Topological degree theory and VMO maps
 EMILIANO DI FILIPPO

Let X and Y be two oriented manifolds, let $f: X \rightarrow Y$ be a continuous function and let y be a given point in Y; we can associate to f an integer, which we call $d(f, X, y)$, such that:
d1) $d(i d, X, y)=1 \forall y \in X$.
d2)

$$
d(f, X, y)=d\left(f, X_{1}, y\right)+d\left(f, X_{2}, y\right)
$$

whenever X_{1} and X_{2} are disjoint open subsets of X, such that $y \notin f\left(X \backslash\left(X_{1} \cup X_{2}\right)\right)$. d3) $d(h(t,), X,. y(t))$ is indipendent of $t \in J=[0,1]$ whenever $h: J \times \bar{X} \rightarrow Y$ and $y(t): J \rightarrow Y$ are continuous and $y(t) \notin h(t, \partial X)$ for all $t \in J$; in other words, the degree is homotopy invariant.
d4) If $d(f, X, y) \neq 0 \Rightarrow f^{-1}(y) \neq \emptyset$.
d5) $d(f, X, y)$ is continuous in f and y . In particular, if X is without boundary and Y is connected, it does not depend on $y \in Y$; hence we can write $d(f, X, y)=$ $d(f, X, Y)$.

- These properties make of the degree a useful tool to study equations of the form $f(x)=y$. Tipically, analysts use degree in the following way. If they want to prove that the equation $f(x)=y$ has solutions, then they look for a " simple " map g homotopic to f; if they can prove that $d(g, X, y) \neq 0$, then $f(x)=y$ has at least a solution by d3) and d4).
- In 1995 H. Brezis and L. Nirenberg have shown that the continuity property 5) is still true in the BMO topology; namely if f and g are continuous maps and $\operatorname{dist}_{B M O}(f, g)$ is sufficiently small, then $d(f, X, y)=d(g, X, y)$. Using this fact, they extended the definition of degree to the space $V M O$, the completion of continuous maps in the BMO-norm.
- Now we recall the definition of the space BMO, Bounded Mean Oscillation: Let
Q_{0} be a cube in \mathbb{R}^{n}, and let $f \in L^{1}\left(Q_{0}\right)$; we set

$$
f_{Q} f(x) d x=\frac{1}{|Q|} \int_{Q} f(x) d x \text { and } \bar{f}_{Q}=f_{Q} f(x) d x
$$

We say that $f \in B M O\left(Q_{0}, \mathbb{R}\right)$ if for every cube $Q \subseteq Q_{0}$ we have that

$$
\begin{equation*}
\|f\|_{B M O\left(Q_{0}, \mathbb{R}\right)}=\sup _{Q \subset Q_{0}} f_{Q}\left|f(x)-\bar{f}_{Q}\right| d x<\infty . \tag{1}
\end{equation*}
$$

It is easy to see that $\|f\|_{B M O\left(Q_{0}, \mathbb{R}\right)}$ is a seminorm; we define the BMO-norm of f by

$$
\|f\|_{\sim}=\|f\|_{B M O\left(Q_{0}, \mathbb{R}\right)}+\|f\|_{L^{1}} .
$$

The space BMO is complete under this norm.
Let us look at some properties of BMO.

- Directly by the definition, we get that $L^{\infty} \subset B M O$; on the other hand in section 2.3 we shall prove the John-Nirenberg inequality which implies that, if $f \in$ $B M O\left(Q_{0}, \mathbb{R}\right)$ and $t>0$ then

$$
\left|\left\{x \in Q_{0}:|f(x)|>t\right\}\right| \leq c_{1} e^{\frac{-c_{2}}{\|f\|_{B M O}}}\left|Q_{0}\right|
$$

for some constants c_{1} and c_{2}. As a consequence we have that

$$
B M O \subset L^{p} \quad \forall p \geq 1
$$

In particular,

$$
L^{\infty} \hookrightarrow B M O \hookrightarrow L^{p} \forall p \geq 1 .
$$

- The space $B M O$ is strictly larger than L^{∞}, indeed we shall see in section 2.3 that the function $\log |x| \in B M O \backslash L^{\infty}$.
- Concerning VMO, its name comes from Vanishing Mean Oscillation; indeed, a theorem of Sarason (section 2.4) implies that $f \in V M O$ iff a stronger property than (1) holds, i.e iff, denoting by $Q(x, \epsilon)$ the cube centered in x with side ϵ we have

$$
\lim _{\epsilon \rightarrow 0} f_{Q(x, \epsilon)}\left|f(x)-\bar{f}_{Q(x, \epsilon)}\right| d x \rightarrow 0 \text { uniformly in } x
$$

