞
1

(
x

1
2
s + x

1
2

(1−s)
)
ψ(x)

dx

x
,

and integrating by parts

ξ(s) =
1

2
+
s(s− 1)

2

∫ ∞
1

d

dx

[
ψ(x)

(
2x

1
2
s

s
+

2x
1
2

(1−s)

1− s

)]
dx

+
s(1− s)

2

∫ ∞
1

ψ′(x)

(
2x

1
2
s

s
+

2x
1
2

(1−s)

1− s

)
dx

=
1

2
+
s(1− s)

2
ψ(1)

(
2

s
+

2

1− s

)
+

∫ ∞
1

ψ′(x)
[
(1− s)x

1
2
s + sx

1
2

(1−s)
]
dx

=
1

2
+ ψ(1) +

∫ ∞
1

ψ′(x)x
3
2

[
(1− s)x

1
2

(s−1)−1 + sx−
1
2
s−1
]
dx

=
1

2
+ ψ(1) +

∫ ∞
1

d

dx

[
ψ′(x)x

3
2

(
−2x

1
2

(s−1) − 2x−
1
2
s
)]
dx

−
∫ ∞

1

d

dx

[
ψ′(x)x

3
2

] (
−2x

1
2

(s−1) − 2x−
1
2
s
)
dx

=
1

2
+ ψ(1)− ψ′(1)[−2− 2] + 2

∫ ∞
1

d

dx

[
ψ′(x)x

3
2

] (
x

1
2

(s−1) + x−
1
2
s
)
dx .

We have seen in the proof of the functional equation for ζ(s) that the function ψ(x) satisfies

ψ(1/x) = −1

2
+

√
x

2
+
√
xψ(x) ;

setting x = 1 into the derivative of both side, we find

1

2
+ ψ(1) + 4ψ′(1) = 0 .

Thence

ξ(s) = 4

∫ ∞
1

d

dx

[
ψ′(x)x

3
2

]
x−

1
4 cosh

[(
s

2
− 1

4

)
log x

]
dx .

Setting s = 1
2

+ it with real t, it is possible to express ξ(s) on the critical line as

ξ

(
1

2
+ it

)
= 4

∫ ∞
1

d

dx

[
ψ′(x)x

3
2

]
x−

1
4 cos

(
t

2
log x

)
dx , t ∈ R , (2.15)
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which proves that ξ(s) is real-valued on the critical line. 2

Before Siegel found out the brilliant method that Riemann possessed to calculate the

roots for ξ(s) (and which probably drove Riemann to believe that “it is very probable that

all roots are real”), the first known attempt to locate the first roots of ξ(s) belongs to Gram

[15], who calculated the first 15 roots, all in the range 0 ≤ Im(s) ≤ 50, which turn out to

lie on the critical strip, showing that no other root in the same range exist on the critical

strip, hence verifying RH in this range.

Expressing ξ(s) on the critical line through (2.15) makes evident that it is real-valued

and continuous, so every time it changes sign a zero must occur. Of course, paying attention

to eventual zeros of ζ(s) on the critical line corresponding to a minimum or maximum of

ξ(s), in order to verify RH for a certain range 0 ≤ t ≤ T , the possibility of roots ρ for ξ(s)

occurring with real part Re(ρ) = β 6= 1/2 must be excluded in some way. We will return on

this point up ahead.

To determinate the sign of ξ
(

1
2

+ it
)

we observe that it is possible to write

ξ

(
1

2
+ it

)
=

1

2

[
1

2
+ it

] [
−1

2
+ it

]
Γ

(
1

4
+
it

2

)
π−

1
4
− it

2 ζ

(
1

2
+ it

)
=− 1

2
exp

[
Re log Γ

(
1

4
+
it

2

)]
π−

1
4

(
t2 +

1

4

)
Z(t) , (2.16)

where

Z(t) = eiϑ(t)ζ

(
1

2
+ it

)
= exp

[
i Im log Γ

(
1

4
+
it

2

)
− i log π

2
t

]
ζ

(
1

2
+ it

)
is called the Riemann-Siegel Zeta-function2. In equation (2.16), the factor multiplying Z(t)

is real and negative; we also know that ξ
(

1
2

+ it
)

is real-valued, so also Z(t) ∈ R for every

real t and the sign of Z(t) is opposite to the sign of ξ
(

1
2

+ it
)
. Then, the research for roots

2Some authors are used to call Z(t) simply Riemann-Siegel function, but this is the same name which

other authors use to call ϑ(t). To avoid ambiguities, in this thesis we will explicitly refer to Riemann-Siegel

Zeta-function for Z(t) and to Riemann-Siegel theta-function for ϑ(t).
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ρ of ξ
(

1
2

+ it
)

via a study of its sign must pass through the computation, described in the

previous Section, of ϑ(t) (and hence of the imaginary part of log Γ) and of ζ
(

1
2

+ it
)
.

We start with the computation of ϑ(t) through Euler-Maclaurin method and we will

suppose t > 0:

ϑ(t) = Im log Γ

(
it

2
+

1

4

)
− log π

2
t = Im

{(
it

2
− 1

4

)
log

(
it

2
+

1

4

)
−
(
it

2
+

1

4

)
+

1

2
log 2π +

1

12
(
it
2

+ 1
4

) − 1

360
(
it
2

+ 1
4

)3 + . . .

}
− log π

2
t

=
t

2
Re log

(
it

2
+

1

4

)
− 1

4
Im log

(
it

2
+

1

4

)
− t

2
−

− t
2

12
(
t2

4
+ 1

16

)
−

Im
(
− it

2
+ 1

4

)3

360
(
t2

4
+ 1

16

)3 + · · ·+− log π

2
t

=
t

2
log

t

2
+
t

4
log

(
1 +

1

4t2

)
− 1

4

[
π

2
− arctan

(
1

2t

)]
− t

2
− 1

6t
(
1 + 1

4t2

)
− 1

45t3
(
1 + 1

4t2

)3 +
1

60t5
(
1 + 1

4t2

)3 + · · · − log π

2
t .

Utilizing the Taylor series of log (z) and arctan(z), we finally arrive at

ϑ(t) =
t

2
log

t

2π
− t

2
− π

8
+

1

48t
+

7

5760t3
+O(t−5) . (2.17)

However, using Stirling series to evaluate the error committed, it is possible to show (see

[4]) that a valid approximation for (2.17) is simply

ϑ(t) ∼ t

2
log

t

2π
− t

2
− π

8
+

1

48t
. (2.18)

Equation (2.18) is then sufficient to compute the roots of ξ(s) on the critical line.

Example: suppose we want to compute ξ(1
2

+ 18i), we focus first on ϑ(18), then on

ζ(1
2

+ 18i) and finally on Z(18). Using (2.18) we find

ϑ(18) ∼ 9 log
9

π
− 9− π

8
+

1

48 · 9
∼ 0.080911 ,
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and following the previous Section for what concerns the computation of ζ(1
2

+ it) (or simply

looking at Haselgrove’s tables [14], see Figure 2.1):

ζ

(
1

2
+ 18i

)
∼ 2.329− i 0.189 ,

leading to

Z(18) ∼ e0.080911(2.329− i 0.189) = 2.337 + i 0.000 ,

which is, in our three decimal approximation, real-valued as expected, a further evidence of

how good were the approximations we have used. Since Z(18) is positive, then ξ(1
2

+ 18i)

must be negative. It is quite easy to prove that ξ(x) > 0 on the real axis3, so that a change

of sign must occur for ξ(1
2

+ it) in the range 0 ≤ t ≤ 18, proving that at least one root

ρ = 1
2

+ iγ must exist (equivalently, ξ(1
2

+ iγ) = 0).

Looking over the Haselgrove’s tables for ζ(1
2

+ it) in the range 0 ≤ t ≤ 50, Figures

2.1 and 2.2, we notice first of all that Re ζ(1
2

+ it) is mostly positive, whereas Im ζ(1
2

+ it)

appears to oscillate quite regularly: 21 changes of sign for Im ζ(1
2

+ it) (consequently zeros

for Im ζ(1
2

+ it)) in the range 0 ≤ t ≤ 50. Now, a root ρ for ξ(1
2

+ it) occurs if both the real

and the imaginary part of ζ(1
2

+ it) are zero, so if 0 ≤ t ≤ 50 we must check if any of the 21

changes of sign for Im ζ(1
2

+ it) correspond to a zero of Re ζ(1
2

+ it): from Figures 2.1 and 2.2

11 of the 21 possible roots of ξ are promptly excluded because, in correspondence to them,

Re ζ(1
2

+ it) is far from being zero, so just 10 zeros of Im ζ(1
2

+ it) seem to be potential zeros

for Re ζ(1
2

+ it) too.

