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Introduction

The subject of this thesis is the study of the power series developments of real numbers. We
define a development of a real x any representation of x in the form

x =
∞

∑
i=1

εi

βi ,

where coefficients are non negative integer digits of a finite alphabet A = {a1, . . . , am}. Theory
about convergence of function series makes necessary the choice of a basis β > 1. Now, fixing
an alphabet and a basis, we are interested to questions related to the representability of real num-
bers, the number of different expansions of representable numbers and the existence of unique
expansions.

The classical approach consists in associating a development to an infinite sequence of digits
belonging to the alphabet and to study these sequences. They are points of the space A∞ and they
are called expansions.

In its work “Representations for real numbers and their ergodic properties” ([Rén57]), A.
Rényi proved some representability results. In particular he showed an algorithm which gives a
standard expansion, the so-called greedy expansions, for every real x ∈ [0, [β]

β−1 ] where the basis
β is strictly greater than 1 and the alphabet is A = {0, 1, . . . , [β]}. Greedy expansions have the
property, which follows directly by their definition, to be the greatest possible expansions of the
number which they represent with respect to the lexicographical ordering. This remark allowed
Parry (see [Par60]) to characterize greedy expansions and to give a criterion to decide when a
greedy expansion is the unique possible development of a given number.

Moreover, both Rényi’s and Parry’s articles discuss the problem of the entropy associated
to the greedy expansions; in particular Rényi proved that the degree of disorder in the occur-
rence of digits is almost everywhere constant, thus it is almost everywhere independent from the
represented number. Parry gave an explicit expression of this constant. These results are based
upon the proof of the existence of a measure, Rényi’s measure, which is invariant with respect
to a transformation T such that its n − th power, Tnx associates to x the n−th rest of its greedy
expansion. The existence of Rényi’s measure, together with the ergodicity of T, makes possible
applying ergodic theory to the problem of entropy of expansions and, later, it as been used by N.
Sidorov (see [Sid03]) in order to prove that if 1 < β < 2 then almost every representable number
has a continuum of different expansions with alphabet A = {0, 1}.

We define as a gap the distance between two consecutive digits of an alphabet. Now, if repre-
sentability with alphabets with constatly equal to 1 gaps, is granted with continuity on the whole
interval [ a1

β−1 , am
β−1 ] for all β > 1, this is not true in the general case. In fact M. Pedicini proved in

[Ped05] that the condition:

max
1≤i≤m−1

ai+1 − ai ≤
am − a1

β− 1
(1)

for all ai ∈ A = {a1, . . . , am}, is necessary and sufficient to have that every x ∈ Iβ := [ a1
β−1 , am

β−1 ]
has a greedy expansion. Moreover, by notion of quasi greedy expansions Pedicini caracterized

1



Introduction 2

the greedy expansions and he showed a necessary and sufficient condition for an expansion to
be unique. We show a generalization of Rényi’s and Sidorov’s results proving the existence of a
generalized Rényi’s measure and of a continuum of different expansions for almost every repre-
sentable x with an alphabet A, which gaps satisfy condition 1. About uniqueness of expansions,
we prove the existence of a constant β̄A such that for all β ≤ β̄A there are not non-trivial unique
expansions with basis β and in case A = {0, 1, 2k} such constant is equal to 2 for all k ≥ 1.



CHAPTER 1

Preliminary Notions

We define the expansion of a real number as follows:

DEFINITION 1 (Expansions with respect to an alphabet A). Let A := {a1, · · · , am} a finite
alphabet and β > 1 .

Given x a real number, an expansion of x with alphabet A is any representation of x in the form

x =
ε1

β
+

ε2

β2 + · · ·+ εn

βn + · · ·

where εi ∈ A for all i ≥ 1 .

We now introduce the greedy expansion of a real number.

DEFINITION 2 (Greedy expansions). Given any real x let us define greedy expansion the sequence
ε1, ε2, . . . by the greedy algorithm: if εi is defined for any i < n , εn is the greatest digit in A satisfying

n

∑
i=1

εi

βi +
∞

∑
i=n+1

a1

βi ≤ x

Following theorem, due to M. Pedicini (see [Ped05]), states a necessary and sufficien condition
of representability for every x ∈ Iβ.

THEOREM 1. Let A := {a1, · · · am} such that

max
1≤j≤m−1

(aj+1 − aj) ≤
am − a1

β− 1

then for every x ∈ Iβ we have
∞

∑
i=1

εi

βi = x

where (εi) is given by the greedy algorithm.

Let us introduce the notion of quasi greedy expansion, which is usefull in order to characterize
the greedy expansions.

