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INTRODUCTION

A prime number is an integer number that it is evenly divisible only by itself
and 1. Since ancient times, people have been interested in the properties
of this kind of numbers and have tried to �nd out how they work and how
to determine whether a number is prime or not. Euclid, for example, has
proved that these numbers are in�nite and Gauss stated the the problem of
distinguishing prime numbers from composite ones and factorising composite
numbers is one of the most important and useful problems in arithmetic.
Besides the fascination they have, prime numbers are also of fundamental
importance in mathematics in general, and cryptography in particular: in
fact some crypto-systems are based on prime numbers. So it is of great
interest to study their di�erent properties, specially those properties that
allow one to e�ciently determine if a number is prime.
The de�nition of prime numbers already gives a way of determining if a
number n is prime: try dividing n by every number m ≤ √

n, if any m
divides n then it is composite, otherwise it is prime. This test is ine�cient:
it takes Ω(√n) steps to determine if n is prime.
An e�cient test should need only a polynomial (in the size of the input equal
to [log n]) number of steps.
In this thesis we analyse four e�cient deterministic primality tests and a
probabilistic one.
The �rst deterministic algorithm determining whether an input number n is
prime or composite and working in polynomial time, is the AKS-Algorithm.
This primality test has been created by two young student, together with
their professor, in August 2002. The authors of this algorithm sent an article
titled PRIMES is in P to some experts that immediately appreciated it for
its correctness, elegance and simplicity. This article can be found at the
following address:

http : //www.cse.iitk.ac.in/news/primality.html.

The greatness of this algorithm is not only the fact that it solves one of the
oldest problems, but is also the fact that it does not use unproved results
and that everybody can easily understand it.
In the �rst chapter of this thesis we deal with this algorithm an we analyse
its complexity time that is #̃(log12 n). We also give some conjectures that,

3



if proved, would lead the complexity time to #̃(log6 n); unfortunately we do
not know whether they are true or not.
In the second chapter we deal with a version of the AKS algorithm with an
improvement suggested by Lenstra thanks to which the complexity time is
#̃(log21/2 n).
In the third chapter we analyse Berrizbeitia's algorithm, that works only for
a large family of numbers, namely n ≡ 1 (mod 4) and n ≡ −1 (mod 4). In
the �rst case the algorithm runs, in the worst case, at least 211 times faster
than the best possible running time for the AKS algorithm. For the case
n ≡ −1 (mod 4) we get the same result using 29 instead of 211.
In the forth chapter, which is the most important of the thesis, we present
an algorithm created by Lenstra and Pomerance and whose complexity time
is #̃(log6 n). This complexity is not achieved by proving the conjectures of
the AKS algorithm.
Finally, in the last chapter, we give a sketch of Bernstein's algorithm that,
di�erently from the others, is not deterministic but probabilistic: that is, if n
is composite, the output is COMPOSITE, but if n is prime, the probability
that the output is PRIME is at least 1/2. However, since each run of the
algorithm is independent, after k runs the probability that we have not yet
distinguished if whether n is prime or composite is < 1/2k which is negligible
for large k's.

4



Chapter 1

THE AKS-ALGORITHM

In this chapter we are going to analyse the AKS-algorithm: a determinis-
tic polynomial-time algorithm that determines whether an input number is
prime or composite.

1.1 The idea
The test is based on the following theorem:

Theorem 1.1.1. Let a, p ∈ ℤ such that gcd(a, p) = 1. Then p is prime if
and only if

(x− a)p ≡ (xp − a) (mod p). (1.1)

Proof. We know that

(x− a)p =

p∑

i=0

(
p

i

)
(−a)p−ixi.

(⇒) If p is prime, for 0 < i < p, we have
(
p
i

) ≡ 0 (mod p) and, therefore,
the coe�cient of xi, for 0 < i < p, is 0. The coe�cient of xp is

(
p
p

)
(−a)0 = 1.

Moreover, from Fermat's Little Theorem, we have that (−a)p−1 ≡ 1 (mod p)
therefore the coe�cient of x0 is

(
p
0

)
(−a)p ≡ −a (mod p).

(⇐) If p is composite: let's consider q a factor of p, and let qk ∣∣ p, that
means p = qkm with gcd(q,m) = 1 and k ≥ 1.
Then, (

p

q

)
=

p(p− 1) ⋅ ⋅ ⋅ (p− (q − 2))(p− (q − 1))

q!
=

=
mqk(mqk − 1) ⋅ ⋅ ⋅ (mqk − (q − 2))(mqk − (q − 1))

q!
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which, dividing both numerator and denominator by q, is equal to

mqk−1(mqk − 1) ⋅ ⋅ ⋅ (mqk − (q − 2))(mqk − (q − 1))

(q − 1)!

since q ∤ (mqk − 1), . . . , (mqk − (q − 2))(mqk − (q − 1)) we have that

qk ∤
(
p

q

)

⇒ p ∤
(
p

q

)
.

Since gcd(a, p) = 1, we have gcd(p, ap−q) = 1. Then the coe�cient of xq in
(x−a)p, given by (−a)p−q

(
p
q

)
, is not zero modulo p, while it is zero in xp−a .

So we have that (x−a)p− (xp−a) cannot be identically null on (ℤ/pℤ). ■

This theorem suggests a simple test of primality: given an input p, choose
an a and test whether the congruence (1.1) is satis�ed. This test is ine�cient
since it takes time Ω(p) because it evaluates p coe�cients in the worst case.
A simple way to reduce the number of coe�cients is to evaluate both sides
of (1.1) modulo a polynomial of the form xr − 1 for an appropriately chosen
small r. In other words, we could test if the following equation is satis�ed:

(x− a)p ≡ (xp − a) (mod xr − 1, p). (1.2)

The idea is to verify this congruence for a few values of a. From Theorem
1.1 we know that all primes satisfy the equation (1.2). The problem now is
that also some composites p satisfy the equation for a few values of a and
r. However we show that for appropriately chosen r if the equation (1.2) is
satis�ed for several a′s then p must be a prime power.
The number of a′s and the appropriate r are both bounded by a polynomial
in [log n] and therefore, we get a deterministic polynomial time algorithm
for testing primality.
The congruence (1.2) takes #(r2 log3 p) time, using the successive square
method to calculate the powers. The algorithm chooses an appropriate r,
that is an r whose order is #(log6 p), such that there exists a constant ± ≥ 0

such that a prime factor of r−1 is at least r 1
2
+±; Etienne Fouvry, R.C.Baker

and G.Harmann showed, in [18,19], that this r exists. After this, the algo-
rithm veri�es the congruence (1.2) for a �small�(#(√r log p)) number of a′s.
We are going to show that this algorithm determines whether p is prime or
not.
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1.2 Algebraic preliminaries
In this section we state some algebraic results that will be used in the later
proofs.

Proposition 1.2.1. If p is prime and ℎ(x) is a polynomial of degree d irre-
ducible in Fp, then Fp/(ℎ(x)) is a �nite �eld of order pd.

Since now ℎ(x) will be a factor of xr−1
x−1 and the logarithms will be to

base 2.

Proposition 1.2.2. Let F be a �eld. The polynomial xd − 1 divides the
polynomial xn − 1 if and only if d divides n.

Proof. (⇐) If d ∣ n, then, assuming n = dm, we have

xn − 1 = xdm − 1 = (xd − 1)(xd(m−1) + . . .+ xd + 1).

Therefore xd − 1 ∣ xn − 1 in F.
(⇒) If n = qd+ r, in F[x] we have

(xn − 1) = xqd+r − 1

= xqdxr − 1

= (xqd − 1)xr + xr − 1

= (xd−1)(xd(q−1)+. . .+xd+1)xn−qd+xn−qd−1

= (xd−1)(xn−d+xn−2d+. . .+xn−qd)+(xn−qd−1).

So, if xd − 1 ∣ xn − 1, it has to be xn−qd − 1 = 0, which implies n − qd = 0
and qd = n. Consequently we have d ∣ n. ■

Lemma 1.2.1. Let p and r be prime such that p ∕= r,

1. The multiplicative group of any �eld Fpt for t > 0, denoted by F∗pt is
cyclic.

2. Let f(x) be a polynomial with integral coe�cients. Then

f(x)p ≡ f(xp) (mod p)

.

3. Let ℎ(x) be any factor of xr − 1. Let m ≡ mr (mod r). Then

xm ≡ xmr (mod ℎ(x))

.
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4. Let or(p) be the order of p modulo r. Then, in Fp, xr−1
x−1 factorises into

irreducible polynomials, each of degree or(p)

Proof. 1. In order to show that F∗pt is cyclic we need to �nd an element
g ∈ F∗pt such that {g, g2, . . . , gpt−1 = 1} = F∗pt .
Let pt = q and suppose q ≥ 3, otherwise we have a trivial matter, and
let's write q − 1 = p®1

1 ⋅ ⋅ ⋅ p®m
m . For each i = 1, . . . ,m let's consider

x
q−1
pi −1 ∈ Fq[x]. There exists an ai ∈ F∗q that is not a root of x

q−1
pi −1,

since this polynomial cannot have more than q−1
pi

distinct roots in F∗q .

Let bi = a

q−1

p
®i
i

i and g = b1b2 ⋅ ⋅ ⋅ bm. We want to show that:

(a) ord(bi)= p®i
i

(b) ord(g)= q − 1

Then:

(a) b
p
®i
i

i =

Ã
a

q−1

p
®i
i

i

)p
®i
i

= aq−1
i which is equal to 1 since the order of

any element of F∗q divides q−1. Consequently we have that ord(bi)∣

p®i
i . If ord(bi)< p®i

i , then b
p
®i−1
i

i =

Ã
a

q−1

p
®i
i

i

)p
®i−1
i

= a
q−1
pi

i = 1, but

this is impossible since ai is not a root of x
q−1
pi − 1.

(b) We need to show that g = b1b2 . . . bm is a generator. Let's suppose
that ord(g)< q−1, then ord(g)∣ q−1 implies that ord(g)∣ q−1

pi
for

some i = 1, . . . ,m.
So we have g

q−1
p1 = b

q−1
pi

1 ⋅ ⋅ ⋅ b
q−1
pi

m = 1. On the other hand, for any
index i ∕= j, the integer p®j

j = ord(bj) divides q−1
pi

.

Therefore, b
q−1
pi

j = 1 for any j ∕= i which means that b
q−1
pi

i = 1 since

b
q−1
pi

1 ⋅ ⋅ ⋅ b
q−1
pi

i ⋅ ⋅ ⋅ b
q−1
pi

m = 1; but this is impossible since, in this case,
p®i
i , which is the period of bi, should divide q−1

pi
.

2. Let's consider f(x) = a0+a1x+. . .+adx
d. We know that the coe�cient

of xi in f(x)p is
∑

i0+...+id=p
i1+2i2+...+did=i

ai00 ⋅ ⋅ ⋅ aidd
p!

i0! ⋅ ⋅ ⋅ id!

There are two cases:
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(a) ik < p for any k = 0, . . . , d. In this case we have

p!

i0! ⋅ ⋅ ⋅ id! ≡ 0 (mod p)

(b) There exists j such that ij = p and, therefore, ik = 0 for any
k ∕= j. In this case we have, from 0i0 + 1i1 + . . .+ did = 1, that

i = ij ⋅ j = pj.

Therefore the coe�cient of xi(= xpj) is apj and, from Fermat's
Little Theorem, we have

apj ≡ aj (mod p).

Thus from these two cases we obtain that:

f(x)p ≡ a0x
p⋅0 + a1x

p⋅1 + . . .+ adx
p⋅d ≡ f(xp) (mod p).

3. We know that m ≡ mr (mod r) which means m = kr +mr. Now,

xr ≡ 1 (mod xr − 1)

⇒ xkr ≡ 1 (mod xr − 1)

⇒ xkr+mr = xkrxmr ≡ xmr (mod xr − 1)

⇒ xm ≡ xmr (mod ℎ(x)).

4. Let d = or(p) and let's suppose that xr−1
x−1 has an irreducible factor, ℎ(x)

in Fp of degree k. Now F[x]/ℎ(x) forms a �eld of size pk. Let's denote
g(x) the generator of the cyclic multiplicative subgroup (F[x]/ℎ(x))∗.
We have:

g(x)p ≡ g(xp) (mod p) [by fact 2 of the previous lemma]

g(x)p ≡ g(xp) (mod p, ℎ(x))

⇒ g(x)p
d ≡ g(xp

d
) (mod p, ℎ(x)) [by induction]

We are going to prove the induction.

Let g(x)pk ≡ g(xp
k
) (mod p, ℎ(x)) (k ≥ 1).

Then,
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g(x)p
k+1 ≡ g(x)p

kp (mod p, ℎ(x))

≡ (g(x)p
k
)p (mod p, ℎ(x))

≡ (g(xp
k
))p (mod p, ℎ(x)) [by the inductive hypothesis]

≡ g((xp)p
k
) (mod p, ℎ(x)) [by fact 2]

≡ g(xp
k+1

) (mod p, ℎ(x)).

It follows that

g(x)p
d ≡ g(x) (mod p, ℎ(x))

⇒ g(x)p
d−1 ≡ 1 (mod p, ℎ(x)).

Since the order of g(x) is (pk − 1), we have that (pk − 1) ∣ (pd − 1),
which implies k ∣ d.
On the other hand we also have that ℎ(x) ∣ (xr − 1) in Fp, and, then,
in the �eld Fp[x]/ℎ(x) we have xr ≡ 1 (mod p, ℎ(x)). It follows that
the order of x in the �eld must be r (since r is prime and x ∕≡ 1).
Consequently, r ∣ (pk−1), that is pk ≡ 1 (mod r), and, therefore, d ∣ k.
Then k = d = or(p), which implies the Lemma.

■

In addition to the above algebraic facts, we will need the following two
number theoretic facts.

Lemma 1.2.2. [18,19] Let P (n) denote the greatest prime divisor of n.
There exist constants c > 0 and n0 such that, for all x ≥ n0

∣∣∣
{
p ∣ p is prime, p ≤ x and P (p− 1) > x

2
3

}∣∣∣ ≥ c
x

log x

The above lemma is, in fact, known to hold for exponents up to 0.6683.

Lemma 1.2.3. [20] Let ¼(n) be the number of primes ≤ n. Then for n ≥ 1:

n

6 logn
≤ ¼(n) ≤ 8n

logn
.
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1.3 The AKS Algorithms
AKS ALGORITHM

Input: integer n > 1.
1. if (n is of the form ab, b > 1) output COMPOSITE;
2. r = 2
3. while (r < n){
4. if (gcd(n, r) ∕= 1) output COMPOSITE;
5. if (r is prime)
6. let q be the largest prime factor of r − 1;
7. if (q ≥ 4

√
r logn) and (n

r−1
q ∕≡ 1 mod(r))

8. break;
9. r Ã r + 1;
10. }
11. for a = 1 to 2

√
r logn

12. if ((x− a)n ∕≡ (xn − a) (mod xr − 1, n)) output COMPOSITE;
13. output PRIME;

Theorem 1.3.1. The algorithm above returns PRIME if and only if n is
prime.

We are going to prove this theorem through a sequence of lemmas. First
note that the algorithm has two loops. The �rst one, which is a while loop,
tries to �nd a prime r such that r− 1 has a large prime factor q ≥ 4

√
r log n

such that n
r−1
q ∕≡ 1 (mod r), which implies that q ∣ or(n). Let us �rst bound

the number of iterations of this loop.

Theorem 1.3.2. There exist positive constants c1 and c2 for which there is
a prime r in the interval [c1(logn)6, c2(logn)6] such that r − 1 has a prime
factor q ≥ 4

√
r logn and q ∣ or(n)

Proof. Let c and P (n) be as given in Lemma 1.2.2. Then the number of
prime r's (called special primes) between c1(log n)

6 and c2(logn)
6 such that

P (r − 1) > (c2(log n)
6)

2
3 > r

2
3 is, for a large enough n,

≥ # special primes in [1, . . . , c2(log n)
6] − # of primes in [1, . . . , c1(log n)

6].

Using lemma 1.2.2, with x = c2(logn)
6, and lemma 1.2.3, with n = c1(log n)

6,
we have that this number is
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≥ cc2(logn)
6

log(c2(log n)6)
− 8c1(logn)

6

log(c1(log n)6)

≥ cc2(log n)
6

(log c2 + 6 log logn)
− 8c1(log n)

6

(log c1 + 6 log logn)

≥ cc2(log n)
6

7 log logn
− 8c1(logn)

6

6 log log n

=
(logn)6

log log n

(
cc2
7

− 8c1
6

)

Let us choose the constants c1 ≥ 46 and c2 such that the quantity in braces,
called c3, is positive. Let x = c2(logn)

6. We are going to prove that among
these primes r there exists at least one such that q = P (r − 1) veri�es the
conditions q ≥ 4

√
r logn and q ∣ or(n).

Since q ≥ r
2
3 = r

1
2 r

1
6 ≥ √

r(46(log n)6)
1
6 = 4

√
r log n, the �rst condition is

satis�ed.
In order to verify the second condition, let's consider the following product:

∏
= (n− 1)(n− 2) ⋅ ⋅ ⋅ (nx

1
3 − 1)

We have x = c2(log n)
6, since x > q ≥ x

2
3 and r − 1 < x, the exponent

(r − 1)/q is in [1, x
1
3 ]. This product has x 1

3 factors less than nx
1
3 , each with

no more than x
1
3 (logn) prime factors; this implies that the product doesn't

have more than x
2
3 log n prime factors. In fact, º2(n) = #(log n). Since

x
2
3 logn <

c3(log n)
6

log log n
,

there exists at least a special prime r, that doesn't divide the product
∏
, for

which the second condition is veri�ed. In fact, or(n) ∣ (r − 1) ⇒ (r − 1) =
kor(n) and q ∣ (r − 1) implies that either q ∣ k or q ∣ or(n), but, from
n

(r−1)
q ∕≡ 1 (mod r), we have that q ∣ or(n). This is the searched r. ■

Once we know that the while loop halts, we are ready to show the
following:

Lemma 1.3.1. If n is prime, the algorithm returns PRIME.

Proof. The while loop cannot return COMPOSITE since gcd(n, r) = 1 for
all r < c2(log n)

6, where c2 is as in Lemma 1.2.2. By Lemma 1.2.1 (fact
2), supposing f(x) = (x − a) and p = n, we have that (x − a)n ≡ (xn − a)
(mod n) which implies that the for loop cannot return COMPOSITE (in
step 12, however, the condition should be veri�ed also modulo xr − 1, but
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actually this reduces the polynomials in (ℤ/nℤ)[x] and, therefore, it doesn't
change the validity of the congruence. Thus, the algorithm will identify n as
PRIME. ■

Now let's turn our attention to the case where n is composite.
If n is of the form ab with b > 1 or if in step 4 the algorithm �nds a factor of n,
then the output is COMPOSITE. Let's suppose that it doesn't happen and
the algorithm starts the for loop after �nding the prime r with the while
loop. Since n is composite let's call pi, with 1 ≤ i ≤ k, its prime factors.
Obviously nlcmi{or(pi)} ≡ 1 (mod r) which implies that or(n) ∣ lcmi{or(pi)}
and hence there exists a prime factor p of n such that, since q ∣ or(n), we
have q ∣ or(p), where q is the largest prime factor of r − 1.
The for loop uses the value of r obtained to do polynomial computations on
l = 2

√
r logn binomials: (x− a) for 1 ≤ a ≤ l. By Lemma 1.2.1 (fact 4) we

know that there exists a polynomial ℎ(x), irreducible factor in Fp of xr−1
x−1 ,

of degree d = or(p). Note that

(x− a)n ≡ (xn − a) (mod xr − 1, n)

implies that
(x− a)n ≡ (xn − a) (mod ℎ(x), p)

So the identity for each binomial holds in the �eld Fp[x]/(ℎ(x)). The set of
l binomials form a large cyclic group in this �eld:

Lemma 1.3.2. In the �eld Fp[x]/(ℎ(x)), the group generated by the l bino-
mials: (x− a),1 ≤ a ≤ l that is

G = {
∏

1≤a≤l

(x− a)®a ∣®a ≥ 0, ∀ 1 ≤ a ≤ l},

is cyclic and of size >
(
d
l

)l.
Proof. It is clear that G is a group and, since it is a subgroup of the cyclic
group (Fp[x]/(ℎ(x)))∗, it is also cyclic. Now consider the set

S = {
∏

1≤a≤l

(x− a)®a ∣
∑

1≤a≤l

®a ≤ d− 1, ®a ≥ 0,∀ 1 ≤ a ≤ l}

All the elements of S are distinct in Fp[x]/(ℎ(x)): as a matter of fact, the
while loop ensures that once it halts the �nal r is such that r > q >
4
√
r logn > l. Also step 4 of the algorithm checks gcd of r and n. If

any of the a's are congruent modulo p, then p < l < r and thus step 4
of the algorithm identi�es n as COMPOSITE. Thus none of the a's are
congruent modulo p. This implies that all elements of S are distinct in the
�eld Fp[x]/(ℎ(x)) since degree of any element of S is less than d which is the
degree of ℎ(x). The size of S is equal to the possibilities we have to choose
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the ®a. The sum of the ®a can be equal to 0, 1, . . . , d − 1; an integer k can
be obtained as sum of l non negative integers in

(
k+l−1
l−1

)
di�erent ways, so

we have #S =

d−1∑

k=0

(
k + l − 1

l − 1

)
=

(
d+ l − 1

l

)
=

(l + d− 1)(l + d− 2) ⋅ ⋅ ⋅ (d)
l!

>

(
d

l

)l

.

Since S is just a subset of G we get the result. ■

Since q ∣ or(p) = d and q > 4
√
r logn we have d ≥ 4

√
r logn, that is

d ≥ 2l or, equally, d
l ≥ 2. Therefore the size of G is greater than 2l which,

since l = 2
√
r log n, is equal to n2

√
r.

Let g(x) be a generator of G. Clearly, order of g(x) in Fp[x]/(ℎ(x)) is > n2
√
r.

We now de�ne a set related to g(x) which will play an important role in the
remaining arguments. Let

Ig(x) = {m ∣ g(x)m ≡ g(xm) (mod xr − 1, p)} .

Now we prove two important properties of Ig(x):

Lemma 1.3.3. The set Ig(x) is closed under multiplication.

Proof. Let m1,m2 ∈ Ig(x). So

g(x)m1 ≡ g(xm1) (mod xr − 1, p)

and
g(x)m2 ≡ g(xm2) (mod xr − 1, p).

Also we have, by substituting xm1 in place of x in the second congruence:

g(xm1)m2 ≡ g(xm1m2) (mod xm1r − 1, p)

⇒ g(xm1)m2 ≡ g(xm1m2) (mod xr − 1, p)

[since xr − 1 ∣ xm1r − 1]

From these, we get

g(x)m1m2 ≡ (g(x)m1)m2 (mod xr − 1, p)

≡ g(xm1)m2 (mod xr − 1, p)

≡ g(xm1m2) (mod xr − 1, p).

Hence m1m2 ∈ Ig(x). ■

The second property of Ig(x) that plays a crucial role in our proof is:

Lemma 1.3.4. Let the order of g(x) in Fp[x]/(ℎ(x)) be og and let m1,m2 ∈
Ig(x). Then m1 ≡ m2 (mod r) implies that m1 ≡ m2 (mod og).
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Proof. Since m1 ≡ m2 (mod r), we have m2 = kr +m1 for some k ≥ 0.
Since m2 ∈ Ig(x) we have:

g(x)m2 ≡ g(xm2) (mod xr − 1, p)

⇒ g(x)m2 ≡ g(xm2) (mod ℎ(x), p)

⇒ g(x)kr+m1 ≡ g(xkr+m1) (mod ℎ(x), p)

⇒ g(x)krg(x)m1 ≡ g(xm1) [by Lemma 1.2.1,fact 3]
⇒ g(x)krg(x)m1 ≡ g(x)m1 (mod ℎ(x), p).