Writing

ζ

(
1

2
+ it

)
= e−iϑ(t)Z(t) = Z(t) cosϑ(t)− iZ(t) sinϑ(t) ,

3Starting from the definition ξ(s) = 1
2s(s−1)π−

1
2 sΓ

(
1
2s
)
ζ(s), if s = x > 1 then x(x−1) > 0, Γ

(
1
2x
)
> 0

and of course ζ(x) > 0, so that ξ(x) > 0. But from the functional equation we know that ξ(x) = x(1− x),

hence also ξ(x) > 0 for every x < 0. In the range 0 < x < 1, the extension (1.3) for ζ(s) prove that ζ(x) < 0

together with x(x− 1) < 0, while Γ
(
1
2x
)

remains positive, so ξ(x) > 0 also for 0 < x < 1. The computation

of ξ(0) and ξ(1) is a simple exercise involving the residues of Γ and ζ.
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Figure 2.1: Haselgrove’s table for ζ(1
2

+ it) in the range 0 ≤ t ≤ 26.8.
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Figure 2.2: Haselgrove’s table for ζ(1
2

+ it) in the range 27.0 ≤ t ≤ 50.0.
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it is evident that a zero for Im ζ(1
2

+ it) = −Z(t) sinϑ(t) corresponds to a zero of either Z(t)

or sinϑ(t). In the matter of our case, along the segment from 1
2

to 1
2

+ 50i, near any of the

10 potential roots of ξ(s), ϑ(t) is far from being a multiple of π, consequently Z(t) must be

zero: this proves that if 0 ≤ t ≤ 50 then ζ(1
2

+ it) possesses exactly 10 roots.

A look over Haselgrove’s tables in Figure 2.1 suggests that the first zero of ζ(1
2

+ it)

lies between 1
2

+ i14.0 and 1
2

+ i14.2: a more precise localization of such zero can be easily

performed through linear interpolation, just like Gram [15] did when he computed the first

15 non-trivial zeros of ζ(s).

What can we say about the zeros of ζ(s) on the critical strip for 0 ≤ Im(s) ≤ 50? We

have found 10 zeros lying on the segment S = {1
2

+ it | 0 ≤ t ≤ 50}, but other non-trivial

zeros could exist located outside S. To verify that the first 15 zeros on the critical line

satisfy RH (the 15th zero computed by Gram was approximately4 ρ15 = 1
2

+ i65, so RH

holds in this range if no other zeros of ξ(s) can be found with 0 ≤ t ≤ 65), Gram [15] used

a method based on the Taylor series of log ξ
(

1
2

+ it
)

(see [4]) which become soon unfeasible

a Im(s) grows. Backlund [16] developed a much more workable method for verifying RH

once given the first n roots of ξ(1
2

+ it).

The starting point of Backlund’s method is the application of the Cauchy’s argument

principle to the analytic function ξ(s): if ∂R indicates the counterclockwise oriented bound-

ary of R = {s ∈ C | − ε ≤ Re(s) ≤ 1 + ε, 0 ≤ Im(s) ≤ T} for fixed ε > 0, T > 0,

then

N(T ) =
1

2πi

∫
∂R

ξ′(s)

ξ(s)
ds = Im

{
1

2π

∫
∂R

ξ′(s)

ξ(s)
ds

}
is the number of zeros of ξ(s) inside R, each zero counted as many times as its multiplicity5,

4The first 10 zeros have been computed by Gram with good accuracy, while the other 5, from the 11th

to the 15th, were only roughly located, as Gram himself admitted. A better localization of these roots can

however be deduced from Haselgrove’s tables.
5We have supposes implicitly that no zero occurs with imaginary part equal to T , otherwise the integra-
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where the last equality results from the observation that N(T ) ∈ N. Now, since ξ(x) 6= 0

for every real x and as a consequence of the functional equation ξ(s) = ξ(1 − s), we can

simply consider

N(T ) = 2 Im

{
1

2π

∫
L

ξ′(s)

ξ(s)
ds

}
= Im

{
1

π

∫
L

ξ′(s)

ξ(s)
ds

}
,

where L is the union of the vertical segment from 1 + ε to 1 + ε + iT and the horizontal

segment from 1 + ε+ iT to 1
2

+ iT . Using the definition (1.7), we write

N(T ) =
1

π
Im

{∫
L

d

ds
log

[
π−

1
2
sΓ

(
1

2
s

)]
ds+

∫
L

d

ds
log [s(s− 1)] ds+

∫
L

ζ ′(s)

ζ(s)
ds

}
=

1

π
ϑ(T ) + 1 +

1

π
Im

{
1

π

∫
L

ζ ′(s)

ζ(s)
ds

}
, (2.19)

where the last equality follows once noticed that

• the first integrand has π−1 Im log
[
π−

1
2
sΓ
(

1
2
s
)]

as antiderivative which, evaluated for

s=1 + ε and s= 1
2

+ iT and using the definition of the Riemann-Siegel theta -function

ϑ(t), gives exactly π−1ϑ(T );

• the second integral gives π−1 times the argument of log [s(s− 1)]: when s=1 + ε this

argument is zero and, when s= 1
2

+ iT , we find π−1 Im log
(
−T 2 − 1

4

)
= 1.

Backlund idea is based on the fact if Re ζ(s) 6= 0 on C, then ζ(C) is a curve contained in the

halfplane Re(s) > 0 and the third integral in (2.19) is π−1 times the argument of log ζ(s)

which, for s ∈ C, cannot exceed π/2 in absolute value, so that the last term in (2.19) cannot

axceed 1
2

in absolute value. As a direct consequence, formula (2.19) states that N(T ) is the

natural number nearest to π−1ϑ(T )+1 . The proof that Reζ(s) is never zero on C, together

with an example of application of Backlund ideas, can be found in [4]; we conclude here

just mentioning that Backund was able to prove that N(200) = 79 and at the same time,

locating 79 changes of sign for Z(t) in the range 0 ≤ t ≤ 200, he managed to prove that RH

is true for |Im(s)| ≤ 200.

tion over ∂R could not be performed.
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2.2.1 Some considerations on the “Gram’s law”

Starting from the definition of the Riemann-Siegel theta-function,

ϑ(t) = Im log Γ

(
1

4
+
it

2

)
− log π

2
t ,

we take the derivative

ϑ′(t) = Im
i

2

Γ′
(

1
4

+ it
2

)
Γ
(

1
4

+ it
2

) − 1

2
log π .

Using the main term from the Stirling series for Γ(s) ∼ s log s, we may say that

d

ds
log Γ(s) ∼ log s

so that, for t > 0,

ϑ′(t) ∼ 1

2
log

∣∣∣∣14 +
it

2

∣∣∣∣− 1

2
log π ∼ 1

2
log

t

2π
> 0 .

Reminding the equation ζ(1
2

+ it) = Z(t) cosϑ(t)− iZ(t) sinϑ(t), since ϑ(t) is an increasing

function of t, we conclude that the zeros of cosϑ(t) and sinϑ(t) alternates. The Hasel-

grove’s tables show a tendency of Reζ(1
2

+ it) = Z(t) cosϑ(t) to be positive, in particular if

Z(t) cosϑ(t) is positive in correspondence to two consecutive zeros of sinϑ(t) then at least

one zero of Z(t) (hence a zero of ζ(1
2

+ it)) must occur.

From Figures 2.1 and 2.2 we see that, in the range 10 ≤ t ≤ 50, the zeros of Im ζ(1
2

+ it)

are alternately zeros of Z(t) (and therefore zeros of Re ζ(1
2

+ it) as well) and zeros of sinϑ(t):

Gram thought, from arguments similar to the one exposed before, that this peculiar pattern

could hold for larger t values until, from a certain point on, the tendency of Re ζ(1
2

+ it)

disappear in favour of a substantial equilibrium between positive and negative values for

Re ζ(1
2

+ it). While the first conjecture was substantially correct, the second one has been

disproved by Titchmarsh [17].

The zeros of sinϑ(t) are called Gram points: the nth Gram point, gn, is such that

ϑ(gn) = nπ. So Im ζ(1
2

+ ign) = 0 but Re ζ(1
2

+ ign) 6= 0. Since ϑ(t) is an increasing function
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of t, it is not difficult to locate approximately Gram points just looking at Haselgrove’s

tables and, possibly, performing a linear interpolation (using the fact that ϑ′(t) ∼ 1
2

log t
2π

).

The alternation of a zero of Z(t) and a zero of sinϑ(t) is strictly related with the persistent

positivity of Re ζ(1
2

+ it): as long as it lasts, between 1
2

+ ign−1 and 1
2

+ ign there exists at

least one zero ρ of ξ(1
2

+ it). This alternation is often referred as Gram’s law and it could

be summarized as

Re ζ

(
1

2
+ ign

)
> 0

or, equivalently,

(−1)nZ(gn) > 0 .

Gram’s law is not a real “law” in the mathematical sense because it is not always true for

all n: the first Gram point at which Gram’s law fails is g126 ∼ 282.455. However, “Gram’s

law” has been a very useful relation which helped to locate roots on the critical line, due

to the not excessive computing effort needed to locate Gram points, for t values greater

that 50, where the direct Euler-Maclaurin computation of ζ(1
2

+ it) becomes too demanding.

In particular, the turning point of large-scale computation of roots for ξ(1
2

+ it) was the

Riemann-Siegel formula used to evaluate Z(gn) and to find the points g′n, close to gn such

that (−1)nZ(g′n) > 0 whenever the Gram’s law fails giving (−1)nZ(gn) < 0 (which happens

very rarely, as was clear from the large-scale computations performed by Lehmer [18], [19],

which also proved RH to be true in the range 0 ≤ Im(s) ≤ g25000, all 25000 zeros being

simple).