It is easy to see that $L^{\infty}\left(Q_{0}, \mathbb{R}\right) \nsubseteq \operatorname{VMO}\left(Q_{0}, \mathbb{R}\right)$, indeed, an easy calculation showes that the function $\mathbb{1}_{(0,1)}$ does not satisfy the formula above for $Q_{0}=(-1,1)$. But of course $C^{0}(\Omega, \mathbb{R}) \subset \operatorname{VMO}(\Omega, \mathbb{R})$. In Section 2.6 we show that the inclusion is strict. The example is the function $f(x)=\log |\log | x| |$ which belongs to $V M O(\Omega, \mathbb{R})$ for any Ω a bounded domain in \mathbb{R}^{n} containing the origin. On the other side, $V M O$ is strictly containeed in $B M O$, because we shall see in section 2.6 that $f(x)=\log |x| \notin V M O$.

- Let Ω be a bounded open domain in \mathbb{R}^{n}; some important spaces which embed in $\operatorname{VMO}(\Omega)$ are :

$$
W^{1, n}(\Omega)=\left\{f \in L^{n}(\Omega): \nabla f \in L^{n}(\Omega)\right\}
$$

and

$$
\begin{equation*}
W^{s, p}(\Omega)=\left\{f \in L^{p}(\Omega): \int_{\Omega} \int_{\Omega} \frac{|f(x)-f(y)|^{p}}{|x-y|^{n+s p}} d x d y<\infty\right\} \tag{2}
\end{equation*}
$$

for all $0<s<1,1<p<\infty$ with $s p=n$, (see Section 2.6).
Definition 2 is Gagliardo's characterization of the Sobolev space with fractional exponent.

- Naturally the definition of $B M O$ and $V M O$ can be extended to a function in $L^{1}\left(Q_{0}, \mathbb{R}^{n}\right)$. In other words $f \in B M O\left(Q_{0}, \mathbb{R}^{n}\right)\left(V M O\left(Q_{0}, \mathbb{R}^{n}\right)\right)$ if each component of f is $B M O\left(Q_{0}, \mathbb{R}\right)\left(V M O\left(Q_{0}, \mathbb{R}\right)\right)$.
- Let X be a smooth n-dimensional connected compact Riemannian manifold without boundary, we shall see in section 2.1 that we can define $B M O\left(X, \mathbb{R}^{n}\right)$ and $\operatorname{VMO}\left(X, \mathbb{R}^{n}\right)$.
- Finally let Y be a compact manifold without boundary; we shall always suppose that Y is smoothly embedded in some \mathbb{R}^{n}. We say that f belongs to $B M O(X, Y)$ $(V M O(X, Y))$, if $f \in B M O\left(X, \mathbb{R}^{n}\right)\left(V M O\left(X, \mathbb{R}^{n}\right)\right)$ and $f(x) \in Y$ a.e.
- We shall see in section 2.2 that a different choice of the Riemannian metric on X or of the embedding of Y yields an equivalent metric.
- Given a manifold Y embedded in \mathbb{R}^{n}, in a neighbourhood of Y we can define a projection operator, which associates to $y \in \mathbb{R}^{n}$ the unique point on Y closest to y. If $f \in \operatorname{VMO}(X, Y)$, for $\epsilon>0$ small, we can define

$$
\bar{f}_{\epsilon}(x):=f_{B_{\epsilon}(x)} f(y) d \sigma(y) \text { and } f_{\epsilon}(x):=P \circ \bar{f}_{\epsilon}(x) \text {. }
$$

Since f_{ϵ} is a continuous map, $d\left(f_{\epsilon}, X, y\right)$ is well defined $\forall y \in Y$. If X, Y are manifolds without boundary and Y is connected, we have by d5) that $d\left(f_{\epsilon}, X, y\right)$ does not depend on $y \in Y$, hence $d\left(f_{\epsilon}, X, y\right)=d\left(f_{\epsilon}, X, Y\right)$. We note that, if ϵ is small $d\left(f_{\epsilon}, X, Y\right)$ does not depend on $\epsilon \in\left(0, \epsilon_{0}\right)$. To show this we use the fact that the degree is invariant by homotopy; in particular using the deformation $f_{t \epsilon+(1-t) \epsilon^{\prime}}$, for $\epsilon, \epsilon^{\prime}$ small, $0<t<1$, we see that $d\left(f_{\epsilon}, X, Y\right)=d\left(f_{\epsilon^{\prime}}, X, Y\right)$. Thus we can define

$$
\begin{equation*}
d(f, X, Y):=\lim _{\epsilon \rightarrow 0} d\left(f_{\epsilon}, X, Y\right) \tag{3}
\end{equation*}
$$