DEFINITION 3. Given any real x let us define the sequence ε1, ε2, · · · by the quasi-greedy algorithm:
if εi is defined for any i < n , εn is the greatest digit in A satisfying

n

∑
i=1

εi

βi +
∞

∑
i=n+1

a1

βi < x

Clearly an expansion of x is quasi-greedy and if and only if for all n

n−1

∑
i=1

εi

βi +
ε+

n
βn +

∞

∑
i=n+1

a1

βi ≥ x

Recall that ε+
n = ajn+1, where εn = ajn . Moreover a quasi-greedy expansion is always infinite.
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Preliminary Notions 4

REMARK 1. Let us consider the lexicographical ordering: given two sequences (ci) and (di) we write
(ci) > (di) if (ci) 6= (di) and if cm > dm for the first m such that cm 6= dm. By definition, we have that
among all expansions of a given number x ∈ Iβ the greedy expansion is the biggest one, while the quasi-
greedy expansion is the biggest among all infinite expansions. Clearly if the greedy expansion is infinite it
coincides with the quasi-greedy one.

Moreover, again by definition, we have that the map x → (εi), where (εi) denotes the greedy expansion
of x, is monotone.

Monotonicity of greedy expansions with respect to the basis is a property proved in the fol-
lowing proposition.

PROPOSITION 1. Let x be a real number representable with two different bases β < β with respect to
a common alphabet A = {a1, . . . , am}, that is x ∈ Iβ ∩ Iβ. Then the greedy (resp. lazy) expansion of x

with basis β is lexicographically smaller than the greedy (resp. lazy) expansion of x with basis β.

Following notation allows us to introduce the Pedicini’s characterization theorem of greedy
expansions.

NOTATION 1. Let us denote by ε′i = εi − a1 , by ∆i = ai+1 − ai, by A′ = {a′i = ai − a1 | i =
1, · · · , m} and by (γ

j
i) and (δ

j
i ) respectively the greedy and quasi-greedy expansion of ∆j with respect to

the alphabet A′.

THEOREM 2. Let A = {ai | i = 1, · · · , m} an alphabet of non-negative digits such that

max
1≤j≤m−1

(aj+1 − aj) ≤
am − a1

β− 1

then and expansion (εi) of x ∈ Iβ is greedy if and only if for all n ≥ 0:

ε′n+1ε′n+2 · · · < δ
jn
1 δ

jn
2 · · ·

whenever εn < am.

We conclude the chapter with a uniqueness result (see [Ped05]) which is a direct consequence
of previous characterization theorem

NOTATION 2. Given an alphabet A = {a1, ..., am} let us introduce the quasi-greedy expansion of

differences:∆j = aj+1 − aj = δ
j
1

β + δ
j
2

β2 for j = 1, ..., m− 1.

Let us also introduce the quasi-greedy expansion (δ̄
j
i ) of the difference ∆̄j = āj+1 − āj = δ̄

j
1

β + δ̄
j
2

β2 with

respect to the dual alphabet Ā = ā1, ..., ām given by āj = a1 + am − am+1−j, j = 1, ..., m..
Let us denote by Aq the set of numbers x whose greedy expansion (with respect to the original alphabet

A) is the unique possible expansion.

THEOREM 3. Assume that

max
1≤j≤m−1

(aj+1 − aj) ≤
am − a1

β− 1

Then for every x ∈ Iβ the greedy expansion of x, (εi),is unique if and only if

(εn+i − a1) < (δ
j
i )whenever εn = aj < am, and

(am − εn+i) < (δ̄
j
i )whenever εn = am+1−j > a1.



CHAPTER 2

On the uniqueness of expansions

In previous chapter, we have seen that fixing an alphabet A and an adequate real number β,
we have the existence at least of an expansion for all x ∈ Iβ: the greedy one. Moreover, Theorem
3 shows a necessary and sufficient condition for the uniqueness of this expansion: an equivalent
statement of Theorem 3, based upon the notion of lazy expansion, is exposed in 4.

DEFINITION 4. A lazy expansion of x is obtained by the following algorithm:

λn = min{ai ∈ A|x ≤
n−1

∑
i=1

λi

βi +
ai
βn +

∞

∑
i=n+1

am

βi }

Clearly lazy expansion is the lexicographically smallest among the β expansions. Moreover the proof
of the fact

∞

∑
i=1

λi

βi = x

is similar to the proof of convergence of greedy expansions.

NOTATION 3. Let (δ
j
i ) be the quasi-greedy expansion of j-th gap (i.e. aj+1 − aj) in alphabet A.

Let (λ
j
i) be the quasi-lazy expansion of am

β−1 − (a′j+1 − a′j)

THEOREM 4. Assume that

max
1≤j≤m−1

(aj+1 − aj) ≤
am − a1

β− 1
.

Then for every x ∈ Iβ the greedy expansion of x, (εi),is unique if and only if

(εn+i − a1) < (δ
j
i )

whenever εn = aj < am, and

(εn+i) > (λ
j
i)

whenever εn = am+1−j > a1.