2.3 The Riemann-Siegel formula

The paper of Carl Siegel [20], appeared in 1932, is a milestone in analytic number theory, for

two different reasons: first, it disclosed to the mathematical community the Riemann’s deep

insights about zeta-function which were not at all evident from his brief paper (including
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Riemann’s “feeling” that all non-trivial zeros for ζ(s) could have real part equal to 1
2
)

and second, it provided a very powerful formula for computing Z(t) for large t values,

the Riemann-Siegel formula. On this formula are based all modern computer algorithms

for the calculation of the ξ roots. Last but not least, the Riemann-Siegel formula plays

a fundamental role in theoretical number theory because it is used in different proofs of

theorems concerning the zeta-function6.

The original idea of Riemann, emerged from the studies made by Siegel on Riemann’s

unpublished papers in the Göttingen library, are a variation of the integrals used to prove

the functional equation for ζ(s) (see Theorem A.2.2 in Appendix A.2). First we remind the

identity (A.3):

ζ(s) = −Γ(1− s)
2πi

∫
C

(−z)s−1

ez − 1
dz , (2.20)

where C represents the path along the positive real axis from +∞ toward the origin, then

making a counterclockwise circle of radius r < 2π around the origin and moving right back

to +∞. We want now to split in two the zeta-function defined as formal series, something

similar to what was done in Section 2.1.2 when we needed to apply the Euler-Maclaurin

formula to ζ(s):

ζ(s) =
N∑
n=1

1

ns
+RN ,

where now the tail of the series, RN =
∑∞

n=N+1 n
−s, is going to be evaluated through

complex integrals. In order to split off ζ(s) as in equation (2.20), one can use, for the

integrand function, the tail of the geometric series
∑
e−nx:

e−Mz

ez − 1
=

∞∑
n=M+1

e−nz ,

so that we can write

ζ(s) =
M∑
n=1

1

ns
− Γ(1− s)

2πi

∫
C

e−Mz(−z)s−1

ez − 1
dz . (2.21)

6In Chapter 3 two theorems are proven making use of the Riemann-Siegel formula.
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At the same time, this splitting comes out if, instead of the contour C in (2.20), we perform

the integration along the path CN defined as in Appendix A.2, where it is proved that

1

2πi

∫
CN−C

(−z)s−1

ez − 1
dz = 2

N∑
m=1

(2mπ)s−1 sin
(πs

2

)
,

and consequently

ζ(s) = −Γ(1− s)
2πi

∫
CN

(−z)s−1

ez − 1
dz + 2(2π)s−1Γ(1− s) sin

(πs
2

) N∑
n=1

n−(1−s) . (2.22)

Now, the integral in equation (2.21), for Re(s) > 1, tends to zero when M →∞ because it

is the tail of the converging series which defines ζ(s); besides, the integral in (2.22) tends

to zero for Re(s) < 0 in the limit N → ∞, as shown in Appendix A.2. Yet, none of the

two integrals can be neglected for large values of M or N . For 0 < Re(s) < 1, remarking

that the function e−Mz(−z)s−1/(ez − 1) possesses the same poles with the same residues as

(−z)s−1/(ez − 1) in the region having CN as boundary, the idea is to apply simultaneously

the methods that yielded to (2.21) and (2.22):

ζ(s) =
M∑
n=1

1

ns
+ 2(2π)s−1Γ(1− s) sin

(πs
2

) N∑
n=1

n−(1−s) − Γ(1− s)
2πi

∫
CN

e−Mz(−z)s−1

ez − 1
dz .

Multiplying both members by 1
2
s(s − 1)Γ(s/2)π−s/2 and using Γ(1 − z)Γ(z) = π/sin (πz)

together with Γ(z)Γ(z+ 1/2) = 21−2z
√
π Γ(2z), we find the corresponding equation for ξ(s):

ξ(s) = (s− 1)Γ
(s

2
+ 1
)
π−s/2

M∑
n=1

1

ns
+ (−s) Γ

(
3

2
− s

2

)
π−(1−s)/2

N∑
n=1

1

n1−s

+
1

4πi (2π)s−1 sin (πs/2)
(−s) Γ

(
3

2
− s

2

)
π−(1−s)/2

∫
CN

e−Mz(−z)s−1

ez − 1
dz .

Equation (2.23) is valid for all s but we are interested in the case s = 1
2

+ it and, noticing

the symmetry s←→ (1− s), it is natural to consider N = M , arriving at

ξ

(
1

2
+ it

)
= f(t)

N∑
n=1

1

n
1
2

+it
+ f(−t)

N∑
n=1

1

n
1
2
−it

+
f(−t)

2i(2π)
1
2

+it sin [1
2
π(1

2
+ it)]

∫
CN

−(−z)−
1
2

+ite−Nz

ez − 1
dz . (2.23)
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where, for s = 1
2

+ it, we define f(t) = (s−1)Γ(s/2+1)π−s/2 = (−1
2

+ it)Γ(5
4

+ it
2
)π−(1/2+it)/2.

From equation (2.16) we know that ξ(1
2

+ it) = g(t)Z(t) where

g(t) = −1

2

(
t2 +

1

4

)
exp

[
Re log Γ

(
1

4
+
it

2

)]
π−

1
4 ;

on the critical line, s = 1
2

+ it, we have

g(t) = exp
[
log Γ

(s
2

)]
π−

1
4
s(s− 1)

2
exp

[
−i Im log Γ

(s
2

)]
(2.24)

=
s

2
Γ
(s

2

)
π−

1
4 (s− 1) e−iϑ(t)π−

1
2
it = f(t)e−iϑ(t) ,

hence f(t) = g(t)eiϑ(t). Equation (2.24) exhibits the symmetry s ←→ (1 − s), as a conse-

quence of that we find the relation g(t) = g(−t): hence, referring to Z(t) = ξ(1
2

+ it)/g(t),

the g-terms disappear. Moreover, using ϑ(−t) = −ϑ(t) and 2i sin (πs/2) = e−iπs/2(eiπs − 1)

= e−iπ/4eπt/2(eiπ/2e−πt − 1) = −e−iπ/4eπt/2(1− ie−πt), we finally arrive at

Z(t) = 2
N∑
n=1

cos [ϑ(t)− t log n]√
n

+
e−iϑ(t)eiπ/4e−πt/2√
2π(2π)it(1− ie−πt)

∫
CN

(−z)−
1
2

+ite−Nz

ez − 1
dz . (2.25)

The asymptotic series in (2.25) does not converge under the limit N → ∞, anyhow each

term is smaller that the previous one, so that one could ask if the truncated series

Z(t) ∼ 2
N∑
n=1

cos [ϑ(t)− t log n]√
n

is a useful approximation or not: to answer this question, we need to investigate the re-

mainder term

rN(t) =
e−iϑ(t)eiπ/4e−πt/2√
2π (2π)it(1− ie−πt)

∫
CN

(−z)−
1
2

+ite−Nz

ez − 1
dz . (2.26)

Riemann-Siegel formula deals with the numerical evaluation (2.26).

Consider the integrand of (2.26),

IN(z) =
(−z)−

1
2

+ite−Nz

ez − 1
;

the modulus of the denominator, |ez − 1|, is bounded from below if the integration path

CN does not pass on a zero of ez − 1 (i.e. ±2mπi, m = 0, 1, 2, . . . ), in which case we may

42



CHAPTER 2. NUMERICAL CALCULATION OF ZEROS ON THE CRITICAL LINE

set |ez − 1|−1 ≤ A for some positive constant A. Then the search for large values for the

modulus of the integrand of (2.26) coincides with the search of large values for

χ(z) = Re

[(
−1

2
+ it

)
log (−z)−Nz

]
,

where ∣∣∣(−z)−
1
2

+ite−Nz
∣∣∣ = eχ(z) .

The function χ(z), being the real part of a holomorphic function over CN , is harmonic

and consequently does not possess any maximum in the region having CN as boundary

(maximum principle). Nevertheless, χ does have a saddle point α = (−1
2

+it)/N ; expanding

in series near α,

χ(z) = Re

{(
−1

2
+ it

)
log (−α) +

(
−1

2
+ it

)
log

(
1 +

z − α
α

)
−Nα−N(z − α)

}
= const + Re

{(
−1

2
+ it

)[
z − α
α
− 1

2

(
z − α
α

)2

+ . . .

]
−N(z − α)

}

= const− 1

2
Re

{
N2(z − α)2

−1
2

+ it

}
+ terms with higher powers of (z− α) .

To find a maximum for χ(z), we note that the quantity (z − α)2/(−1
2

+ it) is real and

positive if z lies along the line L defined by Im log (z − α) = 1
2

Im log (−1
2

+ it), so |IN(z)|

has a maximum for z = α (this is an application of the so-called method of steepest descent7,

first developed by Van der Corput [21]). Thus along L, the integral’s main contribution

comes from a finite segment of L centered around α, allowing to use more handful methods

of approximation.

Riemann-Siegel formula is very useful where the Euler-Maclaurin method loses its effi-

cacy, i.e. for large t values: if t is large, then α = (−1
2

+ it)/N lies near the imaginary axis.