Now g(x) ∕≡ 0 implies that g(x)m1 ∕≡ 0 and, hence, we can cancel g(x)m1

from both sides, leaving us with

g(x)kr ≡ 1 (mod ℎ(x), p).

Therefore,

kr ≡ 0 (mod og)

⇒ m2 ≡ m1 (mod og)

■

The above property implies that there are "few" (≤ r) numbers in Ig(x)
that are less than og.
Now we are ready to prove the most important property of our algorithm:

Lemma 1.3.5. If n is composite, the algorithm returns COMPOSITE.

Proof. Suppose that the algorithm returns PRIME instead. Thus, the for
loop ensures that for all 1 ≤ a ≤ 2

√
r log n we have,

(x− a)n ≡ (xn − a) (mod xr − 1, p) (1.3)

Notice that g(x) is just a product of powers of l binomials, (1 ≤ a ≤ l), all
of which satisfy equation (1.3). Then,

g(x)n ≡ g(xn) (mod xr − 1, p)

Therefore, n ∈ Ig(x). Also, p ∈ Ig(x), by Lemma 1.2.1 (fact 2), and, trivially,
1 ∈ Ig(x). We will now show that the set Ig(x) has more than r number that
are less than og, contradicting Lemma 1.3.4.
Consider the set

E =
{
nipj ∣ 0 ≤ i, j ≤ ⌊√r ⌋} .

By Lemma 1.3.3, E ⊆ Ig(x). Since ∣E∣ = (1 + [
√
r ])2 > r, there are two

elements ni1pj1 and ni2pj2 in E with i1 ∕= i2 or j1 ∕= j2 such that ni1pj1 ≡

15



ni2pj2 (mod r) by pigeon-hole principle. But then by Lemma 1.3.4 we have
ni1pj1 ≡ ni2pj2 (mod og). This implies that

ni1−i2 ≡ pj2−j1 (mod og)

Since og ≥ n2
√
r and n∣i1−i2∣, p∣j1−j2∣ < n

√
r, the above congruence turns

into an equality. Since p is prime, this equality implies that n = pk for
some k ≥ 1. However, in step 1 of the algorithm, composite numbers of
the form pk for k ≥ 2 are already detected. Therefore, n = p, but this is
a contradiction since, by hypothesis, n is composite. Thus, the for loop of
the algorithm returns COMPOSITE. ■

This completes the proof of the Theorem 1.3.1.

1.4 Time Complexity Analysis
It is straightforward to calculate the time complexity of the algorithm.

Theorem 1.4.1. The asymptotic time complexity of the algorithm is #̃(log12 n),
where #̃(f(n)) = #(f(n)poly(log f(n))).

Proof. � The �rst step of the algorithm veri�es whether n is of the form
ab for some b > 1 that means calculating if ⌊n 1

b ⌋b = n for some b

in the interval [2, logn]. This requires #(log n log3 n
logn ) = #(log3 n) bit

operations.

� As noted in Theorem 1.3.2, the while loop makes r = #(log6 n) itera-
tions. Let's now measure the work done in one iteration of the while
loop.
The �rst step calculates gcd(n, r) and takes poly(log log r) asymptotic
time if the gcd is calculated by using the Euclidean Algorithm. The
next two steps, determining whether r is prime and �nding q (the
greatest prime factor of r − 1), would take at most r

1
2 poly(log logn)

time in the brute-force implementation.
It takes at most poly(log logn), by using the repeated-squares method,
to verify if n

r−1
q ∕≡ 1 (mod r).

Thus, total asymptotic time taken by the while loop is: #̃(log6 n⋅r 1
2 ) =

#̃(log9 n)

� The for loop veri�es the condition (x− a)n ≡ xn − a (mod xr − 1, n)
for some a's. This is the crucial step of the algorithm, but, unluckily,
it is also the step that takes the most time. If repeated-squares is used,
then one iteration of this for loop takes #̃(logn ⋅ r log n). The number
of iterations of this loop is #(r 1

2 log n) = #(log4 n). Thus, the for loop
takes asymptotic time #̃(r

3
2 log3 n) = #̃(log12 n).
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Thus, the for loop requires the most time and, therefore, the asymptotic
time complexity of the AKS algorithm is #̃(log12 n). ■

1.5 Improving Time Complexity
Nevertheless, in practice, the algorithm is much faster. In fact, it is possible
to prove that many positive primes r are such that P (r − 1) > r

2
3 , but it is

believed that the number of primes r such that P (r − 1) = r−1
2 is in�nite.

De�nition 1.5.1. If both r and r−1
2 are primes, then r−1

2 is a Sophie Ger-
main Prime. We will call such r's co-Sophie German Primes.

The following conjecture gives the density of Sophie German Primes.
This conjecture has been veri�ed for r ≤ 1010.

Conjecture 1.5.1. (Sophie-German Prime Density) [21] The number
of co-Sophie German Primes < x is asymptotic to Dx

log2 x
where D is a constant

(estimated to be approximately 0.6601618 . . .).

If this conjecture is true, then the while loop exits a "suitable" r in
#(log2 n):

Lemma 1.5.1. Assuming the conjecture 1.5.1, there exists "suitable" r in
the range

[
64 log2 n, c2 log

2 n
]
for all n > n0, where n0 and c2 are positive

constants.

Proof. First of all note that if both r and q = r−1
2 are prime, then the only

possible orders of n modulo r are {1, 2, q, 2q = r − 1}. But the order of n
modulo r can be 1 or 2 for at most 2 logn primes r, since (n2−1) has at most
log(n2 − 1) prime factors. Let's leave aside these prime factors of (n2 − 1)
and consider the other co-Sophie German Primes r for which the order of n
modulo r is at least r−1

2 . We would now like that

r >
r − 1

2
≥ 4

√
r logn

⇒ r ≥ 8
√
r logn

⇒ √
r ≥ 8 logn

⇒ r ≥ 64 log2 n.

Hence we consider the range
[
64 log2 n, c2 log

2 n
]
and we show that choosing

c2 large enough, we �nd at least one desired r in this range. By the conjecture
1.5.1 there are Dc2 log

2 n
log2(64 log2 n)

co-Sophie German Primes less than c2 log
2 n. Out

of these, at most D64 log2 n
log2(64 log2 n)

are less than 64 log2 n (again by the conjecture).
From the remaining ones, there are at most 2 log n primes for which order of
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n modulo r is 1 or 2.
Thus we will choose c2 such that

Dc2 log
2 n

log2(c2 log
2 n)

>
D64 log2 n

log2(64 log2 n)
+ 2 log n

or, c2 log
2 n

(log logn)2
>

100 log2 n

(log logn)2
[for large enough n]

or, c2 > 100 [for large enough n].

■

This immediately leads us to a heuristic time complexity of #̃(r 1
2 (logn)2)

for the while loop and of #̃(r
3
2 (log n)3) for the for loop. Therefore, if the

conjecture 1.5.1 holds, the time complexity for our algorithm is #̃(log6 n).
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Chapter 2

AKS-Algorithm with Lenstra's
variant

The algorithm we are now presenting is a slight variant of the AKS algorithm,
made by Lenstra, whose time complexity is #(log21/2 n).

2.1 Preliminaries
In this section we will use the notation f(x) ≡ g(x) (mod ℎ(x), n) to repre-
sent the equation f(x) = g(x) in the ring (ℤ/nℤ)[x]/(ℎ(x)).
We will use log for base 2 logarithms, and ln for natural logarithms.
For r ∈ ℕ, '(r) is Euler's totient function giving the number of numbers less
than r that are relatively prime to r. It is easy to see that or(a) ∣ '(r) for
any a such that gcd(a, r) = 1.

2.2 The Idea
This algorithm is a primality test based on the following identity for prime
numbers which is a generalization of Fermat's Little Theorem:

Lemma 2.2.1. Let a ∈ ℤ,n ∈ ℕ, n ≥ 2 and gcd(a, n) = 1. Then n is prime
if and only if

(x+ a)n ≡ xn + a (mod n). (2.1)

Proof. See proof of Theorem 1.1.1. ■

As for the previous algorithm, the above identity suggests a simple test
for primality: given an input n, choose an a and test whether the congruence
(2.1) is satis�ed. However, this takes time Ω(n) because we need to evaluate
n coe�cients in the worst case.
Therefore, like in the case of the AKS algorithm, we can reduce the number
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of coe�cients evaluating both sides of the congruence modulo xr − 1 for a
chosen small r, which means test if the following equation is satis�ed:

(x+ a)n ≡ xn + a (mod xr − 1, n). (2.2)

We know that all primes n satisfy equation (2.2) for all values of a and r.
The problem now is that, just like the case of the previous section, some
composites n may also satisfy the equation for a few values of a and r (and
indeed they do). However we show that for appropriately chosen r if the
equation (2.2) is satis�ed for several a′s then n must be a prime power.
The number of a′s and the appropriate r are both bounded by a polynomial
in [log n] and therefore, we get a deterministic polynomial time algorithm
for testing primality.
We will need the following simple fact about the lcm of the �rst m numbers:

Lemma 2.2.2. Let LCM(m) denote the lcm of the �rst m numbers. For
m ≥ 7:

LCM(m) ≥ 2m

2.3 The algorithm and its correctness
LENSTRA'S VARIANT

Input: integer n > 1.
1. if (n = ab, for b > 1 and a ∈ ℕ) output COMPOSITE;
2. Find the smallest r such that or(n) > log2 n;
3. If 1 < gcd(a, n) < n for some a ≤ r
4. output COMPOSITE;
5. If n ≤ r
6. output PRIME;
7. For a = 1 to [

√
'(r) log n] do

8. if ((x+ a)n ∕≡ xn + a (mod xr − 1, n))
9. outputCOMPOSITE;
10. output PRIME.

Theorem 2.3.1. The algorithm above returns PRIME if and only if n is
prime.

In the reminder of the section, we establish this theorem through a se-
quence of lemmas.

Lemma 2.3.1. If n is prime, the algorithm returns PRIME.

Proof. If n is prime then steps 1 and 3 can never return COMPOSITE. By
Lemma 2.2.1, the for loop also cannot return COMPOSITE. Therefore the
algorithm will identify n as PRIME either in step 6 or in step 10. ■
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The converse of the above lemma requires a little more work. If the
algorithm returns PRIME in step 6 then n must be prime since, otherwise,
step 3 would have found a nontrivial factor of n and the algorithm would
have returned COMPOSITE in step 4. So we only need to consider the case
in which the algorithm returns PRIME in step 10; so let's assume this to be
the case.
The algorithm has two main steps (step 2 and the for loop): step 2 �nds an
appropriate r, and the for loop veri�es the equation (2.2) for a number of
a's. We are now going to bound the magnitude of the appropriate r.

Lemma 2.3.2. There exists an r ≤ max{3, [log5 n]} such that or(n) >
log2 n.

Proof. This is trivially true when n = 2 since r = 3 satis�es all conditions.
So let's assume that n > 2. Then [log5 n] > 10 and Lemma 2.2.2 applies.
Let r1, r2, . . . , rt be all numbers such that either ori(n) ≤ log2 n or ri ∣ n.
Each of these numbers must divide the product

n ⋅
[log2 n]∏

i=1

(ni − 1) < nlog4 n ≤ 2log
5 n

and so does their lcm. By Lemma 2.2.2, though, we know that the lcm of
the �rst [log5 n] numbers is greater than 2[log

5 n] and therefore there must
exist a number s ≤ [log5 n] such that s ∕∈ {r1, r2, . . . , rt}. If gcd(s, n) = 1
then os(n) > log2 n and we are done. If gcd(s, n) > 1, then since s does not
divide n and gcd(s, n) ∈ {r1, r2, . . . , rt},r = s

gcd(s,n) ∕∈ {r1, r2, . . . , rt} and so
or(n) > log2 n. ■

Since or(n) > 1, there must exist a prime divisor p of n such that or(p) >
1. We must have both p > r and gcd(n, r) = 1 since, otherwise, either step
4 or step 6 would decide the primality of n. This means p, n ∈ ℤ∗

r . Also
let l = [

√
'(r) log n]. The for loop veri�es l equations. Since the algorithm

does not output COMPOSITE in this step, we have:

(x+ a)n ≡ xn + a (mod xr − 1, n)

for every a, 0 ≤ a ≤ l. This implies:

(x+ a)n ≡ xn + a (mod xr − 1, p) (2.3)

for 0 ≤ a ≤ l. By Lemma 2.2.1, we have:

(x+ a)p ≡ xp + a (mod xr − 1, p) (2.4)

for 0 ≤ a ≤ l. Thus n behaves like prime p in the above equation.
Let's give a name to this property:
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De�nition 2.3.1. For polynomial f(x) and number m ∈ N , we say that m
is introspective for f(x) if

[f(x)]m ≡ f(xm) (mod xr − 1, p).

It is clear, form equations (2.3) and (2.4), that both n and p are intro-
spective for x+ a when 0 ≤ a ≤ l.
The following lemma shows that introspective numbers are closed under mul-
tiplication:

Lemma 2.3.3. If m and m′ are introspective numbers for f(x) then so is
m ⋅m′.

Proof. See proof of Lemma 1.3.3, with g(x) = f(x). ■

For a number m, the set of polynomials for which m is introspective is
also closed under multiplication:

Lemma 2.3.4. If m is introspective for f(x) and g(x) then it is also intro-
spective for f(x) ⋅ g(x).
Proof. We have:

[f(x) ⋅ g(x)]m ≡ [f(x)]m ⋅ [g(x)]m ≡ f(xm) ⋅ g(x)m (mod xr − 1, p).

■

The above two lemmas together imply that every number in the set

I = {ni ⋅ pj ∣ i, j ≥ 0}

is introspective for every polynomial in the set

P = {
l∏

a=1

(x+ a)ea ∣ ea ≥ 0}.

We now de�ne two groups based on these sets that will play a crucial role
in the proof.
The �rst group is the set of all residues of numbers in I modulo r. This is
a subgroup of ℤ∗

r since, as already observed, gcd(n, r) = gcd(p, r) = 1. Let
G be this group and let ∣G∣ = t. G is generated by n and p modulo r and,
since or(n) > 4 log2 n we have t > 4 log2 n.
To de�ne the second group, let Φr(x) = xr−1+xr−2+ . . .+1 = xr−1

x−1 the rth
cyclotomic polynomial over Fp. Polynomial Φr(x) divides xr − 1 and factors
into irreducible factors of degree or(p) (see proof of fact 4 of Lemma1.2.1).
Let ℎ(x) be one such irreducible factor. The second group, Γ, is the set of
all nonzero residues, modulo ℎ(x) and p, of polynomials in P . This group is
generated by elements x+1, x+2, . . . , x+l in the �nite �eld F = Fp[x]/(ℎ(x))
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and is a subgroup of the multiplicative group (Fp[x]/(ℎ(x)))∗.
The following lemma proves a lower bound on the size of the group Γ. It is
a slight improvement on a bound shown by Hendrik Lenstra Jr., which, in
turn, improved a bound shown in the AKS algorithm.

Lemma 2.3.5. ∣Γ∣ ≥ (
t+l−2
t−1

)

Proof. Since ℎ(x) is a factor of the cyclotomic polynomial Φr(x), x is a prim-
itive rth root of unity in F, that means xr ≡ 1 (mod ℎ(x), p).
We now show that any two distinct polynomials of degree less than t in
P will map to di�erent elements in Γ. Let f(x) and g(x) be two such
polynomials in P . Let f(x) = g(x) in the �eld F and let m ∈ I. We
have f(x)m = g(x)m in F. Since m is introspective for both f and g,
we have f(xm) ≡ g(xm) (mod xr − 1, p) and, since ℎ(x) ∣ xr − 1, we have
f(xm) = g(xm) in F. This implies that xm is a root of the polynomial
Q(y) = f(y) − g(y) for every m ∈ G. So there will be ∣G∣ = t distinct
roots of Q(y) in F. However, the degree of Q(y) is less than t by the choice
of f and g. This is a contradiction and, therefore, f(x) ∕= g(x) in F. More-
over, i ∕= j in Fp for 1 ≤ i ∕= j ≤ l, since l = [2

√
'(r) log n] < 2

√
r logn < r

and p > r. So the elements x + 1, x + 2, . . . , x + l are all distinct in F. It
's also possible that there exists a ≤ l such that x+ a = 0 in F (it happens
if ℎ(x) = x + a), and this x + a is not in the set Γ. So there are at least
l− 1 distinct polynomials of degree one in Γ. Therefore, there exist at least(
t+l−2
t−1

)
distinct polynomials of degree < t in Γ. ■

In case n is not a power of p, the size of Γ can also be upper bounded:

Lemma 2.3.6. If n is not a power of p, then ∣Γ∣ < 1
2n

2
√
t

Proof. Let's consider the following subset of I:

Î = {ni ⋅ pj ∣ 0 ≤ i, j ≤ [
√
t]}

If n is not a power of p, then the set Î has ([
√
t] + 1)2 > t distinct numbers.

Since ∣G∣ = t, at least two numbers in Î must be equal modulo r. Let m1

and m2 be such two number and let m1 > m2. So, by fact 3 of Lemma 1.2.1,
we have:

xm1 ≡ xm2 (mod xr − 1).

Let f(x) ∈ P . Then,

f(x)m1 ≡ f(xm1) (mod xr − 1, p)

≡ f(xm2) (mod xr − 1, p)

≡ f(x)m2 (mod xr − 1, p).

This implies that f(x)m1 = f(x)m2 in the �eld F. Therefore, f(x) ∈ Γ is
a root of the polynomial Q′(y) = ym1 − ym2 in the �eld F. As f(x) is an
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arbitrary element of Γ, we have that the polynomial Q′(y) has at least ∣Γ∣
distinct roots in F. The degree of Q′(y) is m1 ≤ (np)[

√
t] < 1

2n
2
√
t (since p ∣ n

and n ∕= p by hypothesis). This shows ∣Γ∣ < 1
2n

2
√
t. ■

We are now ready to prove the correctness of the algorithm:

Lemma 2.3.7. If the algorithm returns PRIME, then n is prime.

Proof. Suppose that the algorithm returns PRIME. Lemma 2.3.5 implies
that for t = ∣G∣ and l = [2

√
'(r) log n]:

∣Γ∣ ≥
(
t+ l − 2

t− 1

)

≥
(
l − 1 + [2

√
t logn]

[2
√
t logn]

)
(since t > 2

√
t logn)

≥
(
2 [2

√
t logn]− 1

[2
√
t logn]

)
(since l = [2

√
'(r) log n] ≥ [2

√
t logn])

≥ 2[2
√
t logn] (since 2

√
t logn ≥ 3)

≥ (2logn)2
√
t

2
=

1

2
n2

√
t.

By Lemma 2.3.6, ∣Γ∣ < 1
2n

2
√
t, if n is not a power of p. Therefore n = pk for

some k > 0. If k > 1, then the algorithm will return COMPOSITE in step
1. Therefore, n = p. ■

This completes the proof of Theorem 2.3.1.

2.4 Time Complexity Analysis
Theorem 2.4.1. The asymptotic time complexity of the algorithm is #̃(log21/2 n).

Proof. � The �rst step of the algorithm takes asymptotic time #̃(log3 n),
since the algorithm calculates [n 1

b ].

� In step 2, we �nd an r with or(n) > log2 n. This can be done by try-
ing out successive values of r and testing in nk ∕≡ 1 (mod r) for every
k ≤ log2 n. For a particular r, this will involve at most #(log2 n) mul-
tiplications modulo r and so will take time #̃(log2 n log r). By Lemma
2.3.2 we know that the algorithm only needs to try #(log5 n) di�erent
values of r, to �nd the required one. Thus the total time complexity
of step 2 is #̃(log7 n).

� The third step involves computing the gcd of r numbers. Each gcd
computation, with the Euclidean Algorithm, takes time #(log2 n) and,
therefore, the time complexity of this step is #(r log2 n) = #(log7 n).
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� The time complexity of step 5 is just #(logn).

� In the for loop (steps 7-8), we need to verify [
√

'(r) log n] congru-
ences. Each congruence requires #(log n) multiplications of degree r
polynomials with coe�cients of size #(log n). So each congruence can
be veri�ed in time #̃(r log2 n) steps. Thus the time complexity of the
for loop is #̃(r

√
'(r) log3 n) = #̃(r

3
2 log3 n) = #̃(log21/2 n).

The time of the for loop dominates all the others and is, therefore, the
time complexity of the algorithm. ■

2.5 Improving Time Complexity
The time complexity of the algorithm can be improved by improving the
estimate of r done in Lemma 2.3.2. Of course the best possible scenario
would be when r = #(log2 n) and, in that case, the time complexity of the
algorithm would be #̃(log6 n).
In fact, there are two conjectures that support the possibility of such an r.
The �rst conjecture is the following:

Conjecture 2.5.1. (Artin's Conjecture) Given any number n ∈ ℕ that
is not a perfect square, the number of primes r ≤ m for which or(n) = r− 1
is asymptotically A(n)⋅ m

lnm where A(n) is Artin's constant with A(n) > 0.35.

If Artin's Conjecture, which holds under the Generalized Riemann Hy-
pothesis, becomes e�ective for m = #(log2 n), it shows that there is an
r = #(log2 n) with the required properties.
The second one is the Sophie-German Prime Density Conjecture (Con-
jecture 1.5.1) that we have seen in the previous chapter.
If this conjecture holds, we can conclude that r = #(log2 n):
by Conjecture 1.5.1, there must exist at least log2 n Sophie-German Primes
between 8 log2 n and c log2 n(log logn)2 for a suitable constant c. For any
such prime q, we have that the only possible orders of n modulo q are
{1, 2, q−1

2 , q}. Any q for which oq(n) ≤ 2 must divide n2 − 1 which has
at most log(n2 − 1) prime factors, and so the number of such q is bounded
by #(logn). This implies that there must exist a prime r = #(log2 n) such
that or(n) > log2 n.
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Chapter 3

Berrizbeitia's Algorithms for a
large family of numbers

3.1 Introduction
We are now going to present algorithms that run faster than AKS algorithm
and are deterministic primality tests. But they work only for a large family
of integers, namely integers n ≡ 1 (mod 4) for which an integer a is given
such that Jacobi symbol

(
a
n

)
= −1, and the integers n ≡ −1 (mod 4) for

which an integer a is given such that
(
a
n

)
=

(
1−a
n

)
= 1. The algorithms we

present run in 2−min(k,[2 log logn])#̃(log n)6 time, where k = º2(n − 1) is the
exact power of 2 dividing n − 1 when n ≡ 1 (mod 4), and k = º2(n + 1)
in n ≡ −1 (mod 4). In particular, the running time of these algorithms
improves up to #̃(log n)4 if the value of k ≥ [2 log logn]. If n is a large
enough prime, then we show that the algorithm for the case n ≡ 1 (mod 4)
runs, in the worst case, that is when k = 2, at least 211 times faster than
the best possible running time for the AKS algorithm. This advantage in
running time increases with the value of k. For the case n ≡ −1 (mod 4) we
get the same result using 29 instead of 211.
In the case n ≡ 1 (mod 4), and assuming an integer a is given such that(
a
n

)
= −1, the two crucial points of our algorithm are:

1. It is enough to verify

(1 +mx)n ≡ 1 +mxn (mod n, x2
s − a)

where s = [2 log logn]. Since 22(log logn) = (log n)2, then we have
2s < (logn)2. Since we have seen, in the AKS algorithm, that r ∈
[64(logn)2, c(logn)6], then we have that 2s is at least 64 times smaller
than r, then each of these veri�cations for di�erent values of m are
faster than the veri�cation of the analogues step in the AKS algorithm.
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2. These veri�cations only have to be done for 2max(s−k,0) di�erent values
of m, where k = º2(n−1), since, as we will see, some of the conjugates
of the monomial 1 + mxn in the corresponding �nite �eld, are also
monomials satisfying the same congruence. So, each iteration of our
test produces 2min(s,k) di�erent monomials satisfying the congruence.

These two facts together allow us to give a more e�cient primality test for
those numbers and such that its e�ciency improves with the value of k up
to certain limit ([2 log logn]).
For number n ≡ −1 (mod 4) we will be able to obtain similar results.