Observing hypothesis of Theorem 4 we can note that the existence of an unique expansion for
some x ∈ Iβ, fixing alphabet A, is conditioned to the choice of basis β. In fact if, for example, we

for all 1 < j < m we have (λ
j
i) > (δ

j
i ), hypothesis of Theorem 4 hold only in trivial cases x = a1

β−1
and x = am

β−1 . Now, following proposition state the existence of a “critical value” β̄A which is
the greatest basis which does not admit non-trivial unique expansions, where the trivial unique
expansions of an alphabet A = {a1, . . . , am} are (a1)∞ and (am)∞.

PROPOSITION 2. Let A = {a1, ..., am} an alphabet and β′ ∈ (1, βA] such that the only unique
expansions with basis β′ are the trivial ones. Then for all 1 < β < β′ we have that still the only unique
expansions with basis β are the trivial ones.
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On the uniqueness of expansions 6

PROOF. Suppose that exists an expansion (cj) such that satisfies conditions of Theorem 3 :

(cn+i − a1) < (δ
j
i )

whenever cn = ajn < am, and

(am − cn+i) < (δ̄
j
i )

whenever cn = am+1−jn > a1, where (δ
j
i ) is the quasi greedy expansion of the gap ∆j = aj+1 − aj

and (δ̄
j
i ) is the quasi greedy expansion of the gap ∆̄j = ājn+1 − āj where cn = ajand āj ∈ D(A) =

{am + a1 − am+1−j|j = 1, ..., m}, with respect to alphabet D(A). Similarly we can define (δ
′j
i ) and

(δ̄
′j
i ) as the greedy expansions of gaps in alphabets A and D(A) with basis β′. By monotonicity of

quasi greedy expansions, (see Proposition 1) we have that

(δ
j
i ) < (δ

′j
i )

and
(δ̄

j
i ) < (δ̄

′j
i )

thus
(cn+i − a1) < (δ

j
i ) < (δ

′j
i )

whenever cn = aj < am, and

(am − cn+i) < (δ̄
j
i ) < (δ̄

′j
i )

whenever cn = am+1−j > a1. Thus (cj) is a non trivial unique expansion for β′ and this an absurd
because we have supposed that the only unique expansions with basis β′ are the trivial ones,
that is (a1)∞ and (am)∞. Thus there are not unique expansions for any β < β′ and the proof is
complete. �

NOTATION 4. We denote as

βA := sup1<β≤βA{β|there are not non trivial unique expansions with respect to A}

.

Next proposition states some invariance properties of β̄A with respect some operations on the
alphabet A.

PROPOSITION 3. Let A = {a1, ..., am} and β̄A its ”critical value” then

(1) β̄A+k = β̄A where k ∈ Z and

A + k = {ai + k|ai ∈ Ai = 1, ..., m};

(2) β̄kA = β̄A where k ∈ Z/{0} and

kA = {kai|ai ∈ Ai = 1, ..., m};

(3) β̄D(A) = β̄A where D(A) is the dual of A, i.e.

D(A) = am + a1 − am+1−j|ai ∈ Ai = 1, ..., m.

PROOF. (1) Suppose that fixing β < β̄A we have that

x ∈ Iβ =
[
(a1 + k)

β− 1
,
(am + k)

β− 1

]
has two expansions (ci) and (di) with respect alphabet A + k. This implies that x − k

β−1
has two expansions, with basis β with respect to alphabet A, given by (ci − k) and (di − k)
and this is a contradiction.
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A β̄A Minimum Polynomial Absolute Values of Conjugates
{0,1,2} 2.00000 - -
{0,1,4} 2.00000 - -
{0,1,8} 2.00000 - -
{0,1,16} 2.00000 - -
{0,1,32} 2.00000 - -
{0,1,3} 2.18614 2x2 − 3x− 3 -0.686141
{0,1,5} 2.11674 −5− 5x− x2 − 5x3 − 5x4−

x5 − 5x6 − 5x7 + 4x8
0.83276;
0.904695;
0.96167;
0.967907

{0,1,6} 2.06341 5x3 − 6x2 − 6x− 6 = 0 0.762602
{0,1,7} 2.02647 6x3 − 7x2 − 7x− 7 = 0 0.758757
{0,1,9} 2.05889 8x7 − 9x6 − 9x5 − 9x4 − x3 − 9x2 −

9x− 9 = 0
0.889114;
0.85938;
0.967423

TABLE 1. Table of Minimun Polynomials

(2) As in previous point we can suppose the existence of (ci) and (di) as β expansions for
some x ∈

[
(ka1)
β−1 , (kam)

β−1

]
if k > 0 or x ∈

[
(kam)
β−1 , (ka1)

β−1

]
if k < 0 with respect to alphabet

kA we have that ( ci
k ) and ( di

k ) are two distinct β expansion for x
k ∈ Iβ with respect to

alphabet A.
(3) By above proofs, it is sufficient to observe that the operation D(A) is the combination of

a translation (we add am to every digit of A) and a product for a constant k = −1.
�

By Proposition 3 we have that without loss of generality we can restrict our research of β̄A to
alphabets such that their first digit is zero, their digits are coprime (i.e. greatest common divisor of
all digits is 1) and excepting operation dual. By applying the criterion exposed in Theorem 4, we
get the sperimental datas reported in Table 1, by an algoritmh implemented with Mathematica.