7The path chosen is important, because α is a saddle point and, for example, if we arrive at this point in

the perpendicular direction respect to L, then we are reaching a local minimum along this path. The method

of steepest descent works if we find an integration contour where the exponent χ(z) of our numerator is real

and positive.
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Remembering that the path CN crosses the imaginary axis between 2πNi and 2π(N + 1)i,

we must have α ∼ 2πNi, so that N2 ∼ (−1
2

+ it)/2πi ∼ t/2π: this is the reason why, in the

Riemann-Siegel formula, one usually assumes

N =

[√
t

2π

]
,

the largest integer less than (t/2π)1/2 (note that, with this choice, we can simply indicate

rN(t) as r(t)). As a consequence,
√
t ≤ (N + 1)

√
2π, hence α ∼ it

√
2π/t = i

√
2πt lies

approximately between 2πNi and 2π(N + 1)i as desired. The direction of L is such that

Im log (z − α) = 1
2

Im log (−1
2

+ it) ∼ 1
2

(π/2) = π/4. Summarizing: if a = i
√

2πt is the

approximate saddle point for χ(z), the integrand IN(Z) of (2.26) along CN can be estimated

as the integral of the same function IN(Z) along a segment, containing the point a, on the

line L (of slope 1, directed from upper right to lower left), and the latter integral can be

approximated by local methods. Consider the segment L1 lying on L which extends from

a+ 1
2
eiπ/4|a| down to a− 1

2
eiπ/4|a| (i.e. L1 is the intersection of L and the disk of radius 1

2
|a|,

centered in a): the length of L1 is bounded by the fact that we want to use a power series in

(z − a) for the integrand IN(z), and the radius of convergence will turn out to be |a|. It is

non difficult to prove that the remainder r(t) of (2.26), originally calculated from an integral

over CN , can be approximated as the same integral over L1. To prove that, one considers

the path LTOT = L0 +L1 +L2 +L3, where L0 is the remaining portion of L from a+ 1
2
eiπ/4|a|

up to ∞, L2 is the vertical line from a− 1
2
eiπ/4|a| to the ordinate Im(z) = −(2N + 1)π and

L3 goes horizontally from this intersection point right towards ∞: the integral over LTOT

has the same poles for IN(z), so that after proving that the integrals over L0,2,3 give minor

contribution to the remainder term (see [4], §7), we get

r(t) ∼ e−iϑ(t)eiπ/4e−πt/2√
2π (2π)it(1− ie−πt)

∫
L1

(−z)−
1
2

+ite−Nz

ez − 1
dz . (2.27)

Now8 (2.27) can be evaluated through local approximations.

8In [4], §7, it is shown that the error in approximation (2.27) is bounded by e−t/11 for t ≥ 100.
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We are supposing that the denominator ez − 1 can be ignored and that the saddle point

method can be applied to the numerator exp[χ(z)]: matter of course, the numerator should

be expanded in powers of (z − α). Instead, a first order approximation is based on the

expansion in powers of (z − a): doing that we neglect the dependence of α = (−1
2

+ it)/N

from N and the small real part in α. Similarly to what was done when the saddle point

method was utilized for χ(z), the numerator of IN(z) now becomes

exp

{(
−1

2
+ it

)
log (−a) +

(
−1

2
+ it

)
log

(
1 +

z − a
a

)
−Na−N(z − a)

}
= (−a)−

1
2

+ite−Na exp

{[(
−1

2
+ it

)
−N

]
1

a
(z − a)−

(
−1

2
+ it

)
1

2a2
(z − a)2 + . . .

}
.

Now the coefficient of (z − a) is approximately, for sufficiently large t values, equal to

it/a ∼
√
t/2π−N = p and, remembering the choice N = [

√
t/2π], then p simply represents

the fractional part {
√
t/2π}. The coefficient of the term (z−a)2 is −it((2a2) ∼ i/(4π), while

the coefficients of the generic higher order term (z−a)n are approximately ±it/[n(i
√

2πt)n]

which become small for large t values. From these observations, we rewrite the numerator

of IN(z) as

(−a)−
1
2

+ite−Naep(z−a)ei(z−a)2/(4π)g(z − a) ,

so that

g(z − a) = exp

{(
−1

2
+ it

)
log

(
1 +

z − a
a

)
− (N + p)(z − a)− i(z − a)2

4π

}
is the exponential of a power series in (z − a) with small coefficients for large t and it can

be expanded as

g(z − a) =
∑
n≥0

bn(z − a)n ,

with radius of convergence |a| because z=0 is the only singularity for g(z−a), the constant

coefficient b0 is equal to 1 (if z = a in the numerator, we must obtain (−a)−1/2+ite−Na) and

the others goes to zero in the limit t→∞. Finally,

r(t) ∼ e−iϑ(t)eiπ/4e−πt/2(−a)−
1
2

+ite−Na√
2π (2π)it(1− ie−πt)

∫
L1

ei(z−a)2/(4π)ep(z−a)
∑

n≥0 bn(z − a)n

ez − 1
dz . (2.28)
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On the segment L1, which crosses a with slope 1, we have (z − a) = |z − a|e±iπ/4 and

exp[i(z − a)/(4π)] is real valued on L1, with a maximum equal to 1 for z = a and a fast

decreasing away from a (at the end points of L1, call them z1,2 = a± 1
2
eiπ/4|a|, the value is

e−t/8): so integral (2.28) is concentrated near z = a, where the only term surviving in the

series expansion of g(z − a) is b0 = 1. Consequently, equation (2.28) assumes the simpler

form:

r(t) ∼ e−iϑ(t)eiπ/4e−πt/2(−a)−
1
2

+ite−Na√
2π (2π)it(1− ie−πt)

∫
L1

ei(z−a)2/(4π)ep(z−a)

ez − 1
dz , (2.29)

which was estimated numerically by Riemann himself, as Siegel found out studying his

unpublished papers.

First, we take the change of variable z = u+2πiN (and consequently z−a = u+2πiN−

i
√

2πt = u−2πip, with p = {
√
t/(2π)} as before) and the right hand side of (2.29) becomes(

t

2π

)− 1
4
(
t

2π

) it
2 exp[−iϑ(t)− iπ(N + p)2 − iπN2 − 2πip2]

(1− ie−πt)(−2πi)

∫
Γ1

eiu
2/(4π)e2pu

eu − 1
du ,

where Γ1 is the line segment of midpoint 2πip, length
√

2πt and slope 1. Reminding the

approximation for the Siegel theta-function,

ϑ(t) =
t

2
log

t

2π
− t

2
− π

8
+

1

48t
+O(t−3) ,

we note that, for large t values, the quantity

E(t) =
exp{i[(t/2) log (t/2π)− (t/2)− (π/8)− ϑ(t)]}

(1− ie−πt)

is very near to 1; now, (N + p)2 = t/(2π) and e−iπN
2

= (−1)N
2

= (−1)N , so

r(t) ∼
(
t

2π

)− 1
4

eiπ/8(−1)N−1e−2πip2 1

2πi

∫
Γ1

eiu
2/(4π)e2pu

eu − 1
du . (2.30)

Riemann managed to prove the relation

Ψ(p) = eiπ/8e−2πip2 1

2πi

∫
Γ

eiu
2/(4π)e2pu

eu − 1
du =

cos [2π(p2 − p− 1
16

)]

cos (2πp)
,
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where9 Γ is the line of slope 1, directed from upper right to lower left and crossing the

imaginary axis between 0 and 2πi, so that if in (2.32) we approximate Γ1 with Γ, we finally

get the first term of the Riemann-Siegel formula:

r(t) ∼ (−1)N−1

(
t

2π

)− 1
4 cos [2π(p2 − p− 1

16
)]

cos (2πp)
. (2.31)

The approximation (2.31) can be easily computed for a given t.

Up to now, the major approximations used to deduce the first order approximation for

r(t), equation (2.31), are valid for large t values and can be summarized as follows:

1.
∑

n≥0 bn(z − a)n ∼ b0 = 1

2. E(t) = exp{i[(t/2) log (t/2π)− (t/2)− (π/8)− ϑ(t)]}(1− ie−πt)−1 ∼ 1;

3.
∫

Γ1
∼
∫

Γ
.

Higher order approximations are derived [4] using higher order terms in the series g(z−a) =∑
n≥0 bn(z − a)n: if we call ω =

√
2π/t, then ω is small for large t and the coefficient bn

turns out to be a polynomial in ω of maximum degree n and minimum degree [n/3]. The

result of this higher order expansion, up to the Jth term, is

r(t) ∼ (−1)N−1

(
t

2π

)− 1
4

E(t)[b0c0 + b1c1 + · · ·+ bJcJ ] , (2.32)

where

cn = eiπ/8e−2πip2 1

2πi

∫
Γ

eiu
2/(4π)e2pu

eu − 1
(u− 2πip)n du .

Each integral cn is a linear combination of the derivatives Ψ(k)(p) with numerical coefficients

(non depending on t). In particular, the integrals cn satisfy the relation

∑
n≥0

(2y)ncn
n!