3.2 Notation and Preliminaries
Throughout this chapter by logn we always mean log to the base 2 and p
denotes an odd prime number.

De�nition 3.2.1. Let a be an integer coprime with p. We de�ne The Leg-
endre Symbol

(
a
p

)
by the formula

(
a

p

)
=

{
+1 : if there is an integer x such that x2 ≡ a (mod p)
−1 : otherwise.

This symbol has the following properties:

1. If ab is coprime with p, then
(
ab
p

)
=

(
a
p

)(
b
p

)
.

2.
(
a
p

)
≡ a

p−1
2 (mod p).

The Legendre Symbol can be extended multiplicatively to the Jacobi Symbol
replacing p with an odd number m. That is, if m = p1 ⋅ ⋅ ⋅ pk and gcd(a,m) =

1, then
(
a
m

)
=

(
a
p1

)
⋅ ⋅ ⋅

(
a
pk

)
. The Jacobi Symbol also satis�es property (1)

of the Legendre Symbol above. Most important, it the Quadratic Reciprocity
Law which is:
Let m,n be odd and coprime numbers. Then,

1.
(−1

n

)
= (−1)

n−1
2

2.
(
2
n

)
= (−1)

n2−1
2

3.
(
m
n

)
=

(
n
m

)
(−1)

m−1
2

n−1
2 .

As a reference for the proof of the quadratic reciprocity law we give [2].
Let Fp denote the �nite �eld with p elements. We are now going to recall
some facts about the theory of �nite �eld that we shall employ.

27



Fact 1: Let K and E be �nite �elds containing Fp. Let q = ∣K∣ and
suppose K ⊆ E. Then, [E : Fp] = [E : K][K : Fp].

Now let K be a �nite extension of Fp with q = ∣K∣. Let K∗ be the multi-
plicative group and g a generator of K∗.

Lemma 3.2.1. For an element ® of K, the following are equivalent

1. x2 − ®l is irreducible over K for every odd integer l.

2. x2 − ® is irreducible over K.

3. ® = gt for some odd integer t.

4. ®
q−1
2 = −1.

Proof. (1) ⇒ (2) is trivial. Now let's prove (2) ⇒ (3). Since g is a generator,
then ® = gt for some t. Let's suppose that t is not odd, that is t = 2m. Then
x2−® = x2−g2m = (x−gm)(x+gm) is reducible. But it is a contradiction,
so we have that t is odd. (3) ⇒ (4) is obtained by noticing that g q−1

2 = −1

since g is a generator. Hencen ®
q−1
2 = (gt)

q−1
2 = (−1)t which is equal to −1

since t is odd. Finally, to show (4) ⇒ (1) let's suppose that x2 − ®l with
l odd integer is reducible. Then, there is ¯ ∈ K such that ¯2 = ®l. So
(®

q−1
2 )l = ¯q−1 = 1, but if ® q−1

2 = −1 and l is odd, then we should have
(®

q−1
2 )l = −1. Thus, we have a contradiction. ■

Lemma 3.2.2. Let q = ∣K∣. Assume q ≡ 1 (mod 4). If x2−a is irreducible
over K and µ is a root of x2 − a, then x2 − µ is irreducible over K(µ).

Proof. Note that ∣K(µ)∣ = q2. By Lemma 3.2.1 it is enough to prove that
µ

q2−1
2 = −1. Note that since q ≡ 1 (mod 4) then q+1

2 = t is odd. Also, since
x2 − a is irreducible over K, then a

q−1
2 = −1. Hence,

µ
q2−1

2 = ((µ2)
q+1
2 )

q−1
2 = (−1)t = −1

(we have used the fact that µ2 = a being µ a root of x2 − a). ■

Corollary 3.2.1. If ∣K∣ = q ≡ 1 (mod 4) and a ∈ K is such that a q−1
2 = −1,

then the polynomial x2s − a is irreducible over K for all s ≥ 1.

Proof. Let's proceed inductively on s.
If s = 1, then x2

s − a = x2 − a is irreducible over K by Lemma 3.2.1 (4
implies 2).
Now let's suppose that for all K such that ∣K∣ = q ≡ 1 (mod 4) and a ∈ K
such that x2 − a is irreducible, then x2

s−1 − a is irreducible.
Then we have [Fp[

√
a] : Fp] = 2. Moreover, by Lemma 3.2.2 we have that x2−
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√
a is irreducible over Fp[

√
a] which implies, using the inductive hypothesis,

that x2s−1 −√
a is irreducible over Fp[

√
a]. Thus, we have [Fp(x2

s−1 −√
a) :

Fp[
√
a]] = 2s−1. Let ½ be a root of x2s−1 −√

a, then Fp(x2
s−1 −√

a) is equal
to Fp[

√
a, ½] which, since ½2s−1

=
√
a, is equal to Fp[½]. So by Fact 1 we have

[Fp[½] : Fp] = 2s from which we can understand that deg f½ = 2s.
Moreover, we know that ½2

s
= a which means that ½ is a root of x2s − a.

Thus we must have f½ = x2
s−a that, by de�nition, is irreducible over K. ■

We can now establish the following proposition

Proposition 3.2.1. 1. If p ≡ 1 (mod 4) and
(
a
p

)
= −1, then x2

s − a is
irreducible over Fp.

2. If p ≡ 3 (mod 4) and
(
a
p

)
=

(
1−a
p

)
= −1, then x2

s − 2x2
s−1

+ a is
irreducible over Fp

Proof. The �rst assertion is a particular case of the Corollary 3.2.1 since(
a
p

)
≡ a

p−1
2 ≡ −1 (mod p). In order to prove (2) let µ1 = 1+

√
1− a. Since(

1−a
p

)
= −1 then Fp(µ) has degree over 2 over Fp. Hence, it has p2 = q

elements, so q ≡ 1 (mod 4). Moreover,

µ
p2−1

2
1 = (µp+1

1 )
p−1
2 = ((1 +

√
1− a)(1−√

1− a))
p−1
2 = a

p−1
2 = −1.

(We have used property 2 of the Legendre Symbol to state that µp+1
1 =

µ1(1
p + (1 − a)

p
2 ) = µ1(1 + (1 − a)

p−1
2

+ 1
2 ) = µ1(1 + (−1)(1 − a)

1
2 ) = µ1(1 −√

1− a).
Corollary 3.2.1 implies that x2s−1 − µ1 is irreducible over Fp(µ1). A root µ of
this polynomial satis�es, (x2s−1 − µ1)(x

2s−1 − µp1) = 0 which is equal to

x2
s − (µ1 + µp1)x

2s−1
+ µp+1

1 = x2
s − 2x2

s−1
+ a

which belongs to Fp[x]. So we have [Fp(µ) : Fp(µ1)] = 2s−1. Moreover we
know that [Fp(µ1) : Fp] = 2. So we can conclude, by Fact 1, that [Fp(µ) :

Fp] = 2s−1 ⋅ 2 = 2s, which means that the polynomial x2s − 2x2
s−1

+ a must
be irreducible over Fp. ■

3.3 Algorithm for the case n ≡ 1 (mod 4)

Let's now suppose n ≡ 1 (mod 4). Let k = º2(n − 1). So k ≥ 2. Let a be
an integer such that

(
a
n

)
= −1.
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Note for example that if n = ℎ2k + 1 and ℎ ∕≡ 0 (mod 3), then
(
3

n

)
=
(n
3

)
(−1)

n−1
2

⋅ 3−1
2 =

(n
3

)
(−1)

ℎ2k

2 =

=
(n
3

)
=

⎧
⎨
⎩
0 if n ≡ 0 (mod 3)
1 if n ≡ 1 (mod 3)
−1 if n ≡ 2 (mod 3)

but we have n = ℎ2k + 1 which implies that n ∕≡ 1 (mod 3). Thus, in this
case, we have that n is either a multiple of 3 or

(
3
n

)
= −1. It follows that

the algorithm that we are now going to see, is deterministic for numbers of
that form.
Finally let s = ⌈2 log logn⌉ = [2 log logn]+1. Note that (log n)2 < 2s < 2(logn)2.
Let's now see the Algorithm 1:

CASE 1: n ≡ 1 (mod 4)

Let k = º2(n− 1), s = ⌈2 log log n⌉.
Input: integers n, a such that n ≡ 1 (mod 4),

(
a
n

)
= −1.

1. Let A = a
n−1

2k . If A2k−1 ∕≡ −1 (mod n), output COMPOSITE;
2. If k > (1/2) log n, output PRIME ;
3. If n = de for some positive integers d and e with e > 1, output COMPOSITE ;
4. m = 1, S = {1}, S′ = {1};
5. While (∣S∣ < 2max(s−k,0)){
6. While (m2k (mod n) ∈ S′){
7. m Ã m+ 1;
8. }
9. If m > ∣S∣2k + 1, output COMPOSITE;
10. If gcd(m,n) > 1, output COMPOSITE;
11. If gcd(m2k − s′, n) > 1 for some s′∈S′, output COMPOSITE;
12. S Ã S

∪{m};
13. S′ Ã S′∪{m2k (mod n)}
14. }
15. If (1 +mx)n ∕≡ (1 +mxn) (mod n, x2

s − a), output COMPOSITE;
16. Output PRIME.

Where:
Steps (1) and (2) verify properties of the Legendre Symbol and Proth's The-
orem.
Step (3) veri�es that n is not a perfect power.
Steps (4)-(14) generate a set S of cardinality 2max(s−k,0)

Steps (15) and (16) verify the congruence for all m ∈ S.

The rest of this section is devoted to the proof of the following two results:
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Theorem 3.3.1. The algorithm above returns PRIME if and only if n is
prime (as long as n > 100).

Theorem 3.3.2. The running time of the algorithm is #̃(2−min(s,k)(logn)6).
Note that this is #̃((logn)6) if k = 2 and is #̃((logn)4) if k ≥ s.

Let's prove these theorems through the proofs of a series of lemmas.

Lemma 3.3.1. If n is prime (n > 100), the algorithm returns PRIME.

Proof. Step (1) of the algorithm cannot return COMPOSITE becauseA2k−1
=

a
n−1
2

⋅2k−1
= an−1 and, by property 2 of the Legendre Symbol, we know that

if n is prime, then −1 =
(
a
n

) ≡ a
n−1
2 (mod n), so A2k−1 ∕≡ 1 can never occur.

Step (3) cannot return COMPOSITE because n is not a perfect power.
Now we show that Steps (4)-(14) do not return COMPOSITE. First note
that if k ≥ s then the algorithm does not enter the while loop, hence these
steps cannot return COMPOSITE in this case. So we may assume k < s. In
this case, the algorithm generates the set S, that is, a sequence of integers mi

with i = 1, . . . , 2s−k and m1 = 1. Since n is prime, the number of solutions
of x2k = 1 in Fn is at most 2k. It follows that m2 ≤ 2k+1. Inductively, using
this same reasoning, we deduce that mt ≤ (t−1)2k+1. Note that t−1 is the
cardinality of the set S at that stage of the algorithm. It follows that under
the assumption that n is prime, m > ∣S∣2k + 1 cannot occur. Besides, since
the greatest mi is ms−k and ms−k ≤ (2s−k−1)2k+1 then it follows that each
mi ≤ (2s−k − 1)2k + 1 < 2s < 2(logn)2 < n (this last inequality certainly
occurs if n > 100). Hence, in the algorithm, gcd(m,n) > 1 cannot occur.
Finally, since m2k

i ∕≡ m2k
j (mod n) for all j < i (otherwise mi Ã mi+1), then

gcd(m2k − s′, n) > 1 cannot occur. This concludes the analysis for these
steps.
For Step (15), since (1+mx)n ≡ 1+mxn (mod n), then (1+mx)n ≡ 1+mxn

(mod n, x2
s − a), so this step does not return COMPOSITE. ■

We assume from now on that the output of the algorithm is PRIME.

Lemma 3.3.2. Suppose that the algorithm has passed Step (1), that is, it
has veri�ed A2k−1 ∕≡ −1 (mod n). Then we have

1. º2(d− 1) ≥ k for all divisors of n.

2. There is a prime divisor p of n for which º2(p−1) = k. For such prime
p,

(
a
p

)
= −1

Proof. 1. It is enough to prove it for prime divisors d of n. The hypothesis
implies A2k−1 ∕≡ −1 (mod d), whence ordd(A) = 2k which implies that
2k ∣ d− 1 and, therefore, º2(d− 1) ≥ k.
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2. If every prime divisor q of n were to satisfy º2(q − 1) > k, then so
would the product, that is n, but it cannot occur. Let p be a prime
divisor of n satisfying º2(p− 1) = k = º2(n− 1). Let t = p−1

2k
. Since k

is the exact power of 2 dividing p− 1, then t is odd. Hence,
(
A

p

)
≡ A

p−1
2 ≡ (At)2

k−1 ≡ (−1)t ≡ −1 (mod p)

where we have used the fact that, from Step (1) of the algorithm,
A2k−1 ≡ −1 (mod n) and p ∣ n. Since A = a

n−1

2k and n−1
2k

is odd, then
we get

(
a
p

)
= −1.

■

Let's now recall a theorem which is important in number theory

Theorem 3.3.3. [Proth] If p is a Proth number, namely a number of the
form k2n + 1 with k odd and k < 2n, then if for some integer a

a
p−1
2 ≡ −1 (mod p)

then p is prime.
Moreover, if p is a quadratic nonresidue modulo a then the converse is also
true, and the test is conclusive. Such an a may be found by iterating a over
small primes and computing the Jacobi Symbol until:

(
a
p

)
= −1.

Form this Theorem we can deduce the following Lemma:

Lemma 3.3.3. If the algorithm returns PRIME at Step (2), then n is prime

Now we assume that n has passed Step (2) (so k ≤ 1/2 logn). We let
p be a prime divisor of n satisfying º2(p − 1) = k = º2(n − 1). Since(
a
p

)
= −1, then by Proposition 3.2.1, the polynomial x2s − a is irreducible

over Fp. Let µ be a root of the polynomial in an algebraic closure C of Fp,
let K = Fp(µ) and K its multiplicative group. Every ® ∈ K ∗ is ® = f(µ)
for some unique non-zero polynomial f(x) ∈ Fp[x] of degree t < 2s. Let m
be an integer. We denote by rm the multiplicative homomorphism of K ∗

consisting in raising to the m-th power. We denote by ¾m the linear map
of K de�ned by ¾m(®) = f(µm), where f(x) is the unique polynomial just
mentioned.

Lemma 3.3.4. For an integer m the following are equivalent:

1. µm is a root of irrµ(x) = x2
s − a.

2. am = a (in Fp)

3. ¾m(ℎ(µ)) = ℎ(µm) for all ℎ(x) ∈ Fp[x].
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4. ¾m ∈ Gal(K/Fp).

Proof. Note that, since µ is a root of x2s − a, we have µ2
s
= a.

It is clear that (1) implies (2) since a = (µm)2
s
= am. To see that (2) implies

(3), let's consider ℎ(x) = f(x) + (x2
s − a)p(x) where deg f(x) < 2s. By

de�nition of ¾m we have:

¾m(ℎ(µ)) = ¾m(f(µ) + (µ2
s − a)p(x)) = ¾m(f(µ)) =

= f(µm) = ℎ(µm)− (am − a)p(µm) =

= ℎ(µm) :

To prove that (3) implies (4) note that, since ¾m is clearly a linear map over
Fp, we only have to prove that it is multiplicative, and this i trivial. Finally,
(4) implies (1) is also evident: just note that ¾m(µ) = µm is a conjugate of µ
over Fp, hence, it must be a root of irrµ(x). ■

In particular, since an ≡ a (mod n) and, therefore, modulo p, this lemma
implies that ¾n ∈ Gal(K/Fp), so it must be a power of the Frobenius auto-
morphism ¾i

p = ¾pi . The idea will be to show that, under certain conditions
that are met if the algorithm outputs prime in the last step, this implies
that n = pi. We still need quite a few observations before reaching that
conclusion.
Write n = pld. Then, from an = a and ap

l
= a it is easy to see that

a = ap
ld = (ap

l
)d = ad. So ¾d is also an automorphism. Moreover, so is

¾di¾pj for all i, j ≥ 0. More generally if m1 and m2 satisfy the equivalent
conditions of the previous lemma then so does m1m2 and it is also easy to
verify that ¾m1m2 = ¾m1 ∘¾m2 . Similarly, if m1 and m1m2 satisfy the condi-
tions, then so doesm2. On the other hand, ifm satis�es any of the equivalent
conditions of the previous lemma, then the product ¾mr−m is also a multi-
plicative homomorphism of K ∗ since it is a product of homomorphisms. It
follows that

Gm = ker(¾mr−m) = {f(µ) ∈ K ∗ ∣ f(µm) = f(µ)m}

is a subgroup of K∗, hence cyclic, generated by, say, gm(µ). We are now
going to analyse the properties of these cyclic groups. First note that if
® ∈ Gm then ®m = f(µ)m = f(µm) = ¾m(®)

Lemma 3.3.5. Suppose m1 and m2 satisfy any of the equivalent conditions
of Lemma 3.3.4 then,

1. For all i ≥ 0, Gpi = K∗.

2. Gm1 ∩Gm2 ⊆ Gm1m2.

3. ∣Gmi ∣ divides m2s
i − 1. In particular gcd(mi, ∣Gmi ∣) = 1.
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4. Gm1m2 ∩Gm1 ⊆ Gm2 .

Proof. 1. That G1 = K∗ is trivial. Let ® ∈ K∗, then ¾pi(®) = ¾i
p(®) =

®pi , since ¾p is the Frobenius automorphism.

2. Let ® ∈ Gm1 ∩ Gm2 . Then, ¾m1(®) = ®m1 and ¾m2(®) = ®m2 . It
follows that

¾m1m2(®) = ¾m1(¾m2(®)) = ¾m1(®
m2) = (¾m1(®))

m2 = (®m1)m2 = ®m1m2 .

This implies ® ∈ Gm1m2 .

3. Let ® be a generator of Gmi . By part 2 of this lemma ® ∈ Gm2s
i
.

On the other hand, since ¾mi is an automorphism of K then ¾2s
mi

is
the identity. So we have ®m2s

i = ¾m2s
i
(®) = ¾2s

mi
(®) = id(®) = ®. So

®m2s

i −1 = 1. Hence ∣Gmi ∣ = ord(®) divides m2s
i − 1. In particular

gcd(mi, ∣Gmi ∣) = 1.

4. Let ® ∈ Gm1m2 ∩Gm1 . Then

(®m2)m1 = ®m1m2 = ¾m2(¾m1(®)) = ¾m2(®
m1) = (¾m2(®))

m1 .

By part 3 of this lemma, we know that m1 is coprime with ∣Gm1 ∣,
which means that there is an integer t such that tm1 ≡ 1 (mod ∣Gm1 ∣).
Raising both sides of the equality to this t, we obtain (®m2)m1t =
(¾m2(®))

m1t. Note that ¾m2(®) has the same order than ®. Hence
®m2 = ¾m2(®).

■

Write n = pld where d is coprime with p. From the previous lemma we
can deduce the following result:

Corollary 3.3.1. For all i, j ≥ 1, Gn ⊆ GpiGdj

Proof. Gn = Gdpl = Gdpl ∩Gpl ⊆ Gd ⊆ Gdi = Gdi ∩Gpj ⊆ Gdipj . ■

Corollary 3.3.2. If m1 and m2 satisfy any of the equivalent conditions of
Lemma 3.3.4, then ¾m1 = ¾m2 implies ∣Gm1 ∩Gm2 ∣ divides m1 −m2.

Proof. Let ® ∈ Gm1 ∩ Gm2 . Then ®m1 = ¾m1(®) = ¾m2(®) = ®m2 , thus
®m1−m2 = 1. Since Gm1 ∩ Gm2 is a cyclic group, then ∣Gm1 ∩ Gm2 ∣ must
divide m1 −m2. ■

The lemma we are going to see, is very important since it shows how
to obtain 2min(k,s) monomials in Gn from one iteration in Step (15) of the
algorithm. This is the reason why the complexity of the algorithm improves
as k grows.
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Lemma 3.3.6. 1. Suppose k < s. If for some integerm, we have (1 +mµ) ∈ Gn,
then (1 +mAiµ) ∈ Gn for i = 1, 2, . . . , 2k.

2. Suppose k ≥ s. Let B = A2k−s. If (1 + µ) ∈ Gn, then (1 + Biµ) ∈ Gn

for i = 1, 2, . . . , 2s.
Proof. 1. Since Gn is a group, then (1 +mµ) ∈ Gn implies (1 +mµ)p

i
=

(1+mµp
i
) ∈n. The elements µpi are the Galois conjugates of µ in Fp[µ].

Since µ2
s
= A, then the conjugates are of the form µ³, where ³2

s
= 1.

Since k ≤ s, every Ai satis�es (Ai)2
s
= 1. So the Ai are among the

possible values for ³. In particular, (1 +mAiµ) ∈ Gn.

2. Same as in (1) by noting that B is a primitive 2s-th root of 1 in Fp.
■

Lemma 3.3.7. If the algorithm outputs prime at Step (16), then ∣Gn∣ ≥ 22
s.

Proof. Assume �rst that k < s.
Again we denote by mi, with i = 1, . . . 2s−k, the sequence of elements of the
set S generated by the algorithm in Steps (4)-(14). We claim that miA

j for
i = 1, 2, . . . , 2s−k and j = 1, 2, . . . , 2k are all di�erent and non-zero in Fp.
To see this, recall that A has order 2k in Fp. Hence, Aj is non-zero in Fp
for all j and they are all di�erent for j = 1, . . . , 2k. The algorithm veri�es
gcd(mi, n) = 1 which implies that all the miA

j are non-zero in Fp. Let's
suppose miA

j = mi′A
j′ in Fp. Raising to the 2k-th power, we get m2k

i = m2k

i′

in Fp, but since in Step (11) the algorithm veri�ed that m2k
i −m2k

i′ is coprime
with n, then we must have i = i′ whence we deduce that j = j′. So we have
2s di�erent non-zero elements of Fp. Denote them by tr for r = 1, . . . , 2s. In
Step (15) the algorithm veri�es that (1+miµ) ∈ Gn for each i = 1, . . . , 2s−k.
It follows from the previous lemma that (1 + trµ) ∈ Gn for r = 1, 2 . . . , 2s.
If, on the other hand, k > s, then the algorithm veri�es that (1 + µ) ∈ Gn,
and, again, using the previous lemma, we get (1+Brµ) ∈ Gn for r = 1, . . . , 2s.
So in both cases we obtain 2s di�erent monomials in Gn. To simplify we will
always denote them as (1+ trµ) ∈ Gn for r = 1, . . . , 2s. Since Gn is a group,
it contains the set T de�ned as

T =

{
2s∏

r=1

(1 + trµ)
²r ∣ ²r ∈ ℤ+,

∑
²r < 2s

}
.

Every element of T is of the form f(µ) for some f(x) of degree less than 2s.
Since all tr are di�erent in Fp then the polynomials f(x), corresponding to
the di�erent choices of ²i, are di�erent in Fp[x]. Since the degrees are less
than 2s, then the corresponding elements of S are di�erent.
T properly contains the set

T1 =

{
2s∏

r=1

(1 + trµ)
²r ∣ ²r ∈ {0, 1},

∑
²r < 2s

}
.
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In this set, we have 22
s choices for ²r, but one of these, the one such that

²r = 1 for all r, cannot be considered because
∑

²r must be less than 2s. So
the cardinality of T1 is 22

s−1. Hence, T has at least 22s elements. Therefore,
∣Gn∣ ≥ 22

s . ■

We are now ready to complete the proof of Theorem 3.3.1.