By data reported above we can deduce that βA are Pisot numbers for all examined alpha-
bets: in fact we have that all the conjugates of βA are in modulus lower than 1. Let us recall the
definition of Pisot number:

DEFINITION 5 (Pisot Numbers). A Pisot number is an algebraic number q which modulus is greater
than 1 and exists a polynomial P(x) such that P(q) = 0 (i.e. q is a root for P(x)) and all conjugates of q
are in modulus strictly lower than 1

EXAMPLE 1. The golden mean q = 1+
√

5
2 is a Pisot number, because it is clearly greater than 1 and

its minimun polynomial is

x2 − x− 1 = 0

and its conjugate is | 1−
√

5
2 | = | − 0.618034| < 1

Excepting the case A = {0, 1, 5}, greedy expansions reported in Table 1, and related to alpha-
bets in the generic form A = {0, 1, m}, are in the form (m)k where k is such that 2k ≥ m.
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 Root 

 0  1  4 

 0  4  1  4 

 0  1  4  1  4 

 0  4  1  4  1  4 

 0  1  4  1  4  1  4 

 0  4  1  4  1  4  1  4 

 0  1  4  1  4  1  4  1  4 

 0  4  1  4  1  4  1  4  1  4 

 0  1  4  1  4  1  4  1  4  1  4 

 0  4  1  4  1  4  1  4  1  4  1  4 

FIGURE 1. unique expansions with basis 2 + ε in case A = {0, 1, 2}

 Root 

 0  1  9 

 0  9  1  9 

 0  9  9  1  9 

 0  1  9  9  9  1  9 

 0  9  1  1  9  9  9  1  9 

 0  9  9  9  1  1  9  9  9  1  9 

 0  9  9  9  9  9  1  1  9  9  9  1  9 

 0  1  1  9  9  9  9  9  1  1  9  9  9  1  9 

 0  9  9  1  1  9  9  9  9  9  1  1  9  9  9  1  9 

 0  9  9  9  9  1  1  9  9  9  9  9  1  1  9  9  9  1  9 

FIGURE 2. unique expansions with basis 2 in case A = {0, 1, 8}

This, together with the regularity of the structure of empirically detected unique expansions
of alphabets A = {0, 1, 4} and A = {0, 1, 9}, reported in Fig. 1 and Fig. 2, leads us to state a
criterion to estabilish when a basis admits some unique expansions.

First of all we need the following lemmas:

LEMMA 1. Let (ci) be the greedy expansion of gap ∆j = aj+1 − aj. If (ci) is finite, that is there
n cn 6= a1 and cn + i = a1 for all i ≥ 1, and if cn = aj+1 then the quasi greedy expansion of ∆j is
(c1, . . . , cn−1, aj)∞.

LEMMA 2. For every m ≥ 3 and for every k such that m ≤ 2k the polynomial

P(x) = (m− 1)xk+1 − (2m− 1)xk + m

has one root in the interval [2, m].

Following theorem states that β̄Aleqβ̄ where β̄ is a basis such that the greedy expansion of
m− 1 is in the form (m)k, with an adequate k. Thus every β > β̄ admit some unique expansion.

THEOREM 5. Let A = {0, 1, m} and m ≥ 3. If the greedy expansion of m − 1 is (m)k(0)∞, where
2k ≥ m with respect to the basis β̄ then, for all β > β̄, expansions cp

n := mp(1mk)∞ are unique with
respect to β and A.

PROOF. Let δ1
i and δ2

i (resp. γ1
i and γ2

i ) quasi greedy expansions of 1 and m− 1 with respect
to A (resp. dual alphabet D(A)). Now, for every n ≥ 1 we have that:



On the uniqueness of expansions 9

(1) If n ≤ p then

cp
n = mand(m− cp

n+i) = 0p−n(m− 10k)∞ < γ2
i(2)