= e2πiy2
∑
k≥0

Ψ(k)(p)yk

k!
, (2.33)

9The apparent poles at p = 1
4 + k π2 are not a problem, see [4], §7.
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so that, in order to compute cn, if suffices to equate the coefficient of the powers yn; however,

in view of the computation of r(t), the important property expressed by the relation (2.33)

is that each cn can be expressed as a linear combination of the derivatives Ψ(k)(p), k ≤ n,

with coefficients independent of t. The successive steps involve a multiplication of both

members of (2.33) by
∑J

m=0 m! bm(2y)−m and then express the result as polynomials in ω,

using the recurrence relation

bn+1 =
(2n+ 1)πibn − bn−2

4(n+ 1)π2ω−1
.

In view locating the zeros of Z(t), the first four terms of the final asymptotic series for r(t)

are more than sufficient and one obtains, at last, the following:

Theorem 2.3.1. The remainder r(t) in the formula

Z(t) = 2
∑

n≤
√
t/(2π)

cos [ϑ(t)− t log n]√
n

+ r(t) (2.34)

is approximately

r(t) ∼ (−1)N−1

(
t

2π

)− 1
4

[
A0 + A1

(
t

2π

)− 1
2

+ A2

(
t

2π

)−1

+ A3

(
t

2π

)− 3
2

+ A4

(
t

2π

)−2
]

(2.35)

where N = [
√
t/(2π)], p = {

√
t/(2π)} and

A0 = Ψ(p) =
cos [2π(p2 − p− 1

16
)]

cos (2πp)
,

A1 = − 1

25 3π2
Ψ(3)(p) ,

A2 =
1

26π2
Ψ(2)(p) +

1

211 32π4
Ψ(6)(p) ,

A3 = − 1

26π2
Ψ(1)(p)− 1

28 3 · 5π2
Ψ(5)(p)− 1

216 34π6
Ψ(5)(p) ,

A4 =
1

27π2
Ψ(p) +

1

213 3π4
Ψ(4)(p) +

1

217 32 · 5π6
Ψ(8)(p) +

1

223 35π8
Ψ(12)(p) .

We want to emphasize, one more time, that the Riemann-Siegel formula is the result of

different types of approximations, as the truncation of integrals contours (estimated to be of
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order e−t/11, [4]) and mainly of the asymptotic series. However, as for the Euler-Maclaurin

formula, the computation of the error terms leads to the general rule of estimating the

magnitude of the error committed in computing Z(t) to be less than the first term omitted

when truncating the series. Also, the real improvement respect to the Euler-Maclaurin

method is evident in the case of large t values: for example, if we want to compute Z(1000),

the Riemann-Siegel formula needs the evaluation of [
√

1000/(2π)] = 12 terms in the main

sum and the error committed (see [4]) is much smaller than the A4 term which is below

2·10−8, while on the other side Euler-Maclaurin method, to achieve the same accuracy, would

require the evaluation of hundreds of terms and consequent overly demanding computational

efforts. Hence, explicit computation through the Riemann-Siegel formula suggest that the

error committed is very small and Z(t) can be evaluated with great accuracy over a large

range of t values10. Anyway, the interesting fact is that, until now, the great accuracy in

computing Z(t) with Riemann-Siegel is basically no more than a conjecture: no theoretical

proofs of this good behavior of the Riemann-Siegel error exist, every estimate made up to

now is far from justifying the smallness of such error, even when computed with just the

first two terms, A0 and A1, in (2.35). In this direction, Siegel himself was able to prove that

for every m, if Am is the first term omitted, there exist t0 and C such that, for every t > t0,

the error term is less than C(2π/t)−(2m+1)/4; in this sense, the Riemann-Siegel formula is an

asymptotic expansion of Z(t) and every term is significant if we intend the the last term in

the truncated series, say Am−1, to be less then C(2π/t)−(2m−1)/4 for t sufficiently large11.

We conclude this Section mentioning some computational developments since the advent

of the Riemann-Siegel formula. The major progresses are, of course, a direct consequence

10Even when t = 14, for example, the A4 term is smaller than 10−4; for larget t, the A4 term becomes

rapidly smaller.
11Siegel gave explicitly the value t0 for different m, but this t0 are very large and unhelpful for practical

calculation of Z(t).
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of the computers making the scene. We already mentioned the works by Lehmer ([18],

[19]),where was proven that every root of ξ(s) was a also zero for ζ
(

1
2

+ it
)

for |t| ≤ g25000:

this was done using the Riemann-Siegel formula for locating the zeros of Z(t) but, in order

to prove that RH was satisfied in the range 0 ≤ t ≤ g25000, was mandatory to verify that

the number of these zeros was equal to N(g25000), the total number of roots for ξ(s) with

0 ≤ Im(s) ≤ g25000. In this view, the work of Turing [22] was essential: Turing developed

a method for computing N(T ) based only on the behavior of ζ
(

1
2

+ it
)
. So, the only

informations needed are directly derived from ζ(s) on the critical line, which is what one

naturally look at when trying to locate the changes of sign for Z(t). In particular, Turing’s

method uses a theorem by Littlewood applied to those Gram points gn which do not satisfy

Gram’s law (−1)nZ(gn) > 0: if (−1)nZ(gn) < 0 and if we find a point gn + hn, close to

gn, such that the Gram’s law is satisfied (i.e. (−1)nZ(gn + hn) > 0), Turing showed that

if hm = 0 and if the values of hn for n near m are small, then N(gm) = m + 1. Now, if

S(T ) = N(T )− π−1ϑ(t)− 1 is the error in the approximation N(T ) ∼ π−1ϑ(t) + 1, then in

order to prove S(gm) = 0 one must just prove that |S(gm)| < 2, because S(gm) is an even

integer.

After Lehmer, various works on the computation of the ξ(s) roots came out, all of them

using mostly the same underlying ideas and greater computer processing power. Ever since,

the the major improvement for determining the roots of ζ
(

1
2

+ it
)

has been the Odlyzko-

Schönhage algorithm [25], which makes use of the Fast Fourier Transform to convert sums

like
∑N

n=1 k
−in (this kind of sums are the most demanding part of the calculations performed

through the Riemann-Siegel formula) into rational functions. Also Gourdon’s work [26],

in which the first 1013 zeros of ξ(s) were computed, is based on the Odlyzko-Schönhage

algorithm.
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2.4 Connections between the Riemann-Siegel formula

and the zeros of ζ
(

1
2 + it

)
In Section 2.2, the approximate value for Z(18) has been evaluated through the Euler-

Maclaurin summation method: the final result was Z(18) ∼ 2.337. We would like to

compute now Z(18) using the Riemann-Siegel formula. First note that t = 18 implies

N = [
√

18/(2π)] = [1.692569] = 1, so that the asymptotic series must stop with the first

term 2 cosϑ(t). Concerning the error estimates, we begin using the first approximation for

it:

Z(18) ∼ 2 cosϑ(18) + (−1)1−1

(
18

2π

)− 1
4

Ψ(0.692569) ∼ 1.993457 + 0.346197 ∼ 2.339654 .

Hence, even with the first order approximation (and with a t not so large to render the

asymptotic series more precise) the value of Z(18) coincides up to two decimal places with

the one obtained (with greater effort and utilizing the Haselgrove’s tables) computed with

Euler-Maclaurin. Computing the higher order corrections to the remainder term (the A1,

A2... terms, involving the derivatives of Ψ(p)12), we achieve a better numerical estimate of

Z(18). Including the terms up to A4, we obtain Z(18) ∼ 2.336796 which is a very precise

approximation, especially once compared with the one based on Euler-Maclaurin. Generally

speaking, locating the Z(t) roots is computationally much simpler with Riemann-Siegel than

Euler-Maclaurin, even for the first zeros where the Euler-Maclaurin formula is still workable:

for larger t, the number of terms one need to evaluate utilizing Euler-Maclaurin is orders of

magnitude bigger than the number of terms in the case of Riemann-Siegel formula, because

for large t the main sum itself, Z(t) ∼
∑

n≤[
√
t/(2π)]

n−1/2 cos [ϑ(t)− t log n], provides a very

good approximation for Z(t).

12There exist other Heselgrove’s tables with the coefficients An in powers of 1−2p, because being 0 < p < 1

it is natural to expand in powers of the symmetric variable p′ = p− 1/2.
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After having discussed the main aspects of the Riemann-Siegel formula, it is natural to

ask if this method of computation for Z(t), developed by Riemann, was the reason why

he thought it was “probable” that all the ξ(s) roots have real part equal to 1
2
. Perhaps,

as Edwards observed [4], Riemann performed Z(t) computations through his formula and

noticed that “in general” this line of work leads from a zero t̃ of the first term, 2 cosϑ(t),

directly to a zero t′ of Z(t), not far from t̃. In the previous example, with t = 18, we had

t̃ = 1.993457 and the first order correction added 0.346197 to reach the corresponding zero

t′ for Z(t) (higher order corrections slightly modified the value t′). So, if this one-to-one

correspondence between a zero of 2 cosϑ(t) and of Z(t) holds over, one may think that in

the range 0 < t ≤ T one finds approximately the same total number of zeros for Z(t) and

for 2 cosϑ(t), the latter being ∼ π−1ϑ(t). But, see equation (2.19), the total number N(T )

of ξ(s) roots with 0 ≤ t ≤ T is

N(T ) =
1

π
ϑ(t) + 1 + S(T ) ,

where

S(T ) =
1

π
Im

{∫
L

ζ ′(s)

ζ(s)
ds

}
,

with L going from 1+ε to 1+ε+iT and then to 1
2
+iT . So, π−1ϑ(t) is also an estimate for the

total number of non-trivial zeros for ζ(s): this could be viewed as a “rough” version of the

RH and a possible mathematical translation of the Riemann’s words about his conjecture.