Proof. of Theorem 3.3.1
It remains to prove that if the algorithm outputs prime in the last step, then
n is prime. Assume n has more than one prime divisor. Hence, n = pld where
gcd(d, p) = 1 and d > 1. We know that ¾pi¾dj ∈ Gal(K/Fp) for all i, j ≥ 0.
Since Gal(K/Fp) has order 2s, it follows from the pigeon hole principle that
there exist two di�erent pairs (i1, j1) and (i2, j2) with 0 ≤ i1, j1, i2, j2 ≤ [

√
2s]

such that ¾pi1dj1 = ¾pi2dj2 . It follows from Corollary 3.3.2 that

∣Gpi1dj1 ∩Gpi2dj2 ∣ divides pi1dj1 − pi2dj2

Hence, from Corollary 3.3.1 we obtain

∣Gn∣ divides pi1dj1 − pi2dj2 .

Note that pi1dj1 − pi2dj2 < n[
√
2s] ≤ n

√
2s . Also note that from s =

⌈2 log logn⌉ we can easily deduce that 2s > (logn)2 that is
√
2s > log n

which means 2
√
2s > n from which we can conclude that 22

s
> n

√
2s .

Moreover we know, from Lemma 3.3.7, that ∣Gn∣ > n
√
2s . So we obtain

pi1dj1 = pi2dj2 . But this is not possible because p and d are coprime and
(i1, j1) ∕= (i2, j2). Hence d = 1. So, n = pl. Since n has passed Step (13) of
the algorithm (n cannot be a non trivial perfect power), we conclude that
l = 1 which means n = p. ■

Analysis of Complexity:

Proof. of Theorem 3.3.2

Step (1) involves the calculation of an−1
2 (mod n) which takes #̃((logn)2)

time using the fast Fourier tranform.

Step (3), as in the case of the AKS algorithm with Lenstra's variant, takes
#̃((logn)3).

Steps (4)-(14): If k ≥ s the algorithm does not enter the while loop, so
in this case this step has no cost.
When k < s, every integer m that the algorithms deals with, is less than
2s. For each of these integers m, it computes m2k (mod n). It follows that
the algorithm calculates m2k for at most 2s di�erent values of m (in practice
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much less than this). This involves k2s ≤ s2s modular multiplications mod-
ulo n. Using the fast Fourier transform, these computations take at most
#̃((logn)3). On the other hand, the algorithm in these Steps computes less
than 22

(s−k)
gcd's. This takes 22(s−k)

#̃((logn)) = 2−2k#̃((logn)5) time.

Step (15): This is the part of the computation that will determine the com-
plexity of the algorithm. It involves 2max(s−k,0) iterations, where by iteration
we mean the computation of (1+mix)

nmod(n, x2
s −a). Using fast exponen-

tiation, each iteration takes at most 2 logn multiplications in the �eld K.
Using the fast Fourier transform, each of of these involves #(2ss) modular
multiplications, and, likewise, each of these takes #̃(logn) time. We must
add that the reduction modulo x2

s − a is necessary after multiplications of
elements in K, but these are done with 2s modular multiplications, which
does not a�ect complexity. So each iteration takes #̃((logn)4). Hence this
step takes

2max(s−k,0)#̃((logn)4) = 2−min(s,k)#̃((logn)6),

and so does the algorithm. ■

3.4 Algorithm for the case n ≡ −1 (mod 4)

Throughout this section we assume that n ≡ −1 (mod 4), and k = º2(n+1).
In particular k ≥ 2. We assume that an integer a is given such that(
a
n

)
=

(
1−a
n

)
= −1. . Note for example that, just like we have seen in the pre-

vious section, if n = ℎ2k−1 and ℎ ∕≡ 0 (mod 3) then n is either a multiple of
3 or

(
3
n

)
=

(
1−3
n = −1

)
. It follows that the algorithm we are now going to see

is deterministic for numbers of that form. Further we let t = ⌈log log n⌉+1,
noting that t = s+ 1. Hence we have 2(logn)2 < 2t < 4(logn)2. Let's now
see the proposed Algorithm 2:
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CASE 2: n ≡ −1 (mod 4)

Let k = º2(n+ 1), t = ⌈2 log logn⌉+ 1.
Input: integers n, a such that n ≡ −1 (mod 4),

(
a
n

)
=

(
1−a
n

)
= −1.

1. If a
n−1
2 ∕≡ −1 (mod n), output COMPOSITE;

2. If (1 +
√
1− a)n ∕≡ 1−√

1− a (mod n), output COMPOSITE ;
3. If k > (1/2) log n, outputPRIME;
4. If n = de for some positive integers d and e with e > 1, output COMPOSITE ;
5. For m = 1 to 2max(t−k,0){
6. If gcd(m,n) > 1, output COMPOSITE;
7. }
8. For m = 1 to 2max(t−k−1,0){
9. If (1 +mx)n ∕≡ (1 +mxn) (mod n, x2

t+1 − 2x2
t
+ a), output COMPOSITE;

10. }
11. Output PRIME.

Where:
Steps (1), (2) and (3) verify properties of the Legendre Symbol, the Frobe-
nius automorphism and Lucas-type Theorem.
Step (4) veri�es that n is not a perfect power.
Steps (5), (6) and (7) �nd a sequence of mi's.
Steps (8)-(11) �nd elements in Gn.

Let's now see two theorems that are analogous to Theorem 3.3.1 and Theo-
rem 3.3.2 respectively:

Theorem 3.4.1. The algorithm above returns prime if and only if n is prime
(assuming n > 25).

Theorem 3.4.2. The running time of the algorithm is #̃(2−min(s,k)(logn)6).

In the rest of this section we will prove a series of lemmas that will let
us prove these theorems.

Lemma 3.4.1. If n is prime, the algorithm returns PRIME.

Proof. Steps (1)-(3) cannot output COMPOSITE: in the �rst place because
of the properties of the Legendre Symbol, and secondly because of the prop-
erties of the Frobenius automorphism. The rest proceeds as in the case n ≡ 1
(mod 4) except that in the for loop of Steps (5)-(7) we only need n > 25 to
make sure that 2−max(t−k,0) < n. ■

We now assume that the output of the algorithm is PRIME.

Lemma 3.4.2. Let n, a, 1 − a as in the input of the algorithm, and k =

º2(n+1). Suppose an−1
2 ≡ −1 (mod n) and that (1+

√
1− a)n ≡ 1−√

1− a
(mod n). Then,
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1. Every prime divisor q of n satis�es either

a q ≡ 1 (mod 2k+1) or
b q ≡ −1 (mod 2k)

It satis�es a if and only if
(
1−a
q

)
=

(
a
q

)
= 1.

It satis�es b if and only if
(
1−a
q

)
=

(
a
q

)
= −1.

2. There exists a prime divisor p of n such that º2(p+1) = º2(n+1) = k.
For such p,

(
1−a
p

)
=

(
a
p

)
= −1.

Proof. 1. Let q be a prime divisor of n. We �rst note that
(
a
q

)
= 1 if

and only if q ≡ 1 (mod 4). To show this, let's recall that, since n ≡
−1 (mod 4), then n−1

2 is odd. Hence,
(
a
q

)
=

(
a
q

)n−1
2

=

(
a
n−1
2

q

)
=

(
−1
q

)
= (−1)

q−1
2 . where we have used property 1 of Jacobi Symbol for

the last equality. We now claim that (1+
√
1− a)

n2−1
2 ≡ −1 (mod 4).

This is true since

(1 +
√
1− a)

n2−1
2 = ((1 +

√
1− a)n+1)

n−1
2 = ((1−√

1− a)(1 +
√
1− a))

n−1
2 =

= a
n−1
2 ≡ −1 (mod n).

Now suppose
(
1−a
q

)
= 1. Then, Fq(

√
1− a) = Fq. Since (1 +

√
1− a)

n2−1
2 ≡ −1 (mod n) then (1 +

√
1− a)

n2−1
2 = −1 in Fq. But

º2(n+1) = k implies º2(n2−1) = k+1. So the element (1+
√
1− a)

n2+1

2k+1

has order 2k+1 in Fq, which means 2k+1 ∣ q − 1 and, therefore, q ≡ 1

(mod 2k+1). In particular,
(
a
q

)
= 1 according to what we have just

noted. Suppose now that
(
1−a
q

)
= −1. Then F = Fq(

√
1− a) has q2

elements. Again, (1 +
√
1− a)

n2−1
2 = −1 in F, so

(1+
√
1− a)

n2−1
2 = ((1+

√
1− a)n−1)

n+1
2 =

(
(1 +

√
1− a)n

(1 +
√
1− a)

)n+1
2

=

(
1−√

1− a

1 +
√
1− a

)n+1
2

= −1.

Note that in Fq(
√
1− a), the element ¯ = (1−

√
1−a

1+
√
1−a

) = (1+
√
1− a)q−1

lies in the unique subgroup of F∗ of order q + 1. ¯
n+1

2k has order 2k,
so 2k ∣ q + 1 which means that q ≡ −1 (mod 2k). Also,

(
a
q

)
= −1 as

noted.
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2. Since
(
1−a
n

)
= −1 then there must be a prime divisor of n such that(

1−a
q

)
= −1 So, as we have just seen, we have q ≡ −1 (mod 2k). If

all primes satisfying
(
1−a
q

)
= −1 satisfy q ≡ −1 (mod 2k+1), then by

part 1, n would satisfy n ≡ ±1 (mod 2k+1). But, º2(n+1) = k implies
that this is not possible. So there is p ∣ n such that º2(p+ 1) = k. For
such p, which is congruent to −1 (mod 4), we must have

(
a
p

)
= −1

Hence, we also must have
(
1−a
p

)
= −1 since we have just proved that(

1−a
p

)
= 1 implies

(
1−a
n

)
= 1.

■

Corollary 3.4.1. If the algorithm outputs PRIME in Step (3), then n is
prime.
Proof. It is deduced easily from the previous Lemma by noting that k >
1/2 log n is the same as k > logn1/2 which implies that 2k > 2logn

1/2
=

n1/2 =
√
n. So if n is composite, then there exists a prime divisor q such

that q <
√
n < 2k, but this implies that q can't be congruent to 1 modulo

2k+1 and not even to−1modulo 2k which is a contradiction with the previous
Lemma. Therefore, n is prime. ■

Assume now that n has passed Steps (1)-(3) of the algorithm, and let p
the prime divisor of n for which º2(p+ 1) = k. We let F = Fp(

√
1− a) and

K = Fp(µ) where µ is a root of the polynomials x2
t+1 − 2x2

t
+ a = irrµ(x)

which is irreducible by Proposition 3.2.1. We also note that K = F(µ)
and µ is a root of x2t(1 +

√
1− a) or x2

t+1 − (1 − √
1− a), which are both

irreducible over F. For simplicity we will assume µ is a root of the �rst of
these two polynomials. The roots of the other one are also roots of irrµ(x).
Let ¾m de�ned, as in the case n ≡ 1 (mod 4), by ¾m(f(µ)) = f(µm) when
deg f(x) < 2s.
Now we need the following Lemma:
Lemma 3.4.3. For an integer m the following are equivalent:

1. µm is a root of irrµ(x) = x2
t+1 − 2x2

t
+ a.

2. (1 +
√
1− a)m = 1±√

1− a in F.

3. ¾m(ℎ(µ)) = ℎ(µm) for all ℎ(x) ∈ Fp[x].
4. ¾m ∈ Gal(K/Fp).
The proof of this lemma is quite similar to that given for Lemma 3.3.4.

When ¾m is an automorphism we let

Gm = {® ∈ K : ¾m(®) = ®m}.
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Then Gm is a cyclic subgroup ofK∗. Now write n = pld, where gcd(p, d) = 1.
As in the case n ≡ 1 (mod 4), from the above lemma we can deduce that
¾pidj ∈ Gal(K/Fp) for all i, j ≥ 0. Moreover we carry over Lemma 3.3.5,
Corollary 3.3.1 and Corollary 3.3.2 in this new environment.
Let

® = (1 +
√
1− a)

n2−1

2k+1 .

We now have the following lemma which is analogous to Lemma 3.3.6.

Lemma 3.4.4. Let ¯ = ®2max(k+1−t,0) . If (1 +mµ) ∈ Gn for some m ∕= 0 in
Fp, then (1 +m¯iµ) ∈ Gn for i = 1, . . . , 2min(k+1,t).

Proof. . Proceed as in the proof of Lemma 3.3.6 noting that the conjugates
of µ over the �eld F are of the form µ³ where ³2

t
= 1. The powers of ¯ are

among the latter. ■

Now, like in the previous case, we are going to estimate the size of Gn

using the following lemma:

Lemma 3.4.5. If the algorithm outputs PRIME in the last step, then ∣Gn∣ >
22

t .

Proof. In Steps (5)-(7) the algorithm veri�es that every integer less than
2max(t−k,0) is coprime with n, hence they are all di�erent and non-zero in Fp.
Let °ij = mi¯

j for i = 1, 2, . . . , 2max(t−k−1,0) and j = 1, 2, . . . , 2min(k+1,t).
There are 2t °i,j 's. We claim that they are all di�erent and non-zero in F.
Suppose mi¯

j = mi′¯
j′ . Then mi

mi′
= ¯j′−j . Note that all the powers of

¯ are in F − Fp except for ¯2min(k+1,t) and ¯2min(k,t−1) . which belong to Fp.
Then we get either ¯j = ¯j′ , in which case mi = mi′ leading to i = i′, or,
¯j−j′ = −1, in which case mi = −mi′ . So we have mi +mi′ = 0 in Fp. But
this is impossible since mi +mi′ and the algorithm veri�ed that these were
coprime with n. Thus, we get our claim.
Next, since the algorithm veri�ed in Step (9) that (1 +miµ) ∈ Gn for each
i, it follows from the previous lemma that each of the (1 + °ijµ) ∈ Gn.
Therefore Gn contains 2t di�erent monomials over F, and, as in the case
n ≡ 1 (mod 4), we get the result. ■

We are now ready for the proofs of the main theorems of this section:

Proof. of Theorem 3.4.1
Again this proceeds along the lines of the proof of Theorem 3.3.1. The only
di�erence is that now Gal(K/Fp) has order 2t+1 and Gn has at least 22

t

elements. The fact that 22
t
> n

√
2t+1 is easily derived from 22

s
> n

√
2s ,

keeping in mind that t = s+ 1. ■

Analysis of Complexity:
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Proof. of Theorem 3.4.2
The proof is similar to the proof of Theorem 3.3.2. We note that the cost of
Steps (5)-(7) is #̃((logn)3), which is less than the cost of Steps (4)-(14) of
the algorithm in the previous case, because the number of gcd's computed is
much less in this one. However, this fact doesn't lead to an improvement of
time complexity since the steps which determining it are Steps (8)-(11). In
the following Remark we compare the speed of this algorithm with the one
we have seen for case n ≡ 1 (mod 4), obtaining, in this way, the proof. ■

Remark 1: We note that the same polynomial used in this algorithm
could have been used in the algorithm for number n ≡ 1 (mod 4), with no
additional hypothesis on a. To see this, notice that if

(
a
n

)
= −1 and

(
1−a
n

)
=

1, then
(
a−1

n

)
= −1 and
(
1− a−1

n

)
=

(−a−1(1− a)

n

)
=

(
a−1

n

)
= −1.

So the pair a, 1− a is achieved at most at the cost of computing a−1. Hence,
by Proposition 3.2.1 the polynomial x2t+1 − 2x2

t − a is irreducible. However
the algorithm we presented for numbers n ≡ 1 (mod 4) runs about four times
faster than the one we presented for n ≡ −1 (mod 4). This happens because,
even if the number of operations performed by both algorithms is the same,
the degree of the polynomial used in the second case, is four times the degree
of the polynomial used in the �rst one.

3.5 Weakly Conditioned and Unconditioned Tests
3.5.1 Case 1: n ≡ 1 (mod 4).

Let n ≡ 1 (mod 4). Let k = º2(n − 1), obviously k ≥ 2. This time we
assume integers a and u are such that 1 ≤ u ≤ k and a

n−1
2u ≡ −1 (mod n).

Note that if u = 1 then we obtain the case we have already analysed. At the
other hand, if u = k we can conclude that such an a always exists: a = −1.
Hence we will refer to this latter case as the unconditioned one. We are going
to see a deterministic primality test for all such numbers. The complexity
of this test will depend also on u. The optimal performance occurs when
u = 1; on the contrary u = k is the worst case we can obtain.
First of all, let's note that if n = ℎ2k + 1 is prime, and ℎ ∕≡ 0 (mod 5) then
either 5

n−1
2 ≡ −1 (mod n) or 5

n−1
4 ≡ −1 (mod n) or n is a multiple of 5.

This fact has been used to produce a deterministic primality test for numbers
of that form provided k > logn (see [4]). Combining this observation with
the one we have done in the Section where we dealt with this case, we can
deduce that every number of the form n = ℎ2k +1, ℎ ∕≡ 0 (mod 15) is either
a multiple of 3 or 5, or can be tested using a = 3 or a = 5 and u = 1 or
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u = 2. Again we let s = ⌈2 log log n⌉.
We now present the algorithm in the form of a theorem. We don't give a
proof of this theorem since it can be deduced as in the section where we
dealt with this case: we will only enumerate some facts.

Theorem 3.5.1. Let n ≡ 1 (mod 4). Let k = º2(n−1). Let s = ⌈2 log log n⌉.
Let a and u be integers, 1 ≤ u ≤ k and such that an−1

2u ≡ −1 (mod n). Let
S be a set of integers, ∣S∣ = 2max(s−k+2(u−1),0) such that for any pair m,
m′ of di�erent elements of S, gcd(m2k+1−u −m′2k+1−u

, n) = 1 and such that
every element of S is coprime with m. Suppose also that for every m ∈ S
we have (1 +mx)n ≡ (1 +mxn) (mod n, x2

s+2(u−1) − a) and that n in not a
non trivial perfect power. Then n is prime.

Proof. Sketch Let r = s+ u− 1. Let f(x) = x2
s+2(u−1) − a = x2

r+u−1 − a.

1. The equation a
n−1
2 ≡ −1 (mod n) implies that every prime divisor q

of n satis�es º2(q − 1) ≥ k − u+ 1.

2. There is a prime p dividing n such that º2(p− 1) ≤ k.
Let p be such a prime and µ a root of f(x) in an algebraic closure of
Fp.

3. 2r ≤ [K : Fp] ≤ 2r+u−1.

4. ¾n ∈ Gal(K/Fp). Gn is a cyclic subgroup of K∗.
Suppose n = pld

5. ¾d ∈ Gal(K/Fp). Gn ⊆ Gpidj for all i, j ≥ 0.

6. There are integers i1, i2, j1, j2 such that 0 ≤ i1, i2, j1, j2 ≤
√
2n+u−1,

(i1, j1) ∕= (i2, j2) and such that ¾pi1dj1 = ¾pi2dj2 .

7. ∣Gn∣ divides pi1dj1 − pi2dj2 .

8. From the fact 22
s
> n

√
2s it is easily deduced that for all v ≥ 0,

2s+v > n
√
2s+2v . In particular, 22r > n

√
2r+u−1 .

9. From the fact (1+mµ) ∈ Gn for all m ∈ S we deduce, just like we have
done in the section where we dealt with this case, that Gn contains 2r
di�erent monomials over Fp. Hence, ∣Gn∣ ≥ 22

r .

10. From items 6, 7, 8 and 9 we can deduce that d = 1 so n = pl.

11. Since n is not a non trivial perfect power then we must have n = p.

■

Corollary 3.5.1. If n, k, a, u are as in the previous theorem then the pri-
mality of n can be determined in 22(u−1)2max(s+2(u−1)−k,0)#̃((logn)4) time.
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Proof. As in the analysis of complexity of the previous sections. ■

To be more precise about this result Au the algorithm associated to The-
orem 3.5.1 and C(Au) its complexity. Corollary 3.5.1 implies that C(Au) ≈
24(u−1)C(A1) if k ≤ 2s and C(Au) ≈ 22(u−1)C(A1) if k ≥ 2s+2(u−1).
Even more precise, C(Au) ≈ 24(u−1)2−min(max(k−s,0),2(u−1))C(A1).
Note also that in the unconditioned case (u = k) the complexity is 24(k−1)#̃((logn)6)
which is polynomial time only for values of k not too large.

3.5.2 Case 2: n ≡ −1 (mod 4).

First of all let's note the following:

Remark 2: If b, c are given integers such that
(
b2+c2

n

)
= −1 then a =

(bc−1)2 + 1 satis�es
(
a
n

)
=

(
1−a
n

)
= −1. This is easy to verify noting that(−1

n

)
= −1 since n ≡ −1 (mod 4). Alternatively, we could replace the poly-

nomial in the algorithm by the polynomial x2t+1 − 2bx2
t
+ (b2 + c2), which is

also irreducible in Fp under the assumption (b2 + c2)
n−1
2 ≡ −1 (mod n) and

(x+ iy)n ≡ (x− iy) (mod n).

Like we have seen for the case n ≡ 1 (mod 4), similarly, when n ≡ −1
(mod 4) we have the following theorem, that we state without proof for the
same reason.

Theorem 3.5.2. Let n ≡ −1 (mod 4) and let k = º2(n + 1). Also let
s = ⌈2 log logn⌉ and t = s + 1. Let ® ∈ ℤ[i] and u a positive integer,
1 ≤ u ≤ k + 1 and such that ®

n2−1
2u ≡ −1 (mod n). Suppose that every

positive integer less or equal than 2max(s−k+2(u−1),0)+1 is coprime with n.
Suppose also that for every m ≤ 2max(s−k+2(u−1),0) we have (1 + mx)n ≡
(1+mxn) (mod n, x2

t+2u−1−®) and that n is not a non trivial perfect power.
Then, n is prime.

Corollary 3.5.2. If n, k, ®, u are as in the previous theorem, then the pri-
mality of n can be determined in 22u2max(s+2(u−1)−k,0)#̃((logn)4) time. In
other words, if we call these tests Bu, then C(Bu) ≈ 4C(Au).

3.6 Conclusions and Conjecture
In practice, it is clearly desirable to apply Algorithm 1 or Algorithm 2
when possible.
In the worst case (º2(n − 1) = k = 2), Algorithm 1 runs at least 211

times faster than the best possible running time of the AKS algorithm for
primes n large enough. Hence, the worst case of Algorithm 2 runs 29

times faster than the best possible case of AKS. This occurs because the
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main step of Algorithm 1 executes at most 2s−2 ≤ (logn)2

4 iterations, each
of which consists in multiplying polynomials of degree at most (logn)2. In
contrast, in the best possible case AKS executes 8(logn)2 multiplications of
polynomials of degree at least 64(logn)2. When k is large the di�erence in
the performance improves dramatically.
For implementation, if no integer a satisfying

(
a
n

)
= −1 is known a priori,

then a search for such an a within a reasonable range should be implemented.
In addition, if this fails to produce such an a, then a search for a small value
of u would be useful.
Note that if k > 1/2 logn then Algorithm 1 and Algorithm 2 run in
#̃((logn)2) time. Also, while k increases from 2 to [2 log log n] the running
time improves up to #̃((logn)4). But when k varies from [2 log logn] to
[1/2 log n] there is no more improvement in the speed of our algorithm. Here
we believe one should attempt to sharpen the algorithms because the order
of the group Gn can be proven to increase together with k, in such a way
that it forces s, that is the smallest solution of ∣Gn∣ > n2s/2 , to decrease.
To be precise we formulate the following conjecture:

Conjecture 3.6.1. Algorithm 1 and Algorithm 2 can be modi�ed in
such a way that while k increases from 2 to (1/2) log n the complexity of both
algorithms decreases from #̃((logn)6) to #̃((logn)2).
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Chapter 4

Lenstra and Pomerance

The algorithm we are now going to present is a deterministic primality test
that decides, in time #̃(log6 n), whether an input integer n is prime or not.

4.1 Introduction
We have seen that the AKS algorithm with Lentra's variant works in time
#̃(log21/2 n) and we have argued that the true run time of this algorithm
may reasonably be conjectured to equal #̃(log6 n). Lenstra and Pomerance's
algorithm, that we are now going to analyse, achieves the same run time
not by proving their conjectures, but by modifying their algorithm. Both
the AKS algorithm and this one perform computations in a suitable ring
extension of the ring ℤ/nℤ of integers modulo n; if d denotes the degree
of the extension, the problem of obtaining a small run time exponent boils
down to providing a good upper bound for the smallest d that can be used.
In the AKS algorithm we have used the ring (ℤ/nℤ)[x]/(xd−1), and Agrawal
et al. found that the problem of accurately estimating the least usable value
for d leads to an unsolved problem in analytic number theory. Therefore,
in this algorithm we select our ring extension from a much wider class, for
which estimating d becomes feasible. The ring extensions of ℤ/nℤ that we
use shall be referred to as pseudo�elds.