In fact we have that

(m− cp
n+i)(β̄) = 1

β̄p−n+1
m−1
β̄k−1

≤ m− 1

Because 2 ≤ β̄. By monotonicity of quasi greedy expansions with respect the represented
number we have that (m − cp

n+i) is lexicographically smaller than the quasi greedy ex-
pansion of m− 1 with respect to D(A) and by monotonicity of quasi greedy expansions
with respect to the basis we have (m− cp

n+i) < γ2
i

(2) If n > p and n 6= p + kj + 1, let n̄ := n− p(modk)

cp
n = mand(m− cp

n+i) = 0k−n̄(m− 10k)∞ < γ2
i

The proof is similar to the one related to 2
(3) If n = p + kj + 1, we have

cp
n = 1and cn+i = (mk−11)∞ < δ1

i m− cn+i = (0k−1m− 1)∞ < γ1
i(3)

Inequality (3) follows by monotonicity of quasi greedy expansions with respect to the
basis and by the fact that, by Lemma 1 the quasi greedy expansion of m− 1 with basis β̄

is equal to cn+i.
Inequality (3) follows by the following consideration: (m −m − cn+i)(β̄) = m−1

β̄k−1
<

m− 1 because β ≥ 2. Thus, again by monotonicity properties of quasi greedy expansions
we have that (3) holds for all m ≥ 3.

Thus for all p ≥ 0 expansions (cp
n) are unique for all bases β > β̄. �

1. An example:case A = {0, 1, 2k}

In this section we show that β = 2 is the greatest basis such that an unique expansion for any
x = Iβ does not exist.

THEOREM 6. β̄A = 2 is the “crical value” for alphabets Ak = {0, 1, 2k}, for all k > 1.

PROOF. We can observe that the greedy expansion of the greatest gap in Ak, 2k − 1 is (2k)k.
In fact

k

∑
i=1

2k

2i =
k−1

∑
i=0

2i = 2k − 1

and (2k)k is clearly the greatest expansion of 2k − 1 with respect to the lexicographical ordering.
Thus (2k)k is greedy. Applying Theorem 5 we have to prove that the choice of 2 as basis does not
admit non-trivial unique expansions. Suppose that (dn) is an unique expansion for with basis 2.
First of all, by Theorem 4, a necessary condition for the occurrence of 1 in (dn) is that λ1

i < δ2
i but

λ1
i δ2

i expand the same number (2k − 1) thus they are equal: this excludes the occurrence of 1 in
(dn). Let us prove that strings 2k0 and 02k cannot occur in (cn), too. Let us observe that the greedy
expansion of 1, the gap related to 0, is equal to (1)∞. In particular, since it is infinite it coincides
with the quasi greedy expansion of 1. Now, if cn = 0 and cn+1 = 2k then

(cn+i) = 2k(cn+1+i) > (1)∞ = δ1
i i ≥ 1.(4)
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Thus 02k cannot occur in (dn). Moreover inequality (4) implies that if dn+1 = 0, for some n ≥ 1
then (dn+1+i)i≥1 = (0)∞. Now suppose that cn = 2k and cn+1 = 0:

2k − (cn+i) = (2k)∞ ≥ γ2
i i ≥ 1..(5)

Hence the only unique expansions with basis β = 2 are the trivial ones. This completes the
proof. �



CHAPTER 3

The number of different expansions

In this section we see that almost every real x ∈ Iβ has a continuum of β -expansions ∀1 <

β < 2 with respect to the alphabet A = {a1, . . . , am}, with ”small gaps”, i.e. such that every gap
aj+1 − aj < am−ai

β−1 where aj ∈ A and j = 1, . . . , m− 1.Note that at this moment we are sure of the
existence the only greedy expansion for any real x ∈ Iβ .

The arguments in this section are a generalization of Sidorov’s and Rényi’s results in case of
A = {0, 1}(see [Sid03] and [Rén57]).

First of all we define a transformation Tβ such that Tnx for all x ∈ Iβ associates to x the rest of
its greedy expansion of order n. Formally we have the following:

DEFINITION 6. Let

T(x) = β(x− ε1

β
)

where (εi) is the greedy expansion of x.

REMARK 2. If x ∈ Iβ and (εi) is its greedy expansion, by definition of T we have that:

x =
n

∑
i=1

εi

βi +
Tnx
βn

Now, we have defined greedy expansions as the result of an algorithm applied on x ∈ Iβ, but
in order to prove the existence of a continuum of expansion for almost every x we need to change
point of view. Consider the dynamical system (Iβ,B, µβ, T), where µβ is the Lebesgue’s measure,
normalized on Iβ. Now we consider the partition of Iβ :

I := Ii =

[
ai
β

+
∞

∑
i=1

a1

βi ,
ai+1

β
+

∞

∑
i=1

a1

βi

)
|i = 1, . . . , m− 2

∪ Im =

[
f racamβ +

∞

∑
i=1

a1

βi , f racamβ +
∞

∑
i=1

am

βi

]
and we see that we can equivalently define the greedy expansion of x as a sequence of digits in A
such that εn = ain if and only if Tnx ∈ Iin .In this way a greedy expansion is nothing more than a
representation of the orbit of x in Iβ under the action of transformation T. This allows us to use
classical results of ergodic theory for our purposes.