- We shall see in section 4.1 that the definition 3 is indipendent of the choice of Riemannian metric on X and of the embedding of Y.
- Some properties of VMO-degree are :

1) $d(i d, X, Y)=1$.
2)Let $f \in \operatorname{VMO}(X, Y)$. Then there exists $\delta>0$ depending on f , such that if $g \in \operatorname{VMO}(X, Y)$ and

$$
\operatorname{dist}(f, g)<\delta,
$$

then

$$
d(f, X, Y)=d(g, X, Y)
$$

3)Let $H_{t}(\cdot)$ be a one parameter family of VMO maps X to Y, depending continuously in the BMO topology, on the parameter t . Then $d\left(H_{t}(\cdot), X, Y\right)$ is indipendent of t.
4) If $d(f, X, Y) \neq 0$ then the essential range of f is Y . We define the essential range to be the smallest closed set Σ in Y such that $f(x) \in \Sigma$ a.e.
\bullet Recall that if f and $g \in C^{0}(X, Y)$, there is a uniform $\delta>0$ such that

$$
|f-g|_{C^{0}}<\delta \Rightarrow d(f, X, Y)=d(g, X, Y)
$$

Surprisingly if f and $g \in \operatorname{VMO}(X, Y), \delta$ depends on f. In Chapter 4 we give an example building two maps f, g from S^{1} to S^{1} arbitrarily close in the $H^{\frac{1}{2}}\left(S^{1}\right)$ topology, and thus in BMO topology, but with different degrees.

- One can ask whether it is possible to define the degree for maps in $L^{p}(X, Y)$, $1 \leq p \leq+\infty$, and $B M O(X, Y)$. The answer is negative; indeed in Section 4.1 we
prove that these spaces are arcwise connected.
- In section 1.8 we recall that if $f \in C^{1}(X, Y)$, then

$$
\begin{equation*}
d(f, X, Y)=\frac{1}{|Y|} \int_{X} \operatorname{det} J_{f}(x) d \sigma(x) \tag{4}
\end{equation*}
$$

where $|Y|$ denotes the volume of Y.
But we have seen that $W^{1, n}(X, Y) \hookrightarrow V M O(X, Y)$, and the integral above, converges for $f \in W^{1, n}$; we show in section 4.2 that (4) holds when $f \in W^{1, n}$ and d is the VMO degree.

- If $X=Y=S^{n}$, where S^{n} is the sphere of \mathbb{R}^{n}, a famous theorem of Hopf says that two maps in $C^{0}\left(S^{n}, S^{n}\right)$ are homotopic iff they have the same degree. In section 4.1 we show that this holds also for $V M O$ maps.
- An interesting case is when we consider $f \in H^{\frac{1}{2}}\left(S^{1}\right)=W^{\frac{1}{2}, 2}\left(S^{1}, S^{1}\right)$. From Gagliardo's characterization we have

$$
H^{\frac{1}{2}}\left(S^{1}\right)=\left\{f \in L^{2}\left(S^{1}\right): \int_{S^{1}} \int_{S^{1}} \frac{|f(x)-f(y)|^{2}}{|x-y|^{2}} d x d y<+\infty\right\} .
$$

We also recall the characterization of $H^{\frac{1}{2}}\left(S^{1}\right)$ in terms of the Fourier coefficents $\left(\hat{f}_{n}\right)$ of f :

$$
\begin{equation*}
H^{\frac{1}{2}}\left(S^{1}\right)=\left\{f \in L^{2}\left(S^{1}\right): \sum_{n=-\infty}^{+\infty}(1+|n|)\left|\hat{f}_{n}\right|^{2}<+\infty\right\} . \tag{5}
\end{equation*}
$$