4.2 Pseudo�elds
De�nition 4.2.1. A pseudo�eld is a pair (A,®) consisting of a ring A and
an element ® ∈ A, such that for some integer n > 1, some integer d > 0,
and some ring automorphism ¾ of A, the following conditions are satisifed:

charA = n, (4.1)

#A ≤ nd, (4.2)
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¾® = ®n, (4.3)
¾d® = ®, (4.4)

¾d/l®− ® ∈ A∗ for each prime number l dividing d. (4.5)

4.2.1 Algebraic properties of pseudo�elds
We are now going to see the basic algebraic properties of pseudo�elds.
First let's state the following condition: for a ring A, an element ® ∈ A, and
a ring automorphism ¾ of A, we will have occasion to refer to:

¾® belongs to the subring of A generated by ®. (4.6)

This condition is implied by condition (4.3), if n is a positive integer.

Lemma 4.2.1. Let A be a ring, let ® ∈ A, let ℤ>0, and let ¾ be a ring
automorphism of A such that (4.4),(4.5) and (4.6) are satis�ed. Then, for
any i, j ∈ ℤ with i ∕≡ j (mod d) one has ¾i®− ¾j® ∈ A∗.

Proof. Let ℎ ∈ ℤ,ℎ ∕∈ dℤ, and let I = (¾ℎ® − ®) be the A-ideal generated
by (¾ℎ® − ®). The set B = {¯ ∈ A : ¾ℎ¯ ≡ ¯ (mod I)} is a subring of A.
Since, obviously, ¾ℎ® ≡ ® (mod I), we have ® ∈ B and, by (4.6), ¾® ∈ B;
that is, choosing ¯ = ¾®, we have ¾ℎ+1® ≡ ¾® (mod I), which implies that
¾(¾ℎ® − ®) belongs to I, and, therefore, ¾I ⊆ I. On the other hand, since
¾d maps ¾ℎ®−® to itself, we actually have ¾I = I, so for all m ∈ ℤ one has
¾mI = I.
It follows that the set H = {m ∈ ℤ : ¾m® ≡ ® (mod I)} is a subgroup of ℤ.
It contains d and ℎ, where ℎ ∕∈ dℤ, so we have H = d′ℤ where d′ is a divisor
of d with 1 ≤ d′ < d. Choose a prime number l that divides d/d′. Then
d/l ∈ d′ℤ = H, so ¾d/l®− ® ∈ I. Thus by (4.5) the ideal I contains a unit,
and therefore I = A. This implies ¾ℎ® − ® ∈ A∗. Now let i, j ∈ ℤ,i ∕≡ j
(mod d). Then the integer i− j does not belong to dℤ, so by the result just
proved we have ¾i−j® − ® ∈ A∗. Applying ¾j we �nd ¾i® − ¾j® ∈ A∗, as
required. ■

Lemma 4.2.2. Let A be a ring, let k ∈ ℤ≥0, and let ®1, ®2, . . . , ®k ∈ A be
such that ®i − ®j ∈ A∗ whenever 1 ≤ i < j ≤ k. Then for each g ∈ A[x]

which vanishes at ®1, ®2, . . . , ®k, we have g ∈ A[x] ⋅∏k
i=1(x− ®i)

Proof. Let Ii = A[x] ⋅ (x−®i), for 1 ≤ i ≤ k. For i ∕= j, the unit ®i−®j can
be written as −(x−®i)+(x−®j), so Ii+Ij = A[x] that means that Ii and Ij
are co-prime, which implies that

∏k
i=1 Ii =

∩k
i=1 Ii. From x ≡ ®i (mod Ii)

we obtain g ≡ g(®i) (mod Ii) for each g ∈ A[x], so if each g(®i) vanishes,
then we have g ∈ ∩k

i=1 Ii =
∏k

i=1 Ii = A[x] ⋅∏k
i=1(x− ®i), as required. ■

The following result summarizes the technical information on pseud-
o�elds that we shall need.
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Proposition 4.2.1. Let A be a ring, let ® ∈ A, and let the integers n ∈ ℤ>0,
d ∈ ℤ>0 and let the ring automorphism ¾ of A satisfy (4.1), (4.2), (4.4), (4.5)
and (4.6). Then we have:

(a) for each ¯ ∈ A there are unique a0, a1, . . . , ad−1 ∈ (ℤ/nℤ) with ¯ =
∑d−1

i=0 ai®
i;

(b) we have #A = nd, and ¾d equals the identity;

(c) the polynomial f =
∏d−1

i=0 (x − ¾i®) belongs to the subring (ℤ/nℤ)[x] of
A[x];

(d) the ring homomorphism (ℤ/nℤ)[x] → A sending x to ® is surjective,
and its kernel is generated by the polynomial f from (c);

(e) if I ⊂ A is an ideal, then we have ¾I ⊂ I if and only if there exists a
divisor m of n such that I = mA;

(f) for each prime factor p of n there exists a unique residue class (imod d)
such that for all ¯ ∈ A we have ¯p ≡ ¾i¯ (mod pA).

Proof. Let's denote Ã : (ℤ/nℤ)[x] → A the unique homomorphism which
sends x to ® as in (d). This homomorphism maps each g ∈ (ℤ/nℤ)[x]
to g(®). Let's now suppose g ∈ ker(Ã), then for each i ∈ ℤ, we have
g(¾i®) = ¾i(g(®)) = ¾i(Ã(g)) = 0 and, by Lemma 4.2.1, we have that
¾i® − ¾j® ∈ A∗ for i ∕≡ j (mod d); so, applying Lemma 4.2.2, we ob-
tain that g ∈ A[x]f , where f is as in (c). Let Ã̃ be the restriction of
Ã to (ℤ/nℤ) + (ℤ/nℤ)x+ . . .+ (ℤ/nℤ)xd−1. Since each non-zero g ∈ A[x]f
has degree at least d, this implies

ker(Ã) ∩ ((ℤ/nℤ) + (ℤ/nℤ)x+ . . .+ (ℤ/nℤ)xd−1) = {0},

so that ker(Ã̃) = (0) and, therefore, this restriction is injective. Moreover, we
know that there are nd elements is ((ℤ/nℤ) + (ℤ/nℤ)x+ . . .+ (ℤ/nℤ)xd−1)
and, from (4.2), we also know that #A ≤ nd; so, since Ã̃ is injective, it must
be surjective as well and we must have #A = nd. This proves (a), the �rs
statement of (b), and the surjectivity in (d). Since each element of A can
be expressed in ®, the second statement of (b) follows from (4.4). Applying
(a) to ¯ = ®d, one �nds a0, a1, . . . , ad−1 ∈ ℤ/nℤ for which the polynomial
g = xd − ∑d−1

i=0 aix
i = xd − ®d belongs to ker(Ã); hence g ∈ A[x]f , and

comparing degrees and leading coe�cients one �nds g = f . This implies
(c). We have ker(Ã) = A[x]f ∩ (ℤ/nℤ)[x] = (ℤ/nℤ)[x]f , the latter equality
because f is a monic polynomial in (ℤ/nℤ)[x]. This proves the remaining
assertion of (d).
The "if"-part of (e) is clear. For the "only if"-part, let I be an ideal of A with
¾I ⊂ I, and let Ā be the ring A/I. From ¾I ⊂ I it follows that ¾ induces
a ring homomorphism ¾̄ : Ā → Ā. From (b) one sees that ¾̄d is the identity
on Ā, so ¾̄ is an automorphism of Ā. Put m = charĀ. Then m divides n,
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and we have mA ⊂ I, so from (a) we see #Ā = #A/I ≤ #A/mA = md,
with the equality if and only if mA = I. We claim that (4.1), (4.2), (4.4),
(4.5) and (4.6), with Ā, m, d, ¾̄ and ®̄ ≡ ® (mod I) in the roles of A, n, d,
¾ and ®, are satis�ed. We have just proved (4.2); (4.1) is true by de�nition;
(4.4), (4.5) and (4.6) follow from the corresponding properties of A, n, d, ¾
and ®. Hence, applying (b) to this new situation, we �nd #Ā = md, so that
mA = I. This proves (e).
To prove (f), we replace, for notational convenience, n and A by p and
A/pA, so that we may assume n = p. Let Á : A → A be the ring ho-
momorphism that maps each ¯ ∈ A to ¯p, and let g ∈ (ℤ/nℤ)[x] be such
that ¾® = g(®). If ½ : A → A is any homomorphism with ¾½ = ½¾, then
we have ¾(½®) = ½(¾®) = ½(g(®)) = g(½®). Applying this to ½ = Á and
to ½ = ¾i, where i ∈ ℤ, we obtain ¾(Á®) = g(Á®) and ¾(¾i®) = g(¾i®)
and therefore ¾(Á®) ≡ ¾(¾i®) (mod Á® − ¾i®)A. Hence, for any i ∈ ℤ,
the ideal I = (Á® − ¾i®)A satis�es ¾I ⊂ I, so by (e) and the fact that n
is prime, we have that I = A or I = nA; since A = A/pA with p = n,
nA = nA/nA = 0. So we have that Á® − ¾i® is either a unit or 0. From∏d−1

i=0 (Á®− ¾i®) = f(Á®) = Á(f(®)) = Á(
∏d−1

i=0 (®− ¾i®)) = Á(0) = 0p = 0, we
see that not all Á®−¾i® can be units, so at least one of them is 0. Then we
have Á® = ¾i®, so Á = ¾i by (a). The uniqueness of i mod d follows from
Lemma 4.2.1. This completes the proof. ■

Proposition 4.2.2. Let (A,®) be a pseudo�eld and let n, d be as in the
de�nition. Then there is a unique monic polynomial f ∈ (ℤ/nℤ)[x] with the
property that there is a ring isomorphism (ℤ/nℤ)[x]/(f) ∼= A that maps the
coset x (mod f) to ®. In addition, the degree of this polynomial equals d.
Proof. Since (4.3) implies (4.6), Proposition 4.2.1 applies. The existence of
f follows from 4.2.1(d). No two distinct monic polynomials in (ℤ/nℤ)[x]
generate the same ideal, so f is unique. From 4.2.1(c) we deduce deg f = d.
This completes the proof. ■

The polynomial f from the above proposition and its degree d are called
the characteristic polynomial and the degree of the pseudo�eld, respectively.
The proposition implies that each element of A can in a unique way be writ-
ten as g(®), where g ∈ (ℤ/nℤ)[x] satis�es deg g < d. This implies that
equality holds in (4.2). It also implies that, as a ring, A is generated by ®,
so that the automorphism ¾ of A is uniquely determined by (4.3); we refer
to it as the Frobenius automorphism of the pseudo�eld.

Finite �elds yield pseudo�elds, as explained in the following result.
Proposition 4.2.3. Let p be a prime number, let A be a ring of characteristic
p, and let ® ∈ A. Then (A,®) is a pseudo�eld if and only if A is a �nite �eld
satisfying A = Fp(®). In addition, if (A,®) is a pseudo�eld, and ¾ denotes
its Frobenius automorphism, then for all ¯ ∈ A we have ¾¯ = ¯p.
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Proof. j

DA RIVEDERE UN PO'!!!!!!

For the "if"-part let's assume that A is a �nite �eld with A = Fp(®). Let
d = [A : Fp] and let's de�ne ¾ : A → A by putting ¾¯ = ¯p for every ¯ ∈ A.
Now (4.1), (4.2), (4.3) and (4.4) are obvious. Moreover, if l is a prime number
dividing d, then ¾d/l is not the identity, so by A = Fp(®) we have ¾d/l® ∕= ®;
since A is a �eld, this implies (4.5).
To prove the "only if"-part and the last statement of the proposition, let's
assume that (A,®) is a pseudo�eld. Let d be the degree and ¾ the Frobenius
automorphism. Since p is prime, the map A → A sending each ¯ to ¯p is
a ring homomorphism. It agrees with ¾ on ®, so by 4.2.1(a) on all of A,
which is the last statement of our proposition. To prove that A is a �eld,
we let ¯ ∈ A, and we prove that ¯ equals 0 or is a unit. Put I = A¯. From
¾¯ = ¯p we see that ¾I ⊂ I, so by 4.2.1(e) and the fact that p is prime, we
have I = A or I = pA = 0. In the �rst case ¯ is a unit, in the second case it
equals 0. Thus, A is a �eld. By 4.2.1(a), it is �nite, and we have A = Fp(®).
This completes our proof. ■

4.2.2 Primality testing with pseudo�elds
We are now going to see that, for the purpose of primality testing, pseud-
o�elds can play the role that the rings (ℤ/nℤ)[x]/(xd − 1) play in the AKS
algorithm with Lenstra's variant.

Lemma 4.2.3. Let R be a ring, and let G be a �nite subgroup of R∗ such
that for each ¯ ∈ G, ¯ ∕= 1 we have ¯ − 1 ∈ R∗. Then G is cyclic.

Proof. We may clearly assume R ∕= {0}, so that we can choose a maximal
ideal M of R. Let ° be the natural group homomorphism ° : R∗ → (R/M)∗.
For each ¯ ∈ G, ¯ ∕= 1, the unit ¯ − 1 does not belong to M , so that
¯ ∕∈ ker(°). Hence the restriction of ° to G is injective, and G is isomorphic
to its image in (R/M)∗. Since any �nite subgroup of the multiplicative group
of a �eld is cyclic, then G is cyclic. ■

Let (A,®) be a pseudo�eld, and denote n, d and ¾ its characteristic, its
degree and its Frobenius automorphism, respectively. We let p be a prime
divisor of n, and put R = A/pA. We shall simply write ® for the image of ®
in R, and ¾ for the automorphism of R induced by ¾. Note that conditions
(4.1), (4.2), (4.4), (4.5) and (4.6), with R,®, p, d and ¾ in the role of A,®, n, d
and ¾, are satis�ed, so that Proposition 4.2.1 can be used. As we have seen
in the proof of Proposition 4.2.3, by 4.2.1(e) applied to I = R¯ we have that

if ¯ ∈ R satisfies ¾¯ ∈ R¯, then ¯ = 0 or ¯ ∈ R∗. (4.7)
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We put
G = {¯ ∈ R : ¯ ∕= 0, ¾¯ = ¯n}.

For any ¯ ∈ G, we have ¾¯ = ¯n ∈ R¯, so ¯ ∈ R∗ by (4.7). Since G is
�nite, closed under multiplication and contains 1, it is a subgroup of R∗.
Moreover, for any ¯ ∈ G, ¯ ∕= 1, we have ¾¯ = ¯n ≡ 1 mod R ⋅ (¯ − 1), so
¾(¯ − 1) ∈ R ⋅ (¯ − 1) and, again by (4.7), ¯ − 1 ∈ R∗. Thus, Lemma4.2.3
implies

G is a cyclic subgroup of R∗. (4.8)

Lemma 4.2.4. If #G > n
√

d/3 − 1, then n is a power of p.
We will not deal with the proof of this lemma.

Proposition 4.2.4. Let (A,®) be a pseudo�eld of degree d with Frobe-
nius automorphism ¾, and let n = charA. Suppose that for each a =
1, 2, . . . ,

[
(d/3)1/2(log n)/ log 2

]
we have ®n + a = (® + a)n. Suppose also

that we have d > (logn)2/
(
3 ⋅ (log 2)2), and that n has a prime factor greater

than (d/3)1/2(logn)/ log 2. Then n is a power of a prime number.
Proof. Let's writeB = [(d/3)1/2(log n)/ log 2]. When d = (logn)2/3 ⋅ (log 2)2
we have B =

(
(logn)2

9⋅(log 2)2
)1/2

⋅ log n/ log 2 = log2 n
3⋅(log 2)2 = d and therefore,

d > (log n)2/
(
3 ⋅ (log 2)2) implies d > B.

We apply the results that we have just seen to a prime factor p of n that
satis�es p > B. Since (A,®) is a pseudo�eld, we know, by condition (4.3),
that ¾® = ®n, from which we can deduce that the element ® of R = A/pA
belongs to the subgroup G of R∗. From ¾(®+a) = ¾®+a = ®n+a = (®+a)n

for a = 1, 2, . . . , B and from 4.2.1(a),which implies each ® + a ∕= 0, we see
that ® + 1, ® + 2, . . . , ® + B also belong to G. For each proper subset S of
{1, 2, . . . , B}, the element

∏
a∈S(®+a) also belongs to G. There are 2B+1−1

such sets S, and we claim that they give rise to 2B+1 di�erent elements of G.
To prove this, note that by p > B the polynomials x+ a, a = 0, 1, . . . , B are
distinct in Fp[x], and that by unique factorization in Fp[x] the polynomials∏

a∈S , with S as above, are pairwise distinct. By d > B, all these polynomi-
als have degrees smaller than d, so by 4.2.1(a) (applied to R) they give rise
to 2B+1 − 1 di�erent elements

∏
a∈S(®+ a) of G, as asserted.

It follows that we have

#G ≥ 2B+1 − 1 > 2(d/3)
1/2(logn)/ log 2 − 1

since 2 = elog 2, we have

2(d/3)
1/2(logn)/ log 2 − 1 = elogn

√
d/3⋅(log 2/ log 2) − 1 = n

√
d/3 − 1.

Thus we have
#G > n

√
d/3 − 1.

Applying 4.2.4 we conclude that n is a power of p. ■
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4.3 Algorithmic aspects of pseudo�elds
Proposition 4.2.2 shows that a pseudo�eld is, up to isomorphism, deter-
mined by its characteristic n and its characteristic polynomial f . We shall,
for algorithmic purposes, always assume a pseudo�eld to be speci�ed by
the pair (n, f), the polynomial f being represented by its vector of coe�-
cients; this applies in particular when a pseudo�eld forms part of the input
or output of an algorithm. The pseudo�eld represented by (n, f) equals
((ℤ/nℤ)[x]/(f), x mod f), and its elements are represented as polynomials
in (ℤ/nℤ)[x] of degree smaller than the degree d of the pseudo�eld. It is
well-known that there are algorithms that, given n, f , and two elements of
(ℤ/nℤ)[x]/(f), compute the sum and the product of this two elements within
time #̃(d log n) [see 14].

As a consequence, testing the equality ®n + a = (® + a)n from Proposi-
tion 4.2.4 for a single value of a in ℤ/nℤ can be done in time #̃

(
d(log n)2

)
,

and for about (d/3)1/2(logn)/ log 2 values of a in time #̃((d1/2 log n)3). This
time bound will equal the required time bound (#̃((logn)6)) if we use a
pseudo�led for which the degree d is, as a function of n, not too much larger
than the lower bound (logn)2/(3 ⋅ (log 2)2) from Proposition 4.2.4. Thus, we
are faced with the problem of constructing a pseudo�eld of given character-
istic and approximately given degree. In order to solve this problem, we are
now going to introduce some de�nitions.

De�nition 4.3.1. Let n ∈ ℤ, n > 1. By a period pair for n we mean a pair
(r, q) of integers with the properties

r is a prime not dividing n, (4.9)

q ∣ r − 1 with q > 1, (4.10)
the multiplicative order of n(r−1)/q modulo r equals q. (4.11)

(4.11) implies that n(r−1)/q ∕≡ 1 (mod r). Further,

De�nition 4.3.2. A period system for n is a �nite set P of period pairs for
n such that

gcd(q, q′) = 1 whenever (r, q), (r′, q′) ∈ P, (r, q) ∕= (r′, q′), (4.12)

and the degree of P is
∏

(r,q)∈P q.

4.3.1 Gaussian Periods
In this section we let n be an integer with n > 1. Let r be a prime num-
ber not dividing n, and de�ne Φr =

∑r−1
i=0 ∈ (ℤ/nℤ)[x]. The element

(x mod Φr) of the ring (ℤ/nℤ)[x]/(Φr) is denoted by ³r, and that ring itself
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by (ℤ/nℤ)[³r]. We have ³rr = 1 ∕= ³r, so ³r is an element of (ℤ/nℤ)[³r]∗ of
order r. From degΦr = r − 1, we know that º ∈ (ℤ/nℤ)[³r] means that
º = a0 + a1³r + . . .+ ar−2³

r−2
r with a0, . . . , ar−2 ∈ ℤ/nℤ; this implies that

{1, ³r, . . . , ³r−2
r } generate (ℤ/nℤ)[³r]. Thus, also {1, ³r, . . . , ³r−2

r , ³r−1
r } gen-

erate this ring and, since 1 = −(³r + . . .+ ³r−1
r ) we see that the elements ³ir,

1 ≤ i ≤ r − 1, form a basis for (ℤ/nℤ)[³r] over ℤ/nℤ.
For each a ∈ ℤ, a ∕∈ rℤ, the ring (ℤ/nℤ)[³r] has a unique automorphism
mapping ³r to ³ar ; we write ¾a for this automorphism. The set Δ of all auto-
morphism of the form ¾a is a group under composition, and the map ¾a → a
(mod r) is a group isomorphism Δ ∼= F ∗

r . We can conclude that Δ is cyclic
of order r−1, and that, for ¿ ∈ Δ, the elements ¿³r = ³ar with 1 ≤ a ≤ r−1,
form a basis for (ℤ/nℤ)[³r] over ℤ/nℤ.
Next let q be a positive integer dividing r − 1. Then Δq = {¿ q : ¿ ∈ Δ} is
a subgroup of index q of Δ. The subset (ℤ/nℤ)[³r]Δ

q
= {¯ ∈ (ℤ/nℤ)[³r] :

½¯ = ¯ ∀½ ∈ Δq} is the set of all the elements of (ℤ/nℤ)[³r] which are
invariant under all ½ ∈ Δq and is a subring of (ℤ/nℤ)[³r]. An element
! =

∑
¿∈Δ a¿ ⋅ ¿³r, with each a¿ ∈ ℤ/nℤ, belongs to this subring if and only

if ½! = ! ∀½ ∈ Δq. We have ½! =
∑

¿∈Δ a¿ ⋅ ½¿³r. Let's call ± = ½¿ , then
we have ½! =

∑
±∈Δ a±½−1 ⋅ ±³r. Since both ±³r and ¿³r, with ¿, ± ∈ Δ, form

a basis for (ℤ/nℤ)[³r] over ℤ/nℤ, we have ! = ½! if and only if a±½−1 = a±
which is the same as a¿ = a¿½ for all ¿ ∈ Δ, ½ ∈ Δq.
Note that if ¿1, ¿2 ∈ Δ and ¿1Δ

q = ¿2Δ
q then a¿1 = a¿2 .

We know that [Δ : Δq] = {¿1Δq, ¿2Δ
q, . . . , ¿qΔ

q} which means that ∀ ¿ ∈ Δ, ∃! i ∃! ½
such that ¿ = ¿i½. So we have

! =
∑

¿∈Δ
a¿ ⋅ ¿³r =

q∑

i=1

∑

¿∈¿iΔq

a¿ ⋅ ¿³r =
q∑

i=1

∑

½∈Δq

a¿i½ ⋅ ¿i½³r =
q∑

i=1

a¿i
∑

½∈Δq

¿i½³r

=

q∑

i=1

a¿i ⋅ ¿i

⎛
⎝∑

½∈Δq

½³r

⎞
⎠

If we put ´r,q =
∑

½∈Δq ½³r, then
∑q

i=1 a¿i ⋅ ¿i(´r,q) = 0 means ! = 0, but
this implies that all the coe�cients are equal to 0, since the elements ¿³r
form a basis for (ℤ/nℤ)[³r] over ℤ/nℤ. Therefore, the elements ¿´r,q, with
¿ ranging over a set of coset representatives for Δ modulo Δq, form a basis
for (ℤ/nℤ)[³r]Δ

q over (ℤ/nℤ); in particular we have #(ℤ/nℤ)[³r]Δ
q
= nq.