Now, we define the so called canonicalsequences: they are finite sequences of digits of A and of
a certain finite length n corresponding to the first n terms of a greedy expansion for some x ∈ Iβ.
Equivalently a sequence (εi)n

i=1 is canonical if exists x ∈ Iβ such that Tix ∈ Iji where εi = aji ∈ A
for all i = 1, . . . , n.

DEFINITION 7 (canonical sequences). A sequence (ε1)i≤n is said to be canonical if there is a greedy
expansion such that its first n terms are equal to (εi)i≤n .

LEMMA 3. Let (ε1)i≤n be a canonical sequence of order n. Then for all ai ∈ A such that ai ≤ εn then
(ε1, . . . , εn−1, ai) is a canonical sequence.

11



The number of different expansions 12

Following theorem is a generalization of Renyi’s Theorem and states the existence of a mea-
sure νβ invariant with respect T.

THEOREM 7. Let A = {a1, · · · , am} an alphabet such that

max
1≤j≤m−1

(aj+1 − aj) ≤
am − a1

β− 1

. Then for any function which is L-integrable on
(

a1
β−1 , am

β−1

)
we have for almost all xin Iβ

lim
n→∞

1
n

n−1

∑
k=0

g(Tkx) = M(g)

where M(g) is a constant that does not depend on x. Moreover exists a measure ν equivalent to the Lebesgue
measure µ and invariant with respect to T.

PROOF. Let S(n) the number of canonical sequences of order n and put S(0) = 1.
So S(n)− S(n− 1) is the number of canonical sequences of order n such that εn 6= a1 . In fact,

if (ε1, · · · , εn−1) is a canonical sequence then (ε1, · · · , εn−1, a1) is it, too; and clearly if (ε1, · · · , εn)
is canonical then (ε1, · · · , εn−1) is canonical. Now let kξ such that (ε1, · · · , εn−1, ak) is canonical if
and only if 1 < k ≤ kξ : intervals[

n−1

∑
i=1

εi

βi +
∞

∑
i=n

a1

βi ,
n−1

∑
i=1

εi

βi +
akξ

βn +
∞

∑
i=n+1

a1

βi

]
have the following properties:

(1) intervals are disjoint.

(2) the weightiness of any interval is
akξ

−a1

βn

(3) their union is included in:[
a1

β− 1
,

a1

β− 1
+

(βn − 1)
βn(β− 1

(am − a1)
)

Note that ∑ kξ = S(n)− S(n− 1): we have that

1
βn (S(n)− S(n− 1)) =

1
βn ∑ kξ ≤

1
βn ∑ akξ

− ai ≤
(βn − 1)

βn(β− 1)
(am − a1)

thus

S(n)− S(n− 1) ≤ (am − a1)
(β− 1)

(βn − 1)

Since S(0) = 1,

S(n)− S(0) =
n

∑
1=1

S(i)− S(i− 1) ≤ (am − a1)
(β− 1) ∑ βi =

(
(am − a1)
(β− 1)

)
βn+1 − β

β− 1

thus

S(n) ≤
(

am − a1

β− 1

)
βn+1

β− 1
Now, consider the sequence of S(n) reals: ε1

β + · · · + εn
βn . We have that the distance between

two consecutive terms does not exceed am−a1
βn(β−1) and the sequence is distribuited on the interval[

a1
β−1 , a1

β−1 + (βn−1)
βn(β−1 (am − a1)

)
, thus

(S(n)− 1)
am − a1

βn(β− 1)
≥ am − a1

βn(β− 1)
(βn − 1)

and, equivalently,
S(n) ≥ βn
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Now, let E ⊆ Iβ a measurable set. T−n(E) is composed by S(n) sets, one for each canonical

sequence of order n, and each of them has measure lower than µ(E)
βn , in fact:

T−n(E) = ∪ξ{x = x̄ξ,n + r(x) ∈ Iβ | βnr(x) ∈ E}

where x̄ξ,n = ∑n
k=1

εi
βi , (εi) = ξ . Thus

µ(T−n(E)) ≤ S(n)
βn µ(E) ≤

(
(am − a1)
(β− 1)

)
β

β− 1
µ(E)(6)

If εn 6= a1 we have that measure of S(n)− S(n− 1) sets is exactly equal to µ(E)
βn because remainders

cover completely 1
βn E :

µ(T−n(E)) ≥ (S(n)− S(n− 1))
1

βn µ(E)(7)

Thus from inequalities (6) and (7) we have

1
n

n−1

∑
k=0

T−n(E)) ≤
(

(am−a1)
(β−1)

)
β

β−1 µ(E)(8)

1
n

n−1

∑
k=0

T−n(E)) ≥ 1
n

(
1 + ∑n−1

k=1
S(k)−S(k−1)

βk µ(E)
)