Still, we have used the term “in general” to describe this supposed one-to-one connection

between zeros of 2 cosϑ(t) and of Z(t). This is motivated by the assumption that the

consequence of a small change in t is mainly reflected, in relation to Z(t), in a shift of

the first term 2 cosϑ(t); that is, the other terms in Z(t) are subject to minor variations.

Unfortunately, this assumption is not a general rule and it fails in correspondence of some

crushing failure of the Gram’s law, like the one between g 6708 and g 6709: in this interval,

the zero t̃ of 2 cosϑ(t) is associated to a value Z(t̃) ∼ −2. If one tries to move t back
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to g 6708, where 2 cosϑ(t) = 2, the other terms in the Riemann-Siegel formula continue

to keep Z(t) < 0 (one finds Z(g 6708) ∼ −1
2
). The search a nearby zero for Z(t) relies

upon continuing move left of g 6708, consequently decreasing the value of 2 cosϑ(t) from the

maximum +2, with the hope that the other terms will contemporaneously increase enough

to give Z(t) = 0. Of course, in this case the supposed one-to-one correspondence between

the zeros of 2 cosϑ(t) and of Z(t) fails. From this point of view, if that was what really

pushed Riemann to formulate RH in terms of a “probable” rule, the failure of this kind of

reasoning runs parallel to the failure of the Gram’s law; anyway, Gram’s law was motivated

by computations made through the Euler-Maclaurin formula, each of them requiring the

evaluation of hundreds of terms, while the Riemann-Siegel formula requires, for the same

t range (say, 100 ≤ t ≤ 1000), less than twenty terms and, in general, the main term

dominates. However, we now know the so-called Lehmer’s phenomenon13 [5] and the fact

that ζ
(

1
2

+ it
)

(and as a consequence Z(t)) is not a bounded function [24]: this two facts

were obviously unknown to Riemann and, as a result, the reasoning outlined above is totally

inappropriate to reach a proof of RH.

13Lehmer’s phenomenon is the fact that, quite rarely, two consecutive zeros of Z(t) are very close or,

equivalently, that the graph of Z(t) barely crosses the t-axis.

53



CHAPTER 2. NUMERICAL CALCULATION OF ZEROS ON THE CRITICAL LINE

54



Chapter 3

Estimates for the zeros of ζ(s) on the

critical line

Chapter 2 dealt with the efforts to locate numerically the non-trivial zeros of ζ(s) inside

the critical strip: as already remarked, these methods were fundamental to give a strong

numerical evidence in favor of the RH [26], even if, in a future day, a possible counterexample

could in principle come to light thanks to the same numerical computations. The only certain

thing is that numerical computation of the ξ(s) roots is not the strategy to catch a proof of

the RH.

An important step in the direction of a possible proof of RH has been made in 1914 by

Hardy [27], proving that infinite zeros of ξ(s) lie on the critical line, the so-called Hardy’s

theorem. Seven years after, in 1921, a paper by Hardy and Littlewood [28] appeared improv-

ing Hardy’s theorem: not only infinite non-trivial zeros of Zetas have real part 1
2
, but if we

indicate with N0(T ) the number of them with imaginary part between 0 and T , then there

exists a constant A and a positive T0 such that N0(T ) > AT if T > T0. Still, comparing this

result with the number of ξ(s) roots with 0 ≤ Im(s) ≤ T provided by the von Mangoldt’s
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Theorem 1.2.4,

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ) ,

the factor log (T/2π) makes the fraction N0(T )/N(T ) tend to zero in the limit T → ∞.

Eventually, in 1942, Selberg [29] managed to prove that a positive fraction of non-trivial

zeros of ζ(s) lie on the critical line:

N0(T ) > KT log T ,

for some positive constant K, assuming T > T0 for some T0. In 1974 Levinson [30] was able

to prove the lower bound K = 1
3
, so that more than one third of the ξ(s) roots are located

on the critical line: until today, this result has not been significantly improved and different

authors believe that this way to proceed will improbably suffices to prove the limit

lim
T→∞

N0(T )/N(T ) = 1 ,

which anyway does not imply RH [23]. Even if none of these results will lead us to the final

proof (or disproof) of the RH, no doubt they are very important for the study of ζ(s) and

they substantially contribute to the belief that RH is in fact true.

3.1 Hardy’s theorem

Theorem 3.1.1. There exist infinite zeros ρ = β + iγ of ζ(s) with γ = 1
2
.

Proof: There are different proofs of this fundamental theorem, see for example [33]. A

proof of Hardy’s theorem widely diffused among the texts on the subject is based on the

fact that, since |Z(t)| = |ζ
(

1
2

+ it
)
|, then ζ

(
1
2

+ it
)

has a zero 1
2

+ iγ of odd multiplicity

if and only if Z(t) changes sign for t = γ; but if Z(t) changes sign at least one time in the

interval T ≤ t ≤ 2T we must have∣∣∣∣∫ 2T

T

Z(t) dt

∣∣∣∣ < ∫ 2T

T

|Z(t)| dt .
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The previous inequality can be proved in different ways; for example it is possible to give

the two estimates [33]∣∣∣∣∫ 2T

T

Z(t) dt

∣∣∣∣ = O(T
7
8 ) ,

∫ 2T

T

|Z(t)| dt > CT ,

with C positive constant, which prove the theorem in the limit T → ∞. Instead we will

discuss a proof given by Titchmarsh [17] which makes use of the Riemann-Siegel formula.

Concerning the proof of Hardy’s theorem, it suffices to use a first order simplified version

of the Riemann-Siegel formula (2.34),

Z(t) = 2
∑

n≤
√
t/(2π)

cos [ϑ(t)− t log n]√
n

+O(t−
1
4 ) .

We have shown in the previous Chapter that, for large t, the Siegel theta-function and its

first derivatives are approximately

ϑ(t) ∼ t

2
log t , ϑ′(t) ∼ 1

2
log

t

2π
, ϑ′′(t) ∼ 1

2t
,

hence the theta-function ϑ(t) is monotonically increasing and the equation ϑ(t) = νπ has

only one solution, tν ∼ 2πν/log ν. The function Z(t) evaluated for t = tν becomes Z(tν) =

(−1)ν2g(tν) +O(t
− 1

4
ν ) with

g(tν) =
∑

n≤
√
tν/(2π)

cos (tν log n)√
n

= 1 +
cos (tν log 2)√

2
+ . . . ;

roughly speaking, the quantity g(tν) is equal to 1 plus a series of terms with oscillatory sign

and decreasing absolute value and, consequently, it is very likely that g(tν) > 0 and that

Z(tν) changes sign in the interval (tν , tν + 1). The key of the proof is to show that

N∑
ν=M+1

Z(t2ν) ∼ 2N ,

N∑
ν=M+1

Z(t2ν+1) ∼ −2N ,

so that, letting N → ∞, we conclude that Z(t) changes sign infinite times (i.e. Z(t) has

infinite zeros of odd multiplicity) because Z(t2ν) is positive infinite times and Z(t2ν+1) is
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negative infinite times. Now consider the sum

N∑
ν=M+1

g(t2ν) =
N∑

ν=M+1

 ∑
n≤
√
t2ν/(2π)

cos (t2ν log n)√
n


= N −M +

∑
2≤n≤
√
t2ν/(2π)

1√
n

∑
τ≤t2ν≤t2N

cos (t2ν log n) , (3.1)

where τ = max{2πn2, t2M+2}. Indicating

φ(ν) =
t2ν log n

2π
,

the inner sum in (3.1) is simply ∑
τ≤t2ν≤t2N

cos (2πφ(ν)) ;

Noticing that, since ϑ(t2ν) = 2νπ, then

ϑ′(t2ν)
dt2ν
dν

= 2π ,

and we find

φ′(ν) =
log n

2π

dt2ν
dν

=
log n

ϑ′(t2ν)
> 0 .