De�nition 4.3.3. The elements ¿´r,q are called Gaussian periods of degree
q and conductor r.

We have, for example, ´r,r−1 = ´r and ´r,1 = −1. Let's write

fr,q =
∏

¿Δq∈Δ/Δq

(y − ¿´r,q).

53



This is a monic polynomial in y of degree q with fr,q(´r,q) = 0. Its coe�cients,
which belong to (ℤ/nℤ)[³r], are invariant under all ½ ∈ Δ, so they belong to
(ℤ/nℤ)[³r]Δ

1
= (ℤ/nℤ) ⋅ ´r,1 = ℤ/nℤ. Thus, we have fr,q ∈ (ℤ/nℤ)[y].

Proposition 4.3.1. Let n ∈ ℤ, n > 1, let r be a prime number not di-
viding n, and let q be a divisor of r − 1 with the property that the element
(n(r−1)/q mod r) of F∗r has order q.
Let the notation ³r, ¾a,Δ, ´r,q, fr,q be as just de�ned. Then we have:

(a) if n is prime, then in the ring (ℤ/nℤ)[³r] we have ´nr,q = ¾n´r,q;

(b) if in the ring (ℤ/nℤ)[³r] we have ´nr,q = ¾n´r,q, then
(
(ℤ/nℤ)[³r]Δ

q
, ´r,q

)
is a pseudo�eld of characteristic n and degree q, with characteristic
polynomial fr,q.

Proof. To prove (a), let's suppose that n is prime. Then the map from
(ℤ/nℤ)[³r] sending each ¯ to ¯n is a ring homomorphism, and since it agrees
with ¾n on ³r it coincides with ¾n on all of (ℤ/nℤ)[³r]. This implies (a).
To prove (b), let the group homomorphism ° : F∗r → F∗r sending each x
to x(r−1)/q. Then ker(°) = F ∗q

r which is a subgroup of index q of F∗r , and
therefore, we have #ker(°) = (r − 1)/q. So we have #(F ∗

r /F ∗q
r ) = q and

this group is cyclic since it is the quotient of two cyclic groups. We know, by
Fundamental Theorem of Homomorphism, that (F ∗

r /F ∗q
r ) ≃ ℑ(°) which is

the unique subgroup of F ∗
r of order q. Moreover, we have °((n mod r)F ∗q

r ) =
n(r−1)/q mod r which, therefore, belongs to ℑ(°) and, by hypothesis, has or-
der q. Thus, (F ∗

r /F ∗q
r ) is generated by (n mod r)F ∗q

r . Let's now consider
the isomorphism µ : F ∗

r → Δ which maps n (mod r) to ¾n. We have just
seen that (F ∗

r /F ∗q
r ) =< (n mod r)F ∗q

r >, so we can deduce, by considering
the images of µ, that Δ/Δq is generated by ¾nΔ

q.
Let's write, for brevity, A = (ℤ/nℤ)[³r]Δ

q and let's de�ne the ring homomor-
phism Á : (ℤ/nℤ)[y] → A by Á(g) = g(´r,q). The image of Á is the subring
of A generated by ´r,q. Let's denote S this subring. From ¾n´r,q = ´nr,q it
follows that S is mapped to itself by ¾n. Since A is invariant for Δq, all the
elements of Δq act as the identity on A, and since ¾nΔ

q generates Δ/Δq,
then S is mapped to itself by all ¿ ∈ Δ. Hence, in addition to ´r,q it con-
tains all ¿´r,q which is a basis for A, so we have S = A; in other words, Á
is surjective. We know that fr,q(´r,q) = 0; this implies that the kernel of Á
contains the (ℤ/nℤ)[y]-ideal generated by fr,q.
Let's note that, since #A = nq, then ker(Á) has index nq in (ℤ/nℤ)[y]
because (ℤ/nℤ)[y]/ ker(Á) ≃ A by Fundamental Theorem of Homomor-
phism that can be applied for the surjectivity of Á; besides we know that
#((ℤ/nℤ)[y]/(ℎ(y))) = ndeg(ℎ) and, since deg(fr,q) = q, we have#((ℤ/nℤ)[y]/(fr,q))) =
nq. Thus we can deduce that both ker(Á) and the (ℤ/nℤ)[y]-ideal generated
by fr,q have index nq in (ℤ/nℤ)[y], so they must be equal. Thus, Á induces
a ring isomorphism (ℤ/nℤ)[y] ∼= A.
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We prove that A,® = ´r,q, n, d = q and ¾ equal to the restriction of ¾n to A,
satisfy conditions (4.1)-(4.5).
Conditions (4.1), (4.2) and (4.3) are clearly satis�ed. Since A is invariant
for Δq, we have that ½® = ® for all ® ∈ A, ½ ∈ Δq. From ¾q

n ∈ Δq we know
that we can choose ½ = ¾q

n, from which we deduce condition (4.4).
We are now going to prove condition (4.5). Since ¾nΔ

q generates the group
Δ/Δq of order q, we may rewrite the de�nition of fr,q as

fr,q =

q−1∏

i=0

(y − ´r,q) .

Therefore, calculating the derivative f ′
r,q = dfr,q/dy, we have

f ′
r,q =

q−1∑

j=0

⎛
⎜⎝

q−1∏

i=0
i∕=j

(y − ¾i´r,q)

⎞
⎟⎠

and, separating the case j = 0, we have

f ′
r,q =

q−1∏

i=1

(y − ¾i´r,q) +

q−1∑

j=1

⎛
⎜⎝

q−1∏

i=0
i∕=j

(y − ¾i´r,q)

⎞
⎟⎠ .

The second term of this addition is a sum such that, in the case f ′
r,q(´r,q),

any addend is a product in which the factor with i = 0 is equal to 0 and,
therefore, this sum is equal to 0. Thus,

f ′
r,q(´r,q) =

q−1∏

i=1

(´r,q − ¾i´r,q).

So to prove (4.5) it will su�ce to prove f ′
r,q(´r,q) ∈ A∗.

Let p be a prime number dividing n.
Taking the isomorphism (ℤ/nℤ)[y]/(fr,q) ∼= A ⊆ (ℤ/nℤ)[x]/(xr−1

x−1 ) modulo
p, we see that the ring Fp[y]/(f), where f = fr,q (mod p) ∈ Fp[x], is iso-
morphic to a subring of Fp[x]/(g), where g =

∑r−1
i=0 x

i. Since g divides
xr − 1, where r is a prime number di�erent from p, we have that g is
squarefree in the ring Fp[x] and, therefore, gcd(g, dg/dx) = 1 in the ring
Fp[x]. From Lemma 4.3.1, stated and proved below, it follows that we have
gcd(f, df/dy) = 1 in the ring Fp[y]. Thus, there are u, v ∈ Fp[y] with
uf+vdf/dy = 1. Lifting u, v to (ℤ/nℤ)[y], we obtain up, vp, wp ∈ (ℤ/nℤ)[y]
such that upfr,q + vpf

′
r,q = 1+ pwp. Since they are polynomials in (ℤ/nℤ)[y]

we can apply Á to up, vp, wp; so we have Á(upfr,q + vpf
′
r,q) = Á(1 + pwp)

which is Á(upfr,q) + Á(vpf
′
r,q) − Á(pwp) = 1. We know that Á(ℎ) = ℎ(´r,p)

for all ℎ ∈ (ℤ/nℤ)[y] and, therefore, we have up(´r,q) ⋅ fr,q(´r,q) + vp(´r,q) ⋅
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f ′
r,q(´r,q) − p ⋅ wp(´r,q) = 1, but we also know that fr,q(´r,q) = 0. So we
get, for each prime number p dividing n, an identity in A of the form
vp(´r,q) ⋅ f ′

r,q(´r,q) − p ⋅ wp(´r,q) = 1. Take the product over p, repeating
the pth identity just as many times as p occurs in n. On the right, we get 1.
On the left, the only term that does not have a factor f ′

r,q(´r,q) is divisible
by n and is therefore 0. Hence, 1 is divisible by f ′

r,q in A, so that the latter
element is a unit, as required. The formula we gave for fr,q shows that it is
indeed the characteristic polynomial for the pseudo�eld. ■

Lemma 4.3.1. Let p be a prime number, and let f, g ∈ Fp[x] be non-
zero polynomials for which the ring Fp[x]/(f) is isomorphic to a subring of
Fp[x]/(g). Suppose also gcd(g, dg/dx) = 1. Then we have gcd(f, df/dx) =
1.

Proof. A non-zero polynomial ℎ ∈ Fp[x] satis�es gcd(ℎ,dℎ/dx) = 1 if and
only if ℎ is squarefree in the ring Fp[x], and if and only if there is no non-
zero nilpotent element in the ring Fp[x]/(ℎ). Thus, gcd(g, dg/dx) = 1 implies
that there is no non-zero nilpotent element in Fp[x]/(g). From the trivial
observation that if a ring has no non-zero nilpotent element, then the same is
true for a subring, it follows that the subring of Fp[x]/(g) that is isomorphic
to Fp[x]/(f) has no non-zero nilpotent element and, therefore, Fp[x]/(f)
neither. Thus, gcd(f, df/dx) = 1. ■

4.3.2 The algorithm
Algorithm A. We next describe an algorithm that, given an integer n > 1,
which may or may not be prime, and a period system P for n satisfying
n >

∏
(r,q)∈P q, attempts to construct a pseudo�eld of characteristic n and

degree
∏

(r,q)∈P q.

Step 1. For all (r, q) ∈ P in succession, do the following. Compute ´r,q ∈
(ℤ/nℤ)[³r] as well as all of its conjugates ¿´r,q, and form the product of
the q polynomials y − ¿´r,q in the polynomial ring (ℤ/nℤ)[³r][y]; the re-
sult is fr,q, which has coe�cients in the subring ℤ/nℤ of (ℤ/nℤ)[³r]. If
n is not known to be prime, compute by an nth powering in the ring
(ℤ/nℤ)[y]/(fr,q) the unique polynomial gr,q ∈ (ℤ/nℤ)[y] satisfying yn ≡ gr,q
(mod fr,q) and deg()gr,q < q, and test whether in the ring (ℤ/nℤ)[³r] we
have gr,q(´r,q) = ¾n´r,q; if this test fails, declare n composite and halt.

Step 2. [If the algorithm arrives at this point then, as we are going to prove
below, for each (r, q) ∈ P the pair (n, fr,q) speci�es a pseudo�eld.] Applying
the algorithm of A.1.5 at most #P − 1 times, either �nd a prime factor of
n that is at most

∏
(r,q)∈P q, or construct the repeated tensor product of the

#P pseudo�elds speci�ed by the pairs (n, fr,q) for (r, q) ∈ P . In the former
case, declare n composite and halt, and in the latter case return the tensor

56



product computed by the algorithm and halt. This completes the description
of Algorithm A.

Proposition 4.3.2. Algorithm A, on input n, P satisfying n >
∏

(r,q)∈P q,
runs in time

#̃

⎛
⎝
⎛
⎝ ∏

(r,q)∈P
q +

∑

(r,q)∈P
qr

⎞
⎠ logn

⎞
⎠ or #̃

⎛
⎝
⎛
⎝ ∏

(r,q)∈P
q +

∑

r,q∈P
q(r + logn)

⎞
⎠ log n

⎞
⎠

according as n is or is not known to be prime, and either correctly de-
clares n composite or constructs a pseudo�eld of characteristic n and degree∏

(r,q)∈P q.

Proof. We �rst prove the correctness of the algorithm. By fr,q(´r,q) = 0, the
congruence yn ≡ gr,q (mod fr,q) in Step 1 implies gr,q(´r,q) = ´nr,q. Thus, by
Proposition 4.3.1(a), the condition gr,q(´r,q) = ¾n´r,q is necessary for n to
be prime, and the algorithm is correct if it halts in Step 1. If it passes Step
1, then by Proposition 4.3.1(b) there is, for each (r, q) ∈ P , a pseudo�eld
od characteristic n with characteristic polynomial fr,q. Hence by A.1.5 the
algorithm constructs the desired tensor product, or it �nds a prime factor
of n that is at most

∏
(r,q)∈P q; in the latter case, n is composite because

n >
∏

(r,q)∈P q. This proves the correctness of the algorithm.
The run time of Step 1 is dominated by the computation of the polynomials
fr,q and, if n is not known to be prime, the polynomials gr,q and their values
at ´r,q. The computation of fr,q, if done by means of ALGORITHM 10.3
from [15] , runs in time #̃(qr logn). The computation of gr,q involves #(logn)
multiplications in the ring (ℤ/nℤ)[y]/(fr,q) and can therefore be performed
in time #̃(q ⋅ (log n)2). The computation of gr,q(´r,q) runs in time #̃(qr logn).
By A.1.5, Step 2 runs in time #̃(log n ⋅∏(r,q)∈P q). ■

We can now state the following result which is an immediate corollary of
this proposition:

Proposition 4.3.3. There is an algorithm that, given an integer n with
n > 1 and a period system P for n satisfying n >

∏
(r,q)∈P q, either correctly

declares n composite or constructs a pseudo�eld of characteristic n and degree∏
(r,q)∈P q, and that runs in time

#̃

⎛
⎝
⎛
⎝ ∏

(r,q)∈P
q +

∑

r,q∈P
q(r + logn)

⎞
⎠ logn

⎞
⎠ .

In addition, if n is prime, then it is not declared composite, so that the al-
gorithm returns a pseudo�led; whence by Proposition 4.2.3, its characteristic
polynomial is irreducible in F[x]. This leads to the following resutl:
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Proposition 4.3.4. There is an algorithm that, given a prime number p
and a period system P for p satisfying p >

∏
(r,q)∈P q, constructs a monic

irreducible polynomial f ∈ Fp[x] with deg f =
∏

(r,p)∈P q, and taht runs in
time

#̃

⎛
⎝
⎛
⎝ ∏

(r,q)∈P
q +

∑

(r,q)∈P
qr

⎞
⎠ log p

⎞
⎠ .

4.4 The continuous Frobenius problem
The famous Frobenius postage problem asks for the largest number which is
not in the additive semigroup generated by a set of coprime positive integers.
We are now going to see a new result of Bleichenbacher [17] that might be
considered a continuous version of this problem.

Theorem 4.4.1. Suppose S is an open subset of the positive reals that is
closed under addition, and such that 1 ∕∈ S. Then for any number t ∈ (0, 1],
we have

∫
S∩(0,t) dx/x ≤ t.

Proof. If S is an open subset of the positive reals, let

M(S) =

∫

S

dx

x
.

Let S be as in the hypothesis of the proposition, and �rst suppose that
St := S ∩ (0, t) is a �nite union of open intervals; that is, for some positive
integer n,

St =
n∪

i=1

(ai, bi),

where
t ≥ b1 ≥ a1 ≥ ⋅ ⋅ ⋅ ≥ bn ≥ an ≥ 0. (4.13)

Let a= (a1, . . . , an), b= (b1, . . . , bn). We claim that the condition that 1 is
not in the additive semigroup generated by St is equivalent to the assertion:
for each vector h∈ (ℕ≥0)

n,

h ⋅ b > 1 implies h ⋅ a ≥ 1. (4.14)

Let's suppose that h ⋅ b > 1 implies h ⋅ a ≥ 1.
If x ∈< St > then x =

∑n
i=1 cisi where, for all i = 1, . . . , n, ai < si < bi

and ci ∈ N , that means
∑n

i=1 ciai < x <
∑n

i=1 cibi. Let's now suppose 1 ∈<
St >, then we have

∑n
i=1 aici < 1 <

∑n
i=1 bici; so choosing h= (c1, . . . , cn)

we obtain h ⋅ a < 1 < h ⋅ b which is a contradiction.
Now let's suppose that 1 ∕∈< St >.
Let ā² = (a1 + ², . . . , an + ²) and b̄² = (b1 − ², . . . , bn − ²) and f : ℝn → ℝ
which maps a vector x= (x1, . . . , xn) to

∑n
i=1 ℎixi = h ⋅ x. This function
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is continuous, so we have that if f(a) < 1 < f(b) then there exists ² small
enough for which f(a²) < 1 < f(b²). Now let c² = [a1+ ², b1− ²]× . . .× [an+
², bn− ²] which is convex and let's consider the restriction of f to c² which is
continuous. By an important analytical theorem, we know that f(a²) < 1 <
f(b²) implies that there exists s ∈ c² such that f(s) =

∑n
i=1 ℎisi = 1 that is

1 ∈< St > which is a contradiction.
We have so proved that 1 ∕∈< St >⇔ h ⋅ b > 1 implies h ⋅ b ≥ 1 as required.
So it is never the case that h ⋅ a < 1 < h ⋅ b.
Suppose now that we �x the vector b and assume that

t ≥ b1 > b2 > ⋅ ⋅ ⋅ > bn > 0. (4.15)

Consider the set Ab of vectors a ∈ (ℝ>0)
n for which (4.13) and (4.14) hold.

If we have that there exists i for which 1/n ∈ (ai, bi) with n ∈ ℕ then we
have ai < 1

n < bi that means n ⋅ai < 1 < n ⋅bi; let's choose h= n⋅ ei where ei
is the i-th standard basis vector in ℝn, then we have h ⋅ a < 1 < h ⋅b which
is impossible. So no interval (ai, bi) with a ∈ Ab can contain the reciprocal
of an integer; therefore, we have each ai ≥ bi/2. For any vector a with each
ai ≥ bi/2, if h ⋅ b ≥ 2, then h ⋅ a ≥ 1 Thus, the set Ab is de�ned by the
conditions bi ≥ ai ≥ bi/2 and (4.14) for the �nite set of integer vectors h
with 1 < h ⋅ b < 2. We conclude that Ab is a compact subset of (ℝ>0)

n, so
there is a choice of the vector a which maximizes M(St) for the given vector
b. Call this maximum value Mb and assume that a is �xed at a choice which
produces this maximum.
Since empty intervals are allowed, that is, it is possible that ai = bi, it is
clear that if some coordinates of b are deleted to form a shorter vector b′

then Mb′ ≤Mb. Thus, by possibly replacing b with a shorter vector, we
may assume that each ai < bi. We are now going to see that we may assume
that each ai−1 > bi for 2 ≤ i ≤ n. Let's suppose some ai−1 = bi. We
may then consolidate the two intervals (ai, bi),(ai−1, bi−1) into one interval
(ai, bi−1). Indeed, if not, then now 1 is representable by a sum of members
of St ∪ bi. This sum must involve bi since 1 ∕∈ < St >. Let the coe�cient of
bi be a positive integral m. Now, if m = 1, then we have at least another
number in the sum since bi < 1. Let's replace bi in the sum with bi + ², for
a suitable small ² > 0, and then replace another member x ∈ St of the sum
with x − ². If ² is small enough, both bi + ² and x − ² belong to St, and
we have represented 1 as a sum of members of St, which is impossible. So
we have m ≥ 2. In this case, however, we can replace m ⋅ bi with the sum
(m − 1) ⋅ (bi + ²

m−1) + (bi − ²) whose members, for a suitable ², belong to
St. So we can represent 1 as a sum of members of St which is impossible as
well. Therefore, the consolidation of the two abutting intervals continues to
enjoy the property that 1 is not in the additive semigroup generated by the
intervals.
Hence, we may assume that ai−1 > bi for 2 ≤ i ≤ n. Thus, we may assume
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that the vector a satis�es

t ≥ b1 > a1 > ⋅ ⋅ ⋅ > bn > an > 0. (4.16)

H0 = {h ∈ (ℕ≥0)
n : h ⋅ a < 1},

H1 = {h ∈ (ℕ≥0)
n : h ⋅ a = 1},

H2 = {h ∈ (ℕ≥0)
n : h ⋅ a > 1}.

Since each ai > 0, it follows that H0,H1 are �nite sets.
We are now going to show that H1 is nonempty. Suppose not. Let u=
(1, 1, . . . , 1) ∈ (ℕ≥0)

n. We claim that if ² > 0 is small enough, then the
pair (a−²u, b) still satis�es (4.14) and (4.16). This would create a choice
for St with strictly larger M(St), a contradiction, thus showing that H1 is
nonempty.
It is clear that we may choose ² > 0 small enough so as to preserve the
condition (4.16). For h∈ H0 we have h ⋅ b ≤ 1, so that the vectors in H0

do not pose a problem for condition (4.14), and, since H1 is assumed empty,
H1 also does not pose a problem. There are only �nitely many h∈ H2 with
h ⋅ a ≤ 2. We may choose ² > 0 small enough so that h ⋅ (a − ²u) ≥ 1
for all such h. Finally, if h ⋅ a > 2, then if we choose ² < an/2 we have
h ⋅ (a− ²u) = ∑n

i=1 ℎi ⋅ (ai− an/2) where each member of the sum is greater
than ℎi ⋅ai/2 from which we can deduce that h ⋅(a−²u) > 1

2h ⋅a > 1. Hence,
as claimed, if ² > 0 is small enough, the pair (a− ²u, b) still satis�es (4.14)
and (4.16), providing a contradiction which shows that H1 is nonempty.
Let h∈ H1. For notational convenience, let an+1 = bn+1 = 0. And let ek be
the k-th standard basis vector in ℝn. For k = 1, . . . , n, since h ⋅ a = 1 and
ak > ak+1, we have

h ⋅ a− ak + ak+1 < 1.

Suppose that ℎk > 0. Let h′ = h− ek + ek+1 in the case that k < n, and let
h′ = h− ek in the case that k = n. Note that h′ ⋅ a = h ⋅ a− ak + ak+1 < 1
so we have h′ ∈ H0. Hence, from (4.14), we have that h′ ⋅ b ≤ 1. That is,

h ⋅ b− bk + bk+1 ≤ 1.

Using that h ∈ H1, we get that

h ⋅ (b− a) = h ⋅ b− 1 ≤ bk − bk+1

Thus, we have
ℎkh ⋅ (b− a) ≤ ℎk(bk − bk+1) (4.17)

an equality that clearly continues to hold even if ℎk = 0.
Let v∈ ℝn and let x such that bi−1 < ai + xvi < bi ∀i and then let

fv(x) = M

Ã
n∪

i=1

(ai + xvi, bi)

)
.
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Note that, using a famous analytic theorem, we have

f ′v(x) =
n∑

i=1

− 1

ai + xvi
⋅ vi

from which we see that f ′v(0) = −v ⋅ m(a) where m(a)= (1/a1, . . . , 1/an).
Note too that by the maximality of a, if the vector a + xv satis�es (4.14)
and (4.16) for all x in some interval [0, ²) with ² > 0, then f ′v(0) ≤ 0, that is,
v⋅m(a)≥ 0. We now show that this event occurs whenever h ⋅ v ≥ 0 for all
h∈ H1. Suppose that this condition holds. Let's now suppose that we have
h′ ⋅ (a+ xv) < 1 < h′ ⋅ b for some h′ ∈ (ℕ≥0)

n and let's see that this leads
us to a contradiction. Since h ⋅ b ≤ 1 for all h ∈ H0, we have h′ ∕∈ H0. If
h′ ∈ H1, then h′ ⋅ (a+xv) = 1+xh′ ⋅v ∀x ≥ 0, where h′ ⋅v is greater than 0
by hypothesis, and x ≥ 0 by construction, so we have h′ ⋅ (a+xv) ≥ 1 which
is a contradiction. Thus, we have h′ ∕∈ H1. If h ∈ H2, since h ⋅ a > 1, we
may choose ² > 0 small enough, such that, for all h ∈ H2 and all x ∈ [0, ²),
we have h ⋅ (a + xv) > 1 which is a contradiction. Therefore, h′ ∕∈ H2. It
follows that for ² > 0 small enough, if h ⋅ v ≥ 0 for all h ∈ H1, then a+ xv
satis�es (4.14) and (4.16) for 0 ≤ x ≤ ², and so v ⋅m(a) ≥ 0.
We now apply a result of Farkas
Lemma 4.4.1. (J. Farkas) Suppose A is an n× u real matrix and m ∈ ℝn.
Then the inequalities Av ≥ 0, m ⋅ v < 0 are unsolvable for a vector v ∈ ℝn

if and only if there is a vector p ∈ ℝu with p ≥ 0 and pTA = m.