= 1
n

(
1 + ∑n−1

k=1 S(k)( 1
βk − 1

βk−1 )− S(0)
β

)
µ(E)

= 1
n

(
1 + ∑n−1

k=1 βk( 1
βk − 1

βk+1 )− S(0)
β

)
µ(E)

≥ µ(E)
(

(β−1)
am−a1

)
β−1

β(9)

According the theorem of Dunford and Miller (see [DM46]) it follows from the upper inequality
that for any L-integrable function g(x) the limit

lim
n→∞

1
n

n−1

∑
k=0

g(Tkx) = g∗(x)

exists for almost all x. By Ergodic Theorem, in order to prove that g∗(x) is a constant almost ev-
erywhere, we need to prove that T is an ergodic transformation, i.e. such that if E is a measurable
set and

a) µ(E) > 0;
b) T−1E = E;

then µ(E) = µ(Iβ) . Suppose that E satisfies conditions 3 and 3 and let us consider the class of
intervals

In
ξ =

[
n

∑
i=1

εi

βi +
∞

∑
i=n+1

a1

βi

)
,

where {ε}i and {ε+}i are greedy expansions. By representation Theorem 1 we have that any
subinterval of Iβ is finite or enumerable union of In

ξ .
Now

∞

∑
i=1

εi

βi ∈ E if and only if exists {εx
i }n

i=1 and n ≥ 1 such that
n

∑
i=1

εx
i

βi +
∞

∑
i=1

εi

βn+i ∈ E,

and

E = ∪In
ξk

for some n and for some sequence ξk,
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thus

E =

(
na

∑
i=1

εa
i

βi +
∞

∑
i=1

a1

βna+i ,
nb

∑
i=1

εb
i

βi +
∞

∑
i=1

a1

βnb+i

)
nb−1

∑
i=1

εb
i

βi +
εb

nb
−

βnb
+

∞

∑
i=nb+1

a1

βi ∈ E;

⇒
∞

∑
i=nb+1

a1

βi ∈ T−nb E ⇒
∞

∑
i=nb+1

a1

βi ∈ E

thus for any greedy expansion {ε}i and ∀n ≥ 1
n

∑
i=1

εi

βi +
∞

∑
i=n+1

a1

βn+i ∈ E

so we can say that µ(E) = µ(Iβ) , and the ergodicity of T is proved: g∗(x) is a constant for almost
all x.

In order to prove the second part of the theorem let us consider

νn(E) =
1
n

n−1

∑
k=0

µ(TkE) =
∫ am

β−1

a1
β−1

1
n

n−1

∑
k=0

E(Tkx))dx,

where E(x) is the characteristic function of E. E(x) ≤ 1 and Lebesgue Theorem implies that
putting g(x) := E(x) the limit νn(E) → ν(E) exists. Let us see that νn and ν are measures: both νn

and ν are clearly not negative. We have to prove that they are sub-additive; let Ei a collection of
subsets of Iβ µ measurable:

νn(∪Ei) =
1
n

n−1

∑
k=0

µ(Tk(∪Ei))

=
1
n

n−1

∑
k=0

µ(∪(TkEi))

≤ ∑
i

1
n

n−1

∑
k=0

µ(TkEi)

= ∑
i

νn(Ei).

By the permanence of sign we have that ν is a measure too. Moreover it is T-invariant:

νn(T−1E) =
n + 1

n
νn+1(E)− 1

n
µ(E) and for n → ∞

ν(T−1E) = ν(E).

The equivalence with µ follows from inequalities 8 and 9 and from permanence of sign:(
β− 1

am − a1

)
β− 1

β
µ(E) ≤ ν(E) ≤

(
(am − a1)
(β− 1)

)
β

β− 1
µ(E)

and this concludes the proof. �

DEFINITION 8 (Renyi’s measure). Measure ν in previous Theorem is called Renyi’s measure

We concentrate on the problem of existence of a continuum of expansions for almost all x ∈ Iβ,
1 < β < 2.

The idea is the same as in Sidorov’s original theorem ([Sid03]): using the existence of an
µ-equivalent and T-invariant measure and the ergodicity of T, we apply Poincaré Recurrence
Theorem to prove that almost all x ∈ Iβ as an occurrence of a string in its greedy expansion
which can be substituted with another one in order to obtain two distinct expansions of the same
x. Applying Poincaré Recurrence Theorem in strong form, we have that the occurrences of such
strings are enumerable in the greedy expansion of almost all x ∈ Iβ. Now, we can decide to
substitute a string or not: this arbitrariety gives 2N different expansions for almost all x ∈ Iβ.
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DEFINITION 9 (cylinders). Let (c1, · · · , cn) ∈ An : we denote as [c1, · · · , cn] the cylinder of
(c1, · · · , cm) , i.e. the set of the sequences (εi) such that ε1 = c1, · · · , εn = cm.