At the same time, for large ν,

φ′′(ν) = − log n
ϑ′′(t2ν)

[ϑ′(t2ν)]2
dt2ν
dν

< − 8π log n

t2ν log 3t2ν
< −A log n

t2N log 3t2N
,

for a certain constant A. Now it is possible to prove ([33], §5) that if f(x) ∈ C2([a, b]) and

λ ≤ −f ′′(x) ≤ hλ in the interval [a, b] with b ≥ a+ 1, then∑
a<n≤b

e2πif(n) = O[(b− a)
√
λ] +O

(
1√
λ

)
;

as a consequence, the inner sum in (3.1) becomes∑
τ≤t2ν≤t2N

cos (t2ν log n) =
e2πiφ(ν) + e−2πiφ(ν)

2

= O
(
t2N

log 1/2n√
t2N log 3/2t2N

)
+O

(√
t2N log 3/2t2N

log 1/2n

)
= O(

√
t2N log 3/2t2N) .
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Then

∑
2≤n≤
√
t2N/(2π)

1√
n

∑
τ≤t2ν≤t2N

cos (t2ν log n) = O(t
3/4
2N log 3/2t2N) = O(N3/4 log 3/2N) ,

so that we have provided the following equation:

N∑
ν=M+1

Z(t2ν) = 2N +O(N3/4 log 3/2N) ∼ 2N . (3.2)

In a similar manner, one can prove that

N∑
ν=M+1

Z(t2ν+1) ∼ −2N . (3.3)

Combining (3.2) and (3.3) and the theorem is proven. 2

3.2 A positive fraction of ζ(s) zeros lies on the critical

line

In this Section N(T ) indicates the number of ξ(s) roots with 0 ≤ Im(s) ≤ T and N0(T )

are the number of such roots located on the critical line (hence, N(T ) = N0(T ) is a concise

reformulation of RH).

Theorem 3.2.1.

N0

(
T +

T

log 10(T/2π)

)
−N0(T ) > C

(
T +

T

log 10(T/2π)

)
−N(T ) , (3.4)

with C > 1
3
.

The complete proof of Theorem 3.2.1 is very long and full of technical difficulties [30];

here we will restrict the attention on the basic ideas behind it. The functional equation for

ζ(s), equation (1.4), can be written as

h(s)ζ(s) = h(1− s)ζ(1− s) , (3.5)
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with h(s) = π−s/2Γ(s/2). Setting

h(s) = ef(s) ,

if | arg(s)| ≤ π − δ one can apply the Stirling’s approximation and if |Im log (s/2π)| < π we

arrive at

f(s) =
s− 1

2
log

s

2π
− s

2
+

1

2
log 2 +O(|s|−1) , (3.6)

that once differentiated gives

f ′(s) =
h′(s)

h(s)
=

1

2
log

s

2π
+O(|s|−1) .

Taking the derivatives of both sides in (3.5) we obtain

f ′(s)h(s)ζ(s) + h(s)ζ ′(s) = −f ′(1− s)h(1− s)ζ(1− s)− h(1− s)ζ ′(1− s)

= −f ′(1− s)h(s)ζ(s)− h(1− s)ζ ′(1− s) ,

so that

[f ′(s) + f ′(1− s)]h(s)ζ(s) = −h(s)ζ ′(s)− h(1− s)ζ ′(1− s). (3.7)

On the critical line, s = 1
2

+ it, the right hand side of (3.7) becomes

−h
(

1

2
+ it

)
ζ ′
(

1

2
+ it

)
+ c.c. ,

hence ζ
(

1
2

+ it
)

= 0 whenever

arg

{
h

(
1

2
+ it

)
ζ ′
(

1

2
+ it

)}
=
π

2
+ kπ .

Comparing the second version of the functional equation for ζ(s), (1.6), with the definition

of h(s) in (3.5), the function χ(s) = h(1− s)/h(s) appears in equation (3.7) as follows:

ζ ′(s) = −χ(s){[f ′(s) + f ′(1− s)]ζ(1− s) + ζ ′(1− s)} .

Consequently, ζ
(

1
2

+ it
)

= 0 whenever

arg

{
h

(
1

2
+ it

){[
f ′
(

1

2
+ it

)
+ f ′

(
1

2
− it

)]
ζ

(
1

2
+ it

)
+ ζ ′

(
1

2
+ it

)}}
=
π

2
+ kπ .

(3.8)
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Now arg{h(s) = exp[f(s)]} can be obtained by (3.6), so that the evaluation left is the one

of the argument of

G(s) = ζ(s) +
ζ ′(s)

f ′(s) + f ′(1− s)
, (3.9)

for s = 1
2
+it. Roughly speaking, the central idea of Levinson’s proof is that if arg{G(1

2
+it)}

does not change then the change in argument in (3.8) depends exclusively on h(1
2

+ it); we

note that arg{h(1
2

+ it)} = Im log Γ(1
4

+ it
2
)− t

2
log π = ϑ(t), so that ζ

(
1
2

+ it
)

reaches a new

zero whenever ϑ(t) increases of π, which is nothing but the Gram’s law. But, from (3.6),

ϑ(t) = Imf(s) =
t

2
log

t

2π
− t

2
+O(log T )

and the fact that ζ
(

1
2

+ it
)

gets a zero every time ϑ(t) increases of π means that the number

N0(T ) of zeros on the critical line in the range 0 ≤ t ≤ T is the essentially comparable, due

to the von Mangoldt Theorem 1.2.4, with the number N(T ) of zeros on the critical strip in

the same range

N0(T ) =
T

2π
log

t

2π
− t

2π
+O(log T ) = N(T ) ,

So the essence of Levinson’s proof is to prove that arg{G(1
2

+ it)} changes very slowly in

t and consequently N0(T ) , even if different from N(T ) in this case, is anyway estimated

as a significant fraction of N(T ) (about 1
3
). The following steps of used by Levinson in his

proof are very technical and complicated, but the main strategy of the whole proof is the

one exposed before. Now, if NG(R) indicates the number of zeros of G inside the rectangle

R = {s ∈ C | 1
2
≤ Re(s) ≤ 3, T ≤ Im(s) ≤ T + U}, then by the principle argument

NG(R) =
1

2πi

∫
∂R

G′(s)

G(s)
ds =

1

2π
∆R arg{G(s)}

It involves standard but long calculations (including the use of the Jensen’s formula, [2],

[23]) to show that the contribution to NG(R) of the integration along the three sides of R

not lying on the critical line can be estimated as O(log T ), so that

arg{G(
1

2
+ it)}

∣∣∣∣T+U

T

= −2πNG(R) +O(log T ).
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At this point, a direct computation of NG(R) is not possible, so that Levinson used a

theorem by Littlewood: if Ψ(s) is an integral function (hence, Ψ(s)G(s) has the same zeros

as G(s)) and for every 0 < a < 1
2

2π

(
1

2
− a
)
NG(R) ≤ U

2
log

[
1

U

∫ T+U

T

|Ψ(a+ it)G(a+ it)|2 dt
]

+O(UL−1) , (3.10)

where L = log (T/2π). The quality of this kind of estimate for N0(T )/N(T ) strictly relies

upon which function Ψ(s) is chosen; the one chosen by Levinson is not the optimal choice

[23] but, at the same time, renders the calculations much easier. The estimation of the inte-

gral in (3.10) is obtained through the Riemann-Siegel formula and, after long calculations,

Levinson’s proof is completed showing that for a = 1
2

+O(L−1) the integral in (3.10) is less

than C ′U for a certain positive constant C ′, from which depends the value of the constant

C in (3.4).
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Conclusions

The present thesis deals with the Riemann zeta-function ζ(s) and it is intended ad an

exposure of some of the most relevant results obtained until today. The zeta-function plays

a fundamental role in number theory and one of the most important open question in

mathematics is the Riemann Hypothesis (RH), which states that all non-trivial zeros of

ζ(s) have real part equal to 1
2
. The zeta-function appeared for the first time in 1859 on a

Riemann’s paper originally devoted to the explicit formula connecting the prime counting

function, π(x), with the logarithmic integral Li(x); nevertheless, the paper contained other

outstanding results, like the analytical continuation of ζ(s) through the whole complex

plane, and deep conjectures, each of them involving the non-trivial zeros of ζ(s). All these

conjectures, thanks to von Mangoldt and Hadamard, afterwards became theorem except,

as said before, the conjecture about the displacement of non-trivial zeros along the critical

line Re(s) = 1
2
.

In Chapter 1 we have seen the ideas inside Riemann’s paper and the basic properties of

ζ(s); also, some consequences of RH are discussed, together with considerations about the

possibility of RH to be true or false.

Chapter 2 is dedicated to the computational aspects of the RH: we walked along an

historical path from the first calculations of non-trivial zeros by Gram, who made use of the

Euler-Maclaurin summation method, to the much more powerful Riemann-Siegel formula,

which is the foundation of every modern algorithm to locate these zeros (and, at the same
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time, is a formula widely used in many proofs concerning ζ(s)). Chapter 2 also includes

considerations on the so-called “Gram’s law” and on the possible origin of RH by Riemann.

Ultimately, Chapter 3 discussed two prominent theorems, by Hardy and Levinson re-

spectively, which prove that infinite non-trivial zeros of ζ(s) satisfy RH (Hardy) and that,

in particular, this is true for more than one third of them (Levinson).
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Appendix A

A.1 Poisson summation formula and functional equa-

tion for ϑ(x)

A very powerful tool in analytic number theory is the so-called Poisson summation formula:

it is a consequence of the theory of Fourier series and here we will not consider it in the

most general case. However, as long as we are concerned, the hypothesis of the following

theorem are sufficient to deal with a large part of number theory objects, like the function

ϑ(x) used to prove the functional equation for ξ(s).

Theorem A.1.1. Let f, f̂ ∈L1(R) (where f̂(x) =
∫ +∞
−∞ f(t)e−2πintdt is the Fourier transform

of f) and assume that both f and f̂ have bounded variation on R. Then

∑
m∈Z

f(m) =
∑
n∈Z

f̂(n) , (A.1)

each series converging absolutely.