Finally we recall that if $f \in C^{1}\left(S^{1}, S^{1}\right)$, by a well-know formula of complex analysis we have that

$$
\begin{equation*}
d\left(f, S^{1}, S^{1}\right)=\frac{1}{2 \pi i} \int_{f} \frac{d z}{z}=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f^{\prime}(\theta)}{f(\theta)} d \theta=\frac{1}{2 \pi i} \int_{0}^{2 \pi} f^{\prime}(\theta) \bar{f}(\theta) d \theta \tag{6}
\end{equation*}
$$

where we have used the fact that $\frac{1}{f(\theta)}=\bar{f}(\theta)$ because $\|f(\theta)\|=1$.
Now we consider the Fourier expansion of f :

$$
f(\theta)=\sum_{n=-\infty}^{+\infty} \hat{f}_{n} e^{i n \theta} .
$$

Inserting it into 6, we find

$$
\begin{equation*}
d\left(f, S^{1}, S^{1}\right)=\frac{1}{2 \pi i} \int_{S^{1}}\left[\sum_{n=-\infty}^{+\infty} \overline{\hat{f}_{n}} e^{-i n \theta} \sum_{m=-\infty}^{+\infty}(i m) \hat{f}_{m} e^{i m \theta}\right] d \theta=\sum_{n=-\infty}^{+\infty} n\left|\hat{f}_{n}\right|^{2} . \tag{7}
\end{equation*}
$$

The density of $C^{1}\left(S^{1}, S^{1}\right)$ into $H^{\frac{1}{2}}\left(S^{1}, S^{1}\right)$ and the continuity of the degree yield that formula (7) holds also when $f \in H^{\frac{1}{2}}\left(S^{1}, S^{1}\right)$.
-This fact has a surprising consequence :
Let $\left(a_{n}\right)$ be a sequence of complex numbers satisfying

$$
\begin{gather*}
\sum_{n=-\infty}^{+\infty}\left|n \| a_{n}\right|^{2}<+\infty \tag{8}\\
\sum_{n=-\infty}^{+\infty}\left|a_{n}\right|^{2}=1 \tag{9}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{n=-\infty}^{+\infty} a_{n} \bar{a}_{n+k}=0 \quad \forall k \neq 0 \tag{10}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{n=-\infty}^{+\infty} n\left|a_{n}\right|^{2} \in \mathbb{Z} \tag{11}
\end{equation*}
$$

- If f is only continuous, the series 7 is not convergent, but the Fourier coefficents still exist.
One problem proposed by Brezis is whether one can hear the degree of continuous maps. In other words, if f and g are continuous maps and

$$
\left|\hat{f}_{n}\right|=\left|\hat{g}_{n}\right| \forall n \in \mathbb{Z}
$$

can one conclude that $d\left(f, S^{1}, S^{1}\right)=d\left(g, S^{1}, S^{1}\right)$?
J. Bourgain and G. Kozma [5] have shown that the answer is negative. They have constructed a complicated example of two continuous maps f and g of the circle to itself with $\left|\hat{f}_{n}\right|=\left|\hat{g}_{n}\right| \forall n \in \mathbb{Z}$ but with different degree.

References

[1] R. A. Adams. Sobolev Spaces. Accademic Press, (1975).
[2] H. Brezis. New questions related to the topological degree.
[3] H Brezis. Analisi funzionale, teoria e applicazioni. Liguori Editori, serie di matematica e fisica, (1986).
[4] H. Brezis and L. Nirenberg. Degree theory and BMO ; part I : Compact Manifolds without Boundaries. Birkhauser, Selecta Mathematica, New series Vol.1, No. 2 (1995).
[5] Jean Bourgain and Gady Kozma. One cannot hear the winding number, arXiv: math.CA/0612192v1, (2006).
[6] K. Deimling. Nonlinear Functional Analysis, Springer-Verlag, Berlin, (1985).
[7] Manfredo P. Do carmo. Differential forms and Applications, Springer, (1994).
[8] J. Dugundji. Topology Allyn and Bacon, Inc. (1966).
[9] M. Giaquinta. Introduction to regularity theory for nonlinear elliptic systems. Birkhauser, Lectures in mathematics ETH Zurich, (1993).
[10] M.J Greenberg. Lectures on Algebraic Topology. Benjamin, Reading, Mass. (1967).
[11] A. Hatcher. Algebraic Topology. Cambridge University Press, (2002).
[12] J. L. Lions. Théorèmes de trace et d' interpolation(IV). Math. Annalen, (1963)
[13] J. W. Milnor. Topology from the differentiable viewpoint. Princeton University, (1965).
[14] L. Nirenberg and F. John On functions of Bounded Mean Oscillation. Communications on pure and applied mathematics, Vol. XIV, (1961).
[15] L. Nirenberg. Topics in nonlinear Functional Analysis. AMS Courant Lecture Notes.
[16] W Rudin. Real and Complex Analysis. McGRAW-HILL Series in higher mathematics, (1970).