LEMMA 4. Let x ∈ Iβ and assume that its greedy expansion is in the form

(ε1, · · · , εn, am, 0, · · · , 0,︸ ︷︷ ︸
m−1 times

εn+m+1, · · · )

where m = m(β) ≥ 2 is such that

1 +
1

(β− 1)βm−1 <
1

β− 1
where m ≥

[
logβ

1
2−β

]
+ 1 ≥ 2.(10)

Then x has at least two distinct expansions.

LEMMA 5. For any 1 < β < 2 , almost every x ∈ Iβ has denumerable different expansions.

PROOF. Let us show that for a.e. x ∈ Iβ some tail of its greedy expansion belongs to the
cylinder

[
am0m−1].

Let

Xβbe the space of sequences in alphabet A that represent a greedy expansion in Iβ

πβ : Xβ → Iβ

(ε1, ε2, · · · ) →
∞

∑
i=1

εi

βi

By Theorem 7 we can see that there is a measure νβ on Xβ equivalent to the πβ - preimage of
Lebesgue measure µ, νβ is equivalent to µ ◦ πβ since:

(1) µ ◦ πβ is a measure because πβ is one-to-one a.e. in Xβ

(2) By Theorem 7 we have the existence of the Renyi’s measure ν equivalent to µ . So we can
define νβ := νβ ◦ πβ

(3) νβ is equivalent to µ ◦ πβ because νβ(B) = 0 ↔ ν ◦ πβ(B) = 0 ↔ µ ◦ πβ(B) = 0 from the
equivalence between νβ and µ .

Moreover νβ is preserved by the one-sided shift defined as follows:

τβ(ε1, ε2, ε3, · · · ) = (ε2, ε3, · · · )

i.e.
νβ(τβ(B)) = ν ◦ πβ(τβ(B)) = ν(T(πβ(B))) = ν(πβ(B) = νβ(B),

for any measurable B ∈ B because Renyi’s measure is T invariant.
Finally, again from Renyi, we have that νβ is positive on evey rcylinder in Xβ : recall that a

cylinder is the set of sequence which first digits are fixed. Now, if the image of a cylinder by πβ

has positive Lebesgue measure, then, by the equivalence of µ with ν , νβ has positive measure too.
But the πβ image of any cylinder [ε1, · · · , εn] is[

n

∑
i=1

εi

βi +
∞

∑
i=n+1

0
βi ,

n

∑
i=1

εi

βi +
∞

∑
i=n+1

am

βi

]
and it has clearly positive measure. In particular νβ

[
am0m−1] > 0 , where m satisfies condition of

lemma 5, so we can apply Poincaré recurrence Theorem in strong form to

Xβ where νβ(X) < ∞ because it is equivalent to µ ◦ πβ and µ ◦ πβ(Xβ) = am−0
β−1

τβ measure preserving with respect to νβ

πβ([am0m−1]) with positive measure
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and see that a.e. point x̄ ∈ πβ([am0m−1]) enumerable occurrences of the string [am0m−1] in its
expansion.

Let E′ the set of such x. Clearly µ(E′) = µ(πβ([am0m−1]). Now let

E = E′ ∪ {x ∈ Iβ | ∃n ≥ 1suchthatTnx ∈ πβ([am0m−1])}

we have that
µ(E) = µ

(
∪n≥0Tn−1([am0m−1)

)
Moreover T−1(E) = T(E) and as shown in Theorem 7 T is ergodic, thus

µ(Iβ) = µ(E)

= µ
(
∪n≥0Tn−1([am0m−1)

)
Applying again Poincaré Theorem to ∪n≥0Tn−1([am0m−1]) we have that the greedy expan-

sion of a.e. x in Iβ has enumarable occurrences of the string (am, 0, . . . , 0︸ ︷︷ ︸
m−1 times

, thus it has enumerable

different expansions. �

COROLLARY 1. By Lemma 5 and Theorem 8 we have that any fixed and finite sequence occurs infinite
times in any expansion of a.e. real number in Iβ.

THEOREM 8. For any 1 < β < 2 , a.e. x ∈ Iβ has a continuum of different expansions.

PROOF. Let us define
δn({εi}) = {ε′i}

where

{ε′i} =


ε′i = εi i = 1, · · · , jn − 1

ε′jn = 0

ε′i = ε̄i i > jn
and jn corresponds to the n-th occurrence of the string (am, 0, · · · , 0)︸ ︷︷ ︸

m−1 times

.

Let us observe that ε′i i>jn
is greedy, thus we can apply δjn0 +n1(δn0({εi}})) for n1 > 0 Iterating

we get a class of expansions for almost every x ∈ Iβ given by: f0 = δn0({εi}
fk = δjnk +nk+1( fk−1){εi}

Since nj is arbitrary we obtain thesis. �
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