(Saying that a vector is ≥ 0, we mean that each entry of it is ≥ 0). We
apply this lemma to the matrix A whose rows are the u vectors in H1 and
to the vector m = m(a). Now,

Av =

⎛
⎜⎜⎜⎝

ℎ11 ⋅ ⋅ ⋅ ℎ1n
ℎ21 ⋅ ⋅ ⋅ ℎ2n
... . . . ...

ℎu1 ⋅ ⋅ ⋅ ℎun

⎞
⎟⎟⎟⎠⋅

⎛
⎜⎜⎜⎝

v1
v2
...
vn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎝

ℎ11v1 + . . .+ ℎ1nvn
...

ℎu1v1 + . . .+ ℎunvn

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

h1 ⋅ v
h2 ⋅ v

...
hu ⋅ v

⎞
⎟⎟⎟⎠

Where ℎji is the i-th entry of hj and hj ∈ H1. Therefore, Av ≥ 0 if and only
if hj ⋅ v ≥ 0 for all hj ∈ H1, which, as we have just seen, implies m ⋅ v ≥ 0.
Thus, the lemma implies that there is a vector p ∈ ℝu with p ≥ 0 and
pTA = m. Say p = (p1, . . . , pu) and H1 = {h1, . . . ,hu}. We have

(pTA)i =
n∑

j=1

pjℎji = 1/ai = mi for 1 ≤ i ≤ n.

Take 4.17 applied to hj , multiply it by pj , and sum over j. For k = 1, . . . , n,
we have,

u∑

j=1

pjℎjk

n∑

i=1

ℎji(bi − ai) ≤
u∑

j=1

pjℎjk(bk − bk+1) = (1/ak)(bk − bk+1).
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Multiplying corresponding inequalities by ak and summing over k, we get
n∑

k=1

ak

u∑

j=1

pjℎjk

n∑

i=1

ℎji(bi − ai) ≤
n∑

k=1

(bk − bk+1)

= b1 − bn+1

= b1 since bn+1 = 0

(4.18)

The left side of (4.18) is
u∑

j=1

pj

n∑

k=1

akℎjk

n∑

i=1

ℎji(bi − ai) = a ⋅ hj

u∑

j=1

pj

n∑

i=1

ℎji(bi − ai)

=
u∑

j=1

pj

n∑

i=1

ℎji(bi − ai)

=
n∑

i=1

(bi − ai)
u∑

j=1

pjℎji =
n∑

i=1

(bi − ai)/ai.

Thus, (4.18) implies that
n∑

i=1

((bi/ai)− 1) ≤ b1 (4.19)

However,

M((ai, bi)) =

∫ bi

ai

dx

x
= log(bi/ai) < (bi/ai)− 1

Hence, by (4.19),

Mb =

n∑

i=1

log(bi/ai) <

n∑

i=1

(bi/ai)− 1 < b1 ≤ t

Since Mb < t for each choice of b satisfying (4.15), it remains to handle
the case of St being the union of in�nitely many disjoint open intervals. If
St(n) is the union of n of these disjoint open intervals with St(n) ⊂ St(n+
1) and

∪
St(n) = St, we have M(St(n)) < t for each n, and M(St) =

limn→∞M(St(n)) ≤ t. This concludes the proof of the theorem. ■

4.5 The existence of period systems
The following two sections develop some tools from analytic number theory
which will be used to prove our �nal auxiliary result: the existence of period
systems.
In Section 4.5.1 we review some results concerning the distribution of primes
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in residue classes, and give a somewhat weaker, but e�ective version of the
Bombieri-Vinogradov inequality. (See [5] for a similar result.) We also in-
troduce our major tool, a theorem of Deshouillers and Iwaniec [6]. While
weaker than Fouvry's theorem, this result is e�ective in principle.
In Section 4.5.2 we show that there are many primes r with certain con-
straints on the primes in r − 1. For this we refer to a paper of Balog [7].
This paper uses the same theorem of Fouvry as in the case of the AKS al-
gorithm, and also the Bombieri-Vinogradov theorem. To achieve e�ectively
computable estimates, we use instead the Deshouillers-Iwaniec result and the
e�ective Bombieri-Vinogradov inequality from Section 4.5.1.
We will only enunciate the results without dealing with the proofs.

4.5.1 The distribution of primes in residue classes
For a natural number q, an integer a coprime to q, and a real number x, let
¼(x, q, a) denote the number of primes p ≤ x with p ≡ a (mod q). Also, let

Λ(n) =

⎧
⎨
⎩
log p if n = pk, p prime , k ≥ 1
1 if n = 1
0 otherwise.

the von Mangoldt's function.
Now let

Ã(x, q, a) =
∑

n≤x
n≡a (mod q)

Λ(n), µ(x, q, a) =
∑

p≤x,p prime
p≡a (mod q)

log p.

Now let li(x) =
∫ x
0

1
ln ydy. For a �xed ² > 0, we have the asymptotic relations:

¼(x, q, a) ∼ li(x)

'(q)
and Ã(x, q, a) ∼ x

'()q

as x → ∞, where error estimates may be explicity calculated. For q large
we have either ine�ective estimates or inequalities. In this section we record
some e�ective inequalities for ¼(x, q, a) that are valid in large ranges for q.

Lemma 4.5.1. [Brun-Titchmarsh inequality] If x > q we have

¼(x, q, a) ≤ 2x

'(q) log(x/q)
.

This form of the lemma is due to Montgomery and Vaughan [8]. Note
that the inequality gives an upper bound for ¼(x, q, a) that is of the expected
order of magnitude, namely x/('(q) log x), if q < x1−². When q is of order
of magnitude x®, the upper bound provided by the lemma is presumably too
large by a factor 2/(1− ®).
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Lemma 4.5.2. [e�ective Bombieri-Vinogradov inequality] There are
absolute, e�ectively computable positive numbers c6, c7 such that for all num-
bers x ≥ 3, there is an integer set S(x) ⊂ [(log x)1/2 exp((log x)1/2)] of car-
dinality 0 or 1, such that for each number Q ∈ [x1/3 log x, x1/2],
∑

q≤Q

′
max
2≤y≤x

max
gcd(a,q)=1

∣∣∣∣Ã(y, q, a)−
y

'(q)

∣∣∣∣ ≤ c6x
1/2Q(log x)5+c6x exp

(
−c7(log x)

1/2
)
,

where the dash indicates that if S(x) = {s1}, then no q in the sum is divisible
by s1.

For the proof see [9].
Lemma 4.5.3. With the same notation and hypothesis as in Lemma 4.5.2,
we have
∑

q≤Q

′
max

gcd(a,q)=1

∣∣∣∣¼(x, q, a)−
li(x)

'(q)

∣∣∣∣ ≤ c12x
1/2Q(log x)5+c12x exp

(
−c7(log x)

1/2
)
,

where c7 is as in Lemma 4.5.2 and c12 is an absolute, e�ectively computable
number.
Lemma 4.5.4. [Deshouillers-Iwaniec] For each integer m with m ≥ 3
there is an e�ectively computable integer xm and absolute and e�ectively
computable positive numbers c13c14 with the following property. For arbitrary
numbers x,Q with x ≥ xm, and x1/2 ≤ Q ≤ x1−1/m, and for an arbitrary
integer a with 0 < ∣a∣ < x1/m, we have

¼(x, q, a) ≤ (4/3 + c13/m)x

' log(x/q)

for almost all integers q ∈ [Q, 2Q] with gcd(q, a) = 1, the number of excep-
tions being less than Qx−c14/m.

4.5.2 Sieved primes
In this section we give a lower bound for the distribution of primes r with
r − 1 free of prime factors in some given set. As we have already said, for
the proof we refer to [7]. Before stating this result we present the following
lemma:
Lemma 4.5.5. We have for any real number t > 1 that

∑

d<t

1

'(d)
=

³(2)³(3)

³(6)
log t+ º + #

(
log(2t)

t

)
,

where ³ is the Riemann zeta-function and where º =
∑

u ¹
2(u)(°−log u)/(u'(u))

with u ∣ d, ¹(u) the Möbius function (that is (−1)k if u is a squarefree and
has k distinct prime factors, and 0 otherwise) and ° is the Euler-Mascheroni
constant.

64



Proposition 4.5.1. For each integer m ≥ 4, there are e�ectively computable
positive numbers Xm, ±m, with Xm an integer, satisfying the following prop-
erty. If x ≥ Xm and Q is a set of primes in the interval (1, x1/2] with

∑

q∈Q

1

q − 1
≤ 3

11
− 1

m
,

then there are at least ±mx/(log x)2 primes r ≤ x such that every prime
factor q of r − 1 satis�es q ≤ x1/2 and q ∕∈ Q.

4.5.3 The existence of period systems
We are now ready to prove the existence of period systems.
Also in this section some proofs will not be given.
Let's �rst show that there are many period pairs for n.

Proposition 4.5.2. Let n be an integer, n > 1, and let w, y be real numbers.
Each prime number r satis�es at least one of the following conditions:

(i) the element (n mod r) of Fr is either zero or has multiplicative order at
most w.

(ii) There is an integer m composed of primes at most y with m ∣ r− 1 and
m > w.

(iii) There is an integer q with q > y and q2 ∣ r − 1.

(iv) There is a prime q such that q > y and gcd(r, q) is a period pair for n.

Proof. If (n mod r) does not belong to F ∗
r then (i) holds. So let's suppose

(n mod r) ∈ F ∗
r , and let m be the order of (n mod r) in F ∗

r . Then m divides
r − 1, so if m ≤ w, then (i) holds. Thus, let's suppose m > w. If m has
no prime factor exceeding y, then (ii) holds. Suppose therefore that q is a
prime factor of m with q > y; then q equals the order of (nm/q mod r). If
q divides (r − 1)/m, then (iii) holds. If q does not divide (r − 1)/m, then
the element (n(r−1)/q mod r) = (nm/q mod r)(r−1)/m has order q, and (iv)
holds. ■

De�nition 4.5.1. The Dickman-de Bruijn function ½(u) is a continuous
function that satis�es the delay di�erential equation

u½′(u) + ½(u− 1) = 0

with initial conditions ½(u) = 1 for 0 ≤ u ≤ 1.

From [10] we can state

log ½(u) = −u ⋅ log(u log u) + #(u) for u ≥ 2. (4.20)
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Lemma 4.5.6. Let x, u, v be real numbers with x ≥ 20, 1 ≤ v ≤ u ≤√
(log x) log log x, and put y = x1/u, w = yv. The number of prime numbers

r ≤ x satisfying 4.5.2 (ii) is at most

#

(
u¼(x)

(
½(v)

log(2v)
+ ½(u)

))

Proof. This is Theorem 2 from [11]. ■

Proposition 4.5.3. For all su�ciently large integers n, if x is a real number
such that x ≥ (log n)1+1/1800, then the number of prime numbers r ≤ x for
which there does not exist a period pair (r, q) for n satisfying

q is prime, q > x1/(log log x)
2

is at most x/(log x)3.
Proof. By Proposition 4.5.2, we only need to show that when n is a su�-
ciently large integer and x is a real number with x ≥ (logn)1+1/1800, the
number of primes r ≤ x satisfying one of Proposition 4.5.2(i)-(iii), with
w = x1/ log log x and y = x1/(log log x)

2 , is at most x/(log x)3. We prove this
by showing that the number of such primes r is o(x/(logx)3 as n → ∞. If
the prime r satis�es 4.5.2(i), then either r ∣ n or r ∣ nm − 1 for some integer
m in [1, w]. Since the number of distinct prime divisors of an integer k > 2
is evidently smaller than (log k)/ log 2, the number of primes r satisfying
Proposition 4.5.2(i), is smaller than

log n

log 2
+

∑

m≤w

m ⋅ logn
log 2

≤ w2 ⋅ logn
log 2

≤ x1800/1801+o(1) = o(x/(log x)3)

as n → ∞.
To estimate the number of primes r ≤ x satisfying Proposition 4.5.2(ii) we
apply Lemma 4.5.6 with v = log log x and u = v2; using (4.20) we can say
that, as n → ∞, this number is at most

x/(log x)(1+o(1)) log log log x = o(x/(log x)3).

The number of integers r with 1 < r ≤ x satisfying Proposition 4.5.2(iii) is
clearly at most

∑
q>y x/q

2 < x/(y − 1) = o(x/(log x)3) as n → ∞. ■

Let ² = 1/150, let n be an integer n ≥ 20, and let x, u be real numbers
with

x ≥ (log n)1+²/12 = (logn)1+1/1800, u = (log log x)2

For a prime r, let Q(r) denote the set of prime divisors q of r − 1 with

x1/u < q ≤ x1/2 and (r, q) is a period pair for n.

Further, let Q denote the union of the sets Q(r) over all primes r ≤ x. We
are interested in Q since each subset S of it corresponds to at least one period
system for n with degree

∏
q∈S q.
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Proposition 4.5.4. For all su�ciently large integers n and for all real num-
bers x ≥ (log n)1+²/12, we have

∑

q∈Q

1

q
>

3− ²

11

.

Proof. Let

A = {prime r ≤ x: prime q ∣ r − 1 implies q ≤ x1/2 and q ∕∈ Q}

B = {prime r ≤ x: prime q ∣ r− 1 implies q ≤ x1/u or (r, q) is not a pe-
riod pair for n} Clearly A ⊂ B. We use Proposition 4.5.1, with "m" of that
result being the current 11 = /² = 1650; let ± = ±1650. Suppose n is so large
that Proposition 4.5.1 and 4.5.3 hold for all x ≥ (logn)1+²/12. If

∑
q∈Q 1/q ≤

(3 − ²)/11, then Proposition 4.5.1 implies that #A ≥ ±x/(log x)2. And so
#B ≥ ±x/(log x)2. But Proposition 4.5.3 implies that #B ≤ x/(log x)3.
These two inequalities for #B are incompatible for large n.
From this contradiction we deduce the proof. ■

With n, x, u as above, let N be an integer for which

6u log x ≤ N ≤ exp(2(log x)3/5(log log x)−3/2). (4.21)

For a bounded interval I, let ∣I∣ denote the length of I.

Proposition 4.5.5. For an integer N satisfying (4.21) and for i = 1, 2, . . . , N ,
let

Ii = [x(i−1)/N , xi/N ), Mi = xi/N/i2,

and

ki =

{
0, if #(Ii ∩Q) < Mi

min{#(Ii ∩Q), ⌊∣Ii∣/ log(xi/N )⌋}, otherwise.

For i ≤ N/u, #(Ii ∩ Q) = 0, and for each i = 1, 2, . . . , N , then ki = 0 or
ki ≥ Mi.

Proof. Note that all primes q ∈ Q have q > x1/u, so it follows that #(Ii ∩
Q) = 0 for i ≤ N/u. For the second assertion, we thus may assume that
u > 1. Note that for i > 1 we have

∣Ii∣
log(xi/N )

=
xi/N (1− x−1/N )

(i/N) log x
>

xi/N (log x)/(2N)

(i/N) log x
≥ Mi,

where we use x−1/N = e−(log x)/N < 1 − (log x)/(2N), which holds from
(4.21). ■
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Proposition 4.5.6. For an integer N satisfying (4.21) and intervals Ii and
integers ki de�ned in Proposition 4.5.5, let Qi denote the set of the least ki
primes in Ii ∩Q. If n is su�ciently large we have

N∑

i=1

∑

q∈Qi

1

q
>

3

11
− ²

10
.

Proof. The double sum here may be smaller than the sum
∑

q∈Q
1
q in Propo-

sition 4.5.4, the possible di�erence between them coming from two sources:
intervals Ii with 0 < #(Ii ∩ Q) < Mi and intervals Ii with #(Ii ∩ Q) >
⌊∣Ii∣/ log(xi/N)⌋. By Proposition 4.5.5 we only need to consider indices
i > N/u. We thus may assume that u > 1. The sum of 1/q for primes q in
intervals Ii with #(Ii ∩Q) < Mi is at most

∑

i>N/u

Mi

x(i−1)/N
=

∑

i>N/u

x1/N

i2
<

2u

N
x1/N ≤ 1

3 log x
e1/(6u) <

1

log x
,

by the �rst inequality in (4.21). Thus, this contribution is o(1) as n → ∞,
so is negligible.
The sum of 1/q for the largest #(Ii ∩ Q) − ⌊∣Ii∣/ log(xi/N )⌋ primes q in an
interval Ii with #(Ii ∩Q) > ⌊∣Ii∣/ log(xi/N )⌋ is estimated as follows. By the
prime number theorem (see [12]), the total number of primes in Ii is

Li + #(E(xi/N )),

where

Li =

∫ xi/N

x(i−1)/N

dt

log t
and E(z) = z/ exp(c16(log z)

3/5(log log z)−1/5),

with c16 an e�ective positive constant. As before, we may assume i > N/u.
Note that

0 ≤ Li − ∣Ii∣
log(xi/N )

≤ ∣Ii∣
log(x(i−1)/N )

− ∣Ii∣
log(xi/N )

= ∣Ii∣ N

i(i− 1) log x
.

Further,
∣Ii∣ = x(i−1)/N (x1/N − 1) < 2xi−1/N log x

N
, (4.22)

so that
Li − ∣Ii∣

log(xi/N )
<

2x(i−1)/N

i(i− 1)
= #(Mi).

Further, for N/u < i < N ,

E(xi/N ) ≤ xi/N

exp(c16u−3/5(log x)3/5(log log x)−1/5)
=

xi/N

exp(c16(log x)3/5(log log x)−7/5)
,
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so that from the upper bound for N in (4.21), E(xi/N ) = #(Mi). Thus,
the contribution in Proposition 4.5.4 from primes in Ii with #(Ii ∩ Q) >
⌊∣Ii∣/ log(xi/N )⌋ is

#

⎛
⎝ ∑

N/u<i≤N

Mi

x(i−1)/N

⎞
⎠ ,

a sum we have seen to be negligible. ■

Proposition 4.5.7. For an integer N satisfying (4.21) an integer ki de�ned
in Proposition 4.5.5, let S(i) be the image of the interval

(x(i−1)/N , x(i−1)/N + ki log(x
i/N ))

under the natural logarithm map. If n is su�ciently large, then
N∑

i=1

∫

S(i)

dt

t
>

3

11
− ²

9
.

Proof. Since
∑

q∈Qi
1/q ≤ ki/x

(i−1)/N , it follows from Proposition 4.5.6 that
for n su�ciently large,

N∑

i=1

ki

x(i−1)/N
>

3

11
− ²

10
. (4.23)

Further, if S(i) ∕= ∅, that is, if ki > 0, then
∫

S(i)

dt

t
= log

Ã
log(x(i−1)/N ) + ki log(x

i/N)

log(x(i−1)/N )

)
.

Now, log(a+ b) > log(a) + b/a− (b/a)2 when a, b > 0, so that if a > e and
0 < b < a,

log

(
log(a+ b)

log a

)
>

b

a log a
− 2

log a

(
b

a

)2

=
b

a log a

(
1− 2b

a

)
.

Hence,
∫

S(i)

dt

t
>

ki log(x
i/N )

x(i−1)/N log(x(i−1)/N )

Ã
1− 2ki log(x

i/N )

x(i−1)/N

)

>
ki

x(i−1)/N

Ã
1− 2ki log(x

i/N )

x(i−1)/N

)
.

Note that, using (4.21), (4.22) and the de�nition of ki,

2ki log(x
i/N )

x(i−1)/N
≤ 2∣Ii∣

x(i−1)/N
<

4 log x

N
<

1

u
,

69



so that ∫

S(i)

dt

t
>

ki

x(i−1)/N
(1− u−1).

Thus, the proposition follows from (4.23) for su�ciently large n. ■

We are now ready for our main result concerning with the existence of
period systems:

Proposition 4.5.8. There is an e�ectively computable positive integer c5
such that, for each integer n > c5 and each integer D > (logn)46/25, there
exists a period system P for n consisting of pairs (r, q) with

r < D6/11, q < D3/11, q prime,

and with degree d satisfying D ≤ d < D+D/ exp((logD)3/5(log log(3D))−3/2).
In particular, d ∈ [D, 2D).

Proof. Let ² = 1/150, let n be an integer so large that Proposition 4.5.7
holds, and let D be an integer satisfying

D > (log n)11/6+² = (log n)46/25.

Let x = D6/11²/4 so that x > (log n)1+1/1800, let u = (log log x)2, and let
integer N satisfy (4.21). Let D′ = D exp(2u(log x)/N) and let S be the
additive semigroup generated by

N∪

i=1

1

logD′S(i),

where S(i) is as in Proposition 4.5.7. Note that if S(i) ∕= ∅ we have
x(i−1)/N ≤ x1/2, so that

log(xi/N )

logD′ ≤
(
1

2
+

1

N

)
log x

logD
=

(
1

2
+

1

N

)(
6

11
− ²

4

)
<

3

11
− ²

9

for su�ciently large n; that is, S(i)/ logD′ ⊂ (0, 3/11 − ²/9). We suppose
that n is so large.
Thus, from Proposition 4.5.7 and the fact that the intervals S(i) are disjoint,
we have

∫

S∩(0,3/11−²/9)

dt

t
≥

N∑

i=1

∫

S(i)/ logD′

dt

t
=

∑

i

∫

S(i)

dt

t
>

3

11
− ²

9
.

It thus follows from Theorem 4.4.1 that 1 ∈ S. Hence, there is a �nite subset
F of

∪
i S(i) and positive integers ·(f) for each f ∈ F such that

∑

f∈F
·(f)f = logD′.
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Let Fi = F ∩ S(i) for i = 1, 2, . . . , N , and let

·i =
∑

f∈Fi

·(f).

Then, using S(i) = ∅ for i ≤ N/u from Proposition 4.5.5,

N∑

i=1

·i =
∑

i

∑

f∈Fi

·(f) ≤
∑

i

1

log(x(i−1)/N )

∑

f∈Fi

·(f)f

<
1

log(x1/u−1/N )

∑

f∈F
·(f)f =

logD′

(1/u− 1/N) log x
< 2u,

(4.24)

where the last inequality holds when n is su�ciently large. If S(i) ∕= ∅, then
Proposition 4.5.5 implies that ki ≥ Mi, so that ki > x1/u/N2 > 2u > ·i.
Thus, for each i with ·i > 0 there are at least ·i distinct primes in Qi. Label
the least such primes q1,i, q2,i, . . . , q·i,i and let

d =
N∏

i=1

·i∏

j=1

qj,i.

If rj,i ≤ x is a prime with qj,i ∈ Q(rj,i) then

P = {(rj,i, qj,i) : i = 1, . . . , N, j = 1, . . . , ·i}

is a period system for n with degree d. We have

∣ logD′ − log d∣ =
∣∣∣∣∣∣
∑

f∈F
·(f)f −

N∑

i=1

·i∑

j=1

log(qj,i)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

N∑

i=1

⎛
⎝∑

f∈Fi

·(f)f −
·i∑

j=1

log(qj,i)

⎞
⎠
∣∣∣∣∣∣

<
∑

i

·i

(
log(xi/N )− log(x(i−1)/N )

)
=

log x

N

∑

i

·i

<
2u log x

N
,

(4.25)

using (4.24). Thus,

D = D′ exp(−2u(log x)/N) < d < D′ exp(2u(log x)/N) < D(1+6u(log x)/N).

By choosing N near the upper end of the interval in (4.21), we have proved
the Proposition. ■
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4.5.4 Algorithm for existence of period system
We now proceed with a straightforward transformation of Proposition 4.5.8
into an algorithm for constructing period systems.
This algorithm takes as input an integer n > 1 and an integer D > 0, and
searches for a period system P for n with the properties listed in Proposition
4.5.8.

Algorithm 3:

Step 1. Using a modi�ed version of the sieve of Eratosthenes, sieving with
prime powers rather than just with primes, compute the prime factor-
ization of all integers in [1, 2D).

Step 2. For each prime number r < D6/11 not dividing n, in increasing
order, determine the set Q(r) of prime factors q of r − 1 that satisfy

q < D3/11, n(r−1)/q ∕≡ 1 (mod r), q ∕∈
∪

r′<r

Q(r′).