Proof: The function g(x) =
∑

m∈Z f(x + m) is periodic of period 1 and possesses an

absolutely convergent Fourier series expansion

g(x) =
∑
n∈Z

cg(n) e2πinx ,
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with coefficients

cg(n) =

∫ 1

0

g(t)e−2πintdt =

∫ 1

0

∑
m∈Z

f(t+m)e−2πintdt =

∫ +∞

−∞
f(t)e−2πintdt = f̂(n) ,

the third equality holding for bounded variation of f . Now (A.1) derives setting x = 0.

2

Corollary A.1.2. The function ϑ(x) =
∑

n∈Z e
−n2πx satisfies

ϑ(x) =
1√
x
ϑ(1/x) . (A.2)

Proof: Consider the function f(x) = e−αx
2

for a fixed α > 0: f satisfies the hypothesis

of Theorem A.1.1, so

ϑ(α/π) =
∑
m∈Z

e−αm
2

=
∑
n∈Z

∫ +∞

−∞
e−αt

2

e−2πintdt .

Now

∫ +∞

−∞
e−αt

2

e−2πintdt = 2

∫ +∞

0

e−αt
2

cos 2πnt dt =
2√
α

∫ +∞

0

e−x
2

cos
2πnx√
α

dx =
2√
α
F

(
πn√
α

)
,

where

F (y) =

∫ +∞

0

e−x
2

cos 2yx dx ;

but F (y) satisfies the differential equation F ′(y)+2yF (y) = 0 and, using
∫ +∞

0
e−x

2
=
√
π/2,

we conclude that

F (y) =

√
π

2
e−y

2

.

Hence ∫ +∞

−∞
e−αt

2

e−2πintdt =

√
π

α
e−π

2x2/α

and taking α = πx we obtain (A.2). 2
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A.2 Riemann’s proof of the functional equation for ζ(s)

The starting point is the definition of ζ(s) as complex integral which appeared in Riemann’s

paper1.

Lemma A.2.1. Let C represent, in the complex plane, the contour which runs just above

the positive real axis from ∞ directed leftward to the origin, make a counterclockwise circle

of radius r < 2π around the origin and move right to ∞ running just below the positive real

axis. Then

ζ(s) = −Γ(1− s)
2πi

∫
C

(−z)s−1

ez − 1
dz , (A.3)

where (−z)s−1 = exp[(s− 1)log (−z)] is defined on the complement of the non-negative real

axis, with | Im log (−z)| < π.

Proof: The integral is convergent and, choosing r < 2π, we are sure that no multiple of

2πi is enclosed by C; then Cauchy’s theorem assures that the value of the integral does not

depend on how small the radius r is, so that we can take the limit r → 0 and the integral

along C reduces to the sum of the two integral∫ 0

∞

xs−1e−πi(s−1)

ex − 1
dx+

∫ ∞
0

xs−1eπi(s−1)

ex − 1
dx = 2i sin [(s− 1)π]ζ(s)Γ(s) ,

where, when moving upward the positive real axis, arg(−z) = −π so that (−z)s−1 =

xs−1e−πi(s−1) and, when moving back downward the positive real axis (−z)s−1 = xs−1eπi(s−1)

because now arg(−z) = π and where we have used the relation

ζ(s)Γ(s) =

∫ ∞
0

xs−1

ex − 1
dx .

1Riemann, throughout his paper, used the “factorial function”

Π(s) =

∫ ∞
0

xse−sdx = sΓ(s) = Γ(s+ 1)

instead of Γ(s), as can be seen in [4] where all computations are made using Π(s) as Riemann did. Here we

follow the contemporary vogue in number theory which replaces the old-fashioned Π with Γ.
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The Lemma is proved just remembering that Γ(s)Γ(1− s) = π/sin sπ. 2

The subsequent step taken by Riemann was the proof of the following functional equation

for ζ(s), which enables to continue it analytically over the whole complex plane, excluding

the simple pole at s = 1.

Theorem A.2.2. The function ζ(s) satisfies the following functional equation:

ζ(s) = 2sπ1−ssin
(πs

2

)
Γ(1− s) ζ(1− s) . (A.4)

Proof: First of all we define, on the complex plane, the path CN which runs over the

positive real axis from +∞ to (2N + 1)π, then describes counterclockwise the square of

corners (2N + 1)π(i ± 1) and (2N + 1)π(−i ± 1) and finally, from (2N + 1)π, returns to

+∞ following the positive real axis. Making use of the path C of the previous Lemma, it

is evident that the path CN − C has winding number equals to 1 about the points ±2mπi,

with m = 1, . . . , N , which are simple points for the function (−z)s−1/(ez − 1) with residues

(∓2mπi)s−1. Then, using the residue theorem,

1

2πi

∫
CN−C

(−z)s−1

ez − 1
dz =

N∑
m=1

[(−2mπi)s−1 + (2mπi)s−1] = 2
N∑
m=1

(2mπ)s−1 sin
(πs

2

)
,

where we have used the simplification

is−1 + (−i)s−1 =
1

i
[es log i − es log (−i)] =

1

i
[esπi/2 − e−sπi/2] = 2 sin

(πs
2

)
.

Separating CN as the sum of the square S and the path C ′N from +∞ to (2N + 1)π and

its opposite C ′′N from (2N + 1)π to +∞, then |ez − 1|−1 is bounded on S by a constant A

independent of N and |(−z)s−1| = A′Nσ−1 for some constant A′, so that∣∣∣∣∫
S

(−z)s−1

ez − 1
dz

∣∣∣∣ ≤ A′′Nσ ,

for some positive constant A′′. Hence, if σ < 0, the integral over S will tend to zero as

N →∞; since the same will happen to the integrals over C ′N and C ′′N , in the limit N →∞

68



APPENDIX A.

the integral over CN − C will tend to the integral over C which, using (A.4), turns out to

be equal to ζ(s)/Γ(1 − s). For N → ∞, the sum
∑N

m=1 converges to ζ(1 − s), which is

well defined for σ < 0 and the identity (A.4) is obtained for σ < 0. But two meromorphic

functions which are equal on a region are identical, thus (A.4) is valid for every s. 2
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[1] Bernhard Riemann. Über die Anzahl der Primzahlen unter einer gegebenen Grösse.

Monatsberichte der Berliner Akademie, 1859.

[2] Lars V. Ahlfors. Complex Analysis. McGraw-Hill, 1979.

[3] Harold Davenport. Multiplicative Number Theory. Springer-Verlag, 1980.

[4] Harold M. Edwards. Riemann’s Zeta Function. Dover, 1974.

[5] Derrick H. Lehmer. On the Roots of the Riemann Zeta-Function. Acta Math 95: 291–298,

1956.

[6] Enrico Bombieri. The Riemann Hypothesis.

http://www.claymath.org/millennium/Riemann Hypothesis/riemann.pdf, 2000.

[7] Andrew M. Odlyzko, Herman J.J. te Riele. Disproof of the Mertens conjecture. J. reine

angew. Math. 357: 138–160, 1985.

[8] Pierre Deligne. La conjecture de Weil I. Publications Mathmatiques de l’IHES 43: 273–

307, 1973.

[9] Stanley Skewes. On the difference π(x)− li(x). J. London Math. Soc. 8: 277–283, 1933.

[10] Stanley Skewes. On the difference π(x)− li(x). Proc. London Math. Soc. (3) 5: 48–70,

1955.

71



BIBLIOGRAPHY
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[27] Godfrey H. Hardy. Sur les zéros de la fonction ζ(s). Comptes Rendus 158: 1012-1014,

1914.

[28] Godfrey H. Hardy, John E. Littlewood. The Zeros of Riemann’s Zeta Function on the

Critical Line. Math. Z. Vol. 10: 283–317, 1921.

[29] Atle Selberg. On the zeros of Riemann’s zeta-function. Skr. Norske Vid. Akad. Oslo I.

Vol. 10: 59, 1942.

[30] Norman Levinson. More than One Third of Zeros of Riemann’s Zeta-Function Are on

σ = 1
2
. Adv. Math. 13: 383–436, 1974.

[31] John E. Littlewood. Sur la distribution des nombres premiers. Comptes Rendus 158:

1869–1872, 1914.

73



BIBLIOGRAPHY

[32] Hugh L. Montgomery, Robert C. Vaughan. Multiplicative Number Theory I: Classical

Theory. Cambridge University Press, 2006.

[33] Edward C. Titchmarsh. The Theory of the Riemann Zeta-Function. Oxford Science

Publications, 1951.

[34] Samuel J. Patterson. An introduction to the Riemann Zeta-Function. Cambridge Uni-

versity Press, 1999.

[35] Peter B. Borwein. The Riemann Hypothesis: a resource for the afficionado and virtuoso

alike. Springer, 2008.

[36] Henryk Iwaniec, Emmanuel Kowalski. Analytic Number Theory. Colloquium Publica-

tions (Vol. 53), 2004

[37] Anatoly A. Karatsuba. Complex Analysis in Number Theory. CRC Press, 1994.

74