Put Q =
∪

r Q(r) and, for each q ∈ Q, put rq = r if q ∈ Q(r).

Step 3. If there is some integer in [D, 2D) that is squarefree and composed
solely of primes from Q, let d be the least such integer, let P be the set
of all pairs (rq, q), with q ranging over the prime factors of d, return
P , and halt. If no such integer exists, pronounce failure and halt.

4.6 The primality test
In this section we will see that there exists a deterministic algorithm that
decides whether an integer n is prime or not. We will also see that it works
in the desired time.
Now we see some results that will lead to the claimed algorithm.
In the following Proposition the constant c5 is as in Proposition 4.5.8.

Proposition 4.6.1. The algorithm above, on input of integers n > 1 and
D > 0, successfully computes a period system for n with the properties listed
in Proposition 4.5.8 if and only if such a period system exists, which is the
case if n > c5 and D > (logn)46/25; the run time of the algorithm is #̃(D +
D6/11 logn).

Proof. The "if and only if" statement is clear from the algorithm, the second
assertion is immediate from Proposition 4.5.8, and proof of the run time
estimate is entirely straightforward. ■

We are now going to describe the algorithm:
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Algorithm 4:
Given an integer n > 1, this algorithm decides whether or not n is prime.

Step 1. If n ≤ c5, �nd by trial division the least prime p dividing n, declare
n prime or composite according as n = p or n ∕= p, and halt.

Step 2. Using the algorithm of [13], determine the largest k ∈ ℤ for which
there exists m ∈ ℤ with n = mk. If k > 1, declare n composite and
halt.

Step 3. Using standard algorithms for computing elementary functions (cf.
[14]), compute an integer D satisfying

D2 < max
(
(log n)2/(3 ⋅ (log 2)2), (logn)46/25

)
< D.

Next, using Algorithm 3, construct a period system P for n with the
properties listed in Proposition 4.5.8. Put d =

∏
(r,q)∈P q.

Step 4. Using standard algorithms for computing elementary functions (cf.
[14]), compute an integer b satisfying

b− 1 < (d/3)1/2(log n)/ log 2 < b+ 1,

and test by trial division whether n has a divisor among 2, 3, . . . ,max{d, b}.
If it does, let p be the least such divisor, declare n prime or composite
according as n = p or n ∕= p, and halt.

Step 5. Using Algorithm A of Proposition 4.3.3, either declare n compos-
ite and halt, or construct a pseudo�eld (A,®) of characteristic n and
degree d.

Step 6. For a = 1, 2, . . . , b, test the equality ®n + a = (®+ a)n in A. If all
of these are valid, declare n prime and halt. If at least one fails to be
valid, declare n composite and halt.

We are now ready to state the following:

Theorem 4.6.1. There exists, for some e�ectively computable real num-
ber c0, a deterministic algorithm that, given an integer n with n > 1, de-
cides whether or not n is prime, and does so in time at most (log n)6 ⋅ (2 +
log logn)c0.

Proof. We prove that the algorithm above has the properties claimed in the
Theorem, that is, it terminates within time #̃((logn)6), correctly declaring
n prime or composite.
Step 1 runs in time #(1), and by [13], Step 2 runs in time #̃(log n). If the
algorithm halts during one of these two steps, it is clearly correct. Assume
otherwise, so that one has n > c5 and n is not a proper power. The �rst
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part of Step 3 runs in time #(logn), and from D > (logn)46/25 and D =
#((logn)2) it follows, by Proposition 4.6.1, that the second part of Step
3 successfully computes a period system in time #̃((logn)23/11). We have
d = #((logn)2), and from d ≥ 2#P one obtains #P = #(log(2 logn)). Step
4 runs in time #̃((logn)3) because b = #((logn)2). If the algorithm halts
in Step 4, it is clearly correct. Suppose otherwise. Then we have n > d,
so by Proposition 4.3.3 and the inequalities in Proposition 4.5.8, Step 5
runs in time #̃((logn)3). As we argued in the section where we dealt with
algorithmic aspects of pseudo�elds, the test in Step 6 can be done in time
#̃((d1/2 logn)3), which is #̃((logn)6). Since n passed Step 4, it has a prime
divisor greater than (d/3)1/2(log n)/ log 2, so Proposition 4.2.4 implies that,
if n passes the test in Step 6, it is a prime power; not being a proper power,
it must be prime. If n does not pass the test in Step 6, then by Proposition
4.2.3 (with n in the role of p and ®+ a in the role of ¯) it cannot be a prime
number.
This concludes the proof of this important result. ■
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Chapter 5

Bernstein's RP Algorithm

In this chapter we give a sketch of an RP algorithm. This algorithm is a
modi�cation of AKS given by Bernstein, following up on ideas of Berrizbeitia,
as developed by Qi Cheng.

5.1 Introduction
First of all let's de�ne the RP class:

De�nition 5.1.1. In complexity theory, RP ("randomized polynomial time")
is the complexity class of problems for which a probabilistic Turing machine
exists with these properties:

1. It always runs in polynomial time in the input size.

2. If the correct answer is NO, it always returns NO.

3. If the correct answer is YES, then it returns YES with probability at
least 1/2 (otherwise, it returns NO).

Next we describe an algorithm belonging to the RP class that distin-
guishes primes from composites and provides a proof within #((logn)4+0(1))
steps. The only drawback is that this is not guaranteed to work. Each time
one runs the algorithm the probability that it reports back is, by de�nition of
RP class, ≥ 1/2, but each run is independent, so after 100 runs the probabil-
ity that one has not yet distinguished whether the given integer is prime or
composite is < 1/2100, which is negligible. In practice this algorithm makes
the original AKS algorithm irrelevant, for if we run the "witness" test, which
is an RP algorithm for compositeness, half of the time and run this RP algo-
rithm for primality the other half, then a number n is, in practice, certain to
yield its secrets faster (in around #((logn)4+o(1)) steps) than by the original
AKS algorithm.
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5.2 A characterization of the primes
De�nition 5.2.1. For a given monic polynomial f(x) with integer coe�-
cients of degree d ≥ 1 and positive integer n, we say that ℤ[x]/(n, f(x)) is
an almost�eld with parameters (e, v(x)) if

(a) Positive integer e divides nd − 1,

(b) v(x)n
d−1 ≡ 1 mod (n, f(x)), and

(c) v(x)(n
d−1)/q is a unit in ℤ[x]/(n, f(x)) for all primes q dividing e.

If n is prime and f(x) (mod n) is irreducible, then ℤ[x]/(n, f(x)) is a
�eld; moreover any generator v(x) of the multiplicative group of elements of
this �eld satis�es (b) and (c) for any e satisfying (a).

Theorem 5.2.1. [Bernstein] For given integer n ≥ 2, suppose that ℤ[x]/(n, f(x))
is an almost�eld with parameters (e, v(x)) where e > (2d logn)2. Then n is
prime if and only

� n is not a perfect power

� (t− 1)n
d ≡ tn

d − 1 mod (n, f(x), te − v(v)) in ℤ[x, t]

Proof. Write N = nd and v = v(x). If n is a perfect power, then n is
composite. If n is prime, then the second condition holds by the Child's
Binomial Theorem . So we may henceforth assume that n is not a perfect
power and is not prime, and we wish to show that (t − 1)n

d ∕≡ tn
d − 1 mod

(n, f(x), te − v(x)). Let p be a prime dividing n and ℎ(x) an irreducible
factor of f(x) (mod p), so that F = Z[x]/(p, ℎ(x)) is isomorphic to a �nite
�eld. Let P = ∣F ∣ = pdeg ℎ, and note that since p < n and deg ℎ ≤ deg f ,
hence P < N .
Let ³ ≡ v(N−1)/e mod (p, ℎ(x)) so that ³ is an element of order e in F. To
see this, note that ³e ≡ vN−1 (mod ()p, ℎ(x)) by (b); whereas if ³ had
order m, a proper divisor of e, then let q be a prime divisor of e/m so that
1 ≡ ³e/q ≡ v(N−1)/q mod (p, ℎ(x)), contradicting (c).
The polynomials of the form

∏e−1
i=0 (³

it−1)ai in F[t] are distinct, and so those
of degree ≤ e− 1 are distinct in F[t]/(te − v).
Now tN = tN−1t ≡ v(N−1)/et mod (te−v), so that tN ≡ ³t mod (p, ℎ(x), te−
v). Thus our second criterion implies that (t−1)N ≡ ³t−1 mod (p, ℎ(x), te−
v). Moreover replacing t by ³it gives (³it−1)N ≡ ³i+1t−1 mod (p, ℎ(x), te−
v) for any integer i ≥ 0 (since (³it)e − v = te − v), and thus (t − 1)N

i ≡
³it − 1 mod (p, ℎ(x), te − v) by a suitable induction argument. Note that
(t− 1)N

e ≡ (t− 1) mod (p, ℎ(x), te − v).
Therefore for proper subsets I of {0, 1, . . . , e−1} the powers (t−1)

∑
i∈I N

i ≡∏
i∈I(³

it−1) mod (p, ℎ(x), te−v) all have degree ≤ e−1 and so are distinct
polynomials, and thus there are at least 2e−1 distinct powers of (t−1) mod
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(p, ℎ(x), te − v).
Now e is the order of an element of F∗, which is a cyclic group of order
P − 1, and so P − 1 is a multiple of e. Therefore v(P−1)/e is an e-th root
of 1 in F, so must be a power of ³, say ³ l. Arguing as done earlier, but
now with N and ³ replaced by P and ³, we see that (t − 1)P

j ≡ ³jlt −
1 mod (p, ℎ(x), te−v). Combining these results we obtain that (t−1)N

iP j ≡
³i+jlt− 1 mod (p, ℎ(x), te − v) for all integers i, j.
There are more than e pairs of integers (i, j) with 0 ≤ i, j ≤ [

√
e], and

so there exist two numbers of the form i + jl (with i and j in this range)
that are congruent modulo e, say i + jl ≡ I + Jl (mod e). Therefore if
u := N iP j and U := N IP J , then (t− 1)u ≡ ³i+jlt− 1 = ³I+Jlt− 1 ≡ (t−
1)U mod (p, ℎ(x), te−v). We will show that t−1 is a unit mod (p, ℎ(x), te−v)
so that we can deduce that there are no more than ∣U − u∣ < (NP )

√
e − 1 <

N2
√
e−1 distinct powers of (t−1) mod (p, ℎ(x), te−v), and thus 2e < N2

√
e,

contradicting the hypothesis.
Now v(x) ∕= 1 in F by (c), so that t− 1 is not a factor of te − v(x) in F[t]; in
other words t−1 is a unit in the ring F[t]/(te−v(x), that is mod (p, ℎ(x), te−
v). ■

5.3 Running this primality test in practice
We will show that if n is prime, then an almost�eld may be found rapidly in
random polynomial time.

Finding the almost�eld: Assume that n is prime. By the inclusion-exclusion
formula one can prove that there are (1/d)

∑
l∣d ¹(d/l)n

l irreducible
polynomials modulo n of degree d, where ¹ is the Möbius function
that we have seen in Lemma 4.5.5. The biggest term here is the
one with l = d: in fact 1/d¹(1)nd = nd/d; that is, roughly 1/d of
the polynomials of degree d are irreducible. Thus selecting degree d
polynomials at random we should expect to �nd an irreducible one
in #(d) selections. Verifying f is irreducible can be done by check-
ing, via the Euclidean algorithm, that xnd − x ≡ 0 mod (n, f(x)) and
xn

d/q − x is a unit in ℤ[x]/(n, f(x)) for all primes q dividing d. Once
we have found f we know that ℤ[x]/(n, f(x)) is a �eld. The elements
of ℤ[x]/(n, f(x)) can be represented by the polynomials v(x) modulo
n of degree < d. The proportion of these that satisfy (b) and (c) is∏

p∣e(1 − 1/p) > 1/2 ln ln e, and so selecting such v(x) at random we
should expect to �nd v(x) satisfying (b) and (c) in #(d) selections.

Verifying primality conditions: The main part of the running time comes
in verifying that (t−1)n

d ≡ tn
d −1 mod (n, f(x), te−v(x)), which will

take d log n steps, each of which will cost #(de(log n)1+o(1)) bit oper-

77



ations, giving a total time of #(d2e(log n)2+o(1)) bit operations. The
conditions d ≥ 1, e > (2 log n)2 imply that the running time cannot be
better than #((logn)4+o(1)), and we will indicate in the next section
how to �nd d and e so that we obtain this running time.

5.4 More analytic number theory
To �nd an almost�eld when n is prime we need to �nd d and e for which e
divides nd − 1 and with d and e satisfying certain conditions. Constructions
typically give e as a product of primes p which do not divide n and for which
p− 1 divides d, since then p divides nd − 1 by Fermat's Little Theorem, and
thus e divides nd − 1.
However, to ensure that e is large, for instance e > (2d logn)2 as required
in the hypothesis of Bernstein's result, we need to use the ideas of analytic
number theory. Our general construction looks as follows: for given z < y,
with z ≥ ²y for �xed ² > 0, let d be the least common multiple of the integers
up to z and e be the product of all primes p ≤ y such that all prime power
divisors qa of p−1 are ≤ z. Note that d = exp(z+o(z)) by the prime number
theorem and e =

∏
p≤y p/

∏
p∈P p, where P is the set of primes p ≤ y for

which p− 1 has a prime power divisor qa which is > z.
If p ∈ P write p − 1 = kqa with qa > z, so that k < y/z ≤ 1/². Now the
number of qa ∈ (z, y) with a ≥ 2 is #(√y), and so there are #(

√
y/²) values

of p ∈ P for which p− 1 has a prime divisor qa with a ≥ 2.
In our �rst construction we take y = 4z, so that if a = 1, then we have a
prime pair of the form q, kq + 1 with k < 4, and so k = 2. For this we use
again Conjecture 1.5.1 which is a bound on the number of prime pairs of the
form q, 2q + 1 telling us that the q's of this form with q ≤ x are less than
2cx/(log x)2 where c is a constant.
Therefore ∣P ∣ = #(y/(log y)2) and so e = exp(y + o(y)) by the prime num-
ber theorem. If we take y = (4 + ²) log logn, then we get e > (2d logn)2

as required, and the values of d and e can, in practice, be found quickly.
However, by the previous section the running time will be #((logn)8+#(²)),
so we need to choose d and e slightly di�erently.
This time we take z = ²y with y = (2 + 3²) log logn. We need the general-
ization of Conjecture 1.5.1:

Lemma 5.4.1. There exists an absolute constant c > 0 such that there are
≤ c(k/Á(k))(x/(log x)2) primes q ≤ x for which kq+1 is also prime, for all
even integers k and all x ≥ 2.

In this case, corresponding to each prime p ∈ P with a = 1, we have a
prime pair q, kq + 1 with k ≤ 1/² and q ≤ y/k. For given k ≤ 1/² there are
≤ cy/(log(²y))2 such prime pairs, by Conjecture 1.5.1 with x = y/k, since
Á(k) ≥ 1 . Therefore ∣P ∣ = #(y/(²(logy)2) +

√
y/²) = o(y/ log y), so the

78



product of the primes in P is ≤ y∣P ∣ = exp(o(y)). Thus e = exp(y+o(y)) by
the prime number theorem, and so e > (2d log n)2 as required; but now the
running time will be #((logn)4+#(²)), and letting ² → 0 we get the desired
result.
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Appendix A

Tensor Product

A.1 Preliminaries
In this section we are going to see some important results about Tensor
Products. For general properties of tensor products, see [1, Chapter XVI].

Proposition A.1.1. Let A1 be free over R, with basis {vi}i∈I . Then every
element of A1 ⊗A2 has a unique expression of the form

∑

i∈I
yi ⊗ vi, yi ∈ A2

with almost all yi = 0.

Proof. see [1]. ■

Corollary A.1.1. Let A1,A2 be free over R, with bases {vi}i∈I and {wj}j∈J
respectively. Then A1 ⊗A2 is free, with basis {vi ⊗ wj}. We have

dim(A1 ⊗A2) = (dimA1)(dimA2).

Proof. Immediate form the proposition ■

Tensor products can be used to construct "large" psudo�elds out of small
ones, in the following manner:

Proposition A.1.2. Let (A1, ®1) and (A2, ®2) be pseudo�elds with char
A1 =char A2 = n, and suppose that the degrees d1, d2 of these pseudo�elds
satisfy d1 > 1, d2 > 1, and gcd(d1, d2) = 1. Then the tensor product
(A1 ⊗ℤ/zℤ A2, ®1 ⊗ ®2) is a pseudo�eld of characteristic n and degree d1d2.

Proof. We need to check that A = A1⊗ℤ/zℤA2, ® = ®1⊗®2, n, d = d1d2 and
¾ = ¾1 ⊗ ¾2 satisfy conditions from (4.1) to (4.5). By Proposition 4.2.1(a),
each Ai is a free ℤ/nℤ-module with basis 1, ®i, . . . , ®

di−1
i , so from Corollary

A.1.1 we see that A is a free ℤ/nℤ- module with basis (®i
1⊗®j

2)0≤i<d1,0≤j<d2 .
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This implies both (4.1) and (4.2). We have, ¾(®) = ¾1(®1) ⊗ ¾2(®2) =
®n
1 ⊗ ®n

2 = ®n, which is (4.3). Each ¾di
i is the identity on Ai, so ¾d is the

identity on A, which implies (4.4). Finally, to prove (4.5), let l be a prime
number dividing d. Then l divides exactly one of d1 and d2; by symmetry
we may assume it divides d2. Let k be a prime number dividing d1. By
¾1®1 = ®n

1 , The A1-ideal A1®1 is mapped to itself by ¾1 and, therefore,
contains ¾

d1/k
1 ®1 − ®1; applying (4.5) to A1 we obtain that this element is

a unit of A1, so ®1 must be a unit of A1 as well. Since d/l is divisible by
d1, we have ¾

d/l
1 ®1 = ®1 ∈ A∗

1. Since d/l is not divisible by d2, Lemma
4.2.1 implies ¾

d/l
2 ®2 − ®2 ∈ A∗

2. It follows that the element ¾d/l® − ® =

(¾
d/l
1 ®1)⊗ (¾

d/l
2 ®2)−®1⊗®2 = ®1⊗ (¾

d/l
2 ®2−®2) is a product of two units,

and therefore belongs to A∗. This completes the proof. ■

We are now going to address the problem of designing an algorithm
that, given two pseudo�elds Ai, ®i as in Proposition A.1.2, computes their
tensor product. For the general context of our algorithm one may consult
[16] Let R be a commutative ring, let m ∈ ℤ, m ≥ 0, and write S for
the ring R[t]/(tm+1), where t denotes a polynomial variable. The elements
1, t, . . . , tm form a basis for S over R, in the sense that every element of S
has a unique representation of the form

∑m
i=0 ait

i, with each ai ∈ R. The
elements

∑m
i=0 ait

i with a0 = 0 form the ideal tS of S, and the elements
with a0 = 1 form a subgroup of the group S∗ of units of S; we write 1 + tS
for this subgroup.
We de�ne the maps D : S → tS and L : 1 + tS → tS by

D

Ã
m∑

i=0

ait
i

)
=

m∑

i=0

iait
i (ai ∈ R),

L(u) = D(u) ⋅ u−1 (u ∈ 1 + tS).
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Now, let u =
∑m

i=0 ait
i and v =

∑m
j=0 bjt

j and let's calculate D(u ⋅ v)

D(u ⋅ v) =D

⎛
⎝

m∑

i=0

ait
i ⋅

m∑

j=0

bjt
j

⎞
⎠ = D

⎛
⎝

m∑

i=0

m∑

j=0

ait
i ⋅ bjtj

⎞
⎠ =

=D

⎛
⎝

m∑

i,j=0

aibjt
i+j

⎞
⎠ =

m∑

i,j=0

(i+ j) ⋅ aibjti+j =

=

m∑

i,j=0

j ⋅ aibjti+j +

m∑

i,j=0

i ⋅ aibjti+j =

=
m∑

i=0

ait
i ⋅

m∑

j=0

jbjt
j +

m∑

j=0

bjt
j ⋅

m∑

i=0

iait
i =

=u ⋅
m∑

j=0

jbjt
j + v ⋅

m∑

i=0

iait
i = u ⋅D(v) + v ⋅D(u).

From this equality we can deduce that

L(uv) =D(uv) ⋅ (uv)−1 = (uD(v) + vD(u))(uv)−1 =

=(uu−1D(v)v−1) + (vv−1D(u)u−1) =

=L(u) + L(v)

which means that L is a group homomorphism from the multiplicative group
1 + tS to the additive group tS.
For a monic polynomial g = xk +

∑k
i=1 bix

k−i ∈ R[x], we write ĝ for the
image of 1 +

∑k
i=1 bit

i in S, which belongs to 1 + tS. Evidently, we have
(ĝℎ) = ĝ ⋅ ℎ̂ for any two monic polynomials g, ℎ ∈ R[x].
The Hadamard product * is the operation de�ned on S by

Ã
m∑

i=0

ait
i

)
∗
Ã

m∑

i=0

bit
i

)
=

m∑

i=0

aibit
i,

for ai, bi ∈ R. In the following result we use the de�nitions just given for the
ring R = ℤ/nℤ.

Proposition A.1.3. Let the hypotheses and notation be as in Proposition
A.1.2. Moreover, write f1, f2, f for the characteristic polynomials of the
pseudo�elds (A1, ®1), (A2, ®2), and (A1⊗ℤ/nℤA2, ®1⊗®2), respectively. Then
for any non-negative integer m we have the identity

L(f̂) = −L(f̂1) ∗ L(f̂2)

in t(ℤ/nℤ)[t]/(tm+1).
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Proof. Let the notation A,®, d, ¾1, ¾2, ¾ be as in the proof of the previous
Proposition. We view A1 and A2 as subrings of A, identifying ®1 with ®1⊗1
and ®2 with 1 ⊗ ®2, so that ® = ®1®2. It su�ces to prove the identity in
tA[t]/(tm+1). From f =

∏d−1
i=0 (x − ¾i®) we obtain f̂ =

∏d−1
i=0 (1 − (¾i®)t).

From L(1− (¾i®)t) = −(¾i®)t/(1(¾i®)t) = −∑m
j=1(¾

i®)jtj we thus obtain

L(f̂) =

d−1∑

i=0

L(1− (¾i®)t) = −
m∑

j=1

Ã
d−1∑

i=0

(¾i®)j

)
tj .

Likewise, we have

L(f̂1) = −
m∑

j=1

Ã
d1−1∑

i=0

(¾i
1®1)

j

)
tj , L(f̂2) = −

m∑

j=1

Ã
d2−1∑

i=0

(¾i
2®2)

j

)
tj .

The identity to be proved now follows from
d−1∑

i=0

(¾i®)j =

Ã
d1−1∑

i=0

(¾i
1®1)

j

)
⋅
Ã

d2−1∑

i=0

(¾i
2®)

j

)

for all j ≥ 1, which is a consequence of ¾i® = (¾i
1®1) ⋅ (¾i

2®2) and the fact
that the orders d1 and d2 of ¾1 and ¾2 are coprime. ■

Proposition A.1.4. For positive integers n,m, let Sn,m denote the ring
(ℤ/nℤ)[t]/(tm+1).
(a) Let n and m be positive integers such that each prime factor of n exceeds

m. Then the map L : 1 + tSn,m Ã tSn,m is a group isomorphism.

(b) There is an algorithm that, given positive integers n and m, and an
element u ∈ 1 + tSn,m, computes the element L(u) of tSn,m in time
#̃(m logn).

(c) There is an algorithm that, given positive integers n and m, and an
element s ∈ tSn,m, either computes a prime factor of n that is at most
m or correctly decides that no such prime factor exists, and in the latter
case computes the element L−1(s) of 1+ tSn,m, all in time #̃(m logn).

Proof. (a) Since each prime factor of n exceeds m, we have i ∈ (ℤ/nℤ)∗ for
i = 1, . . . ,m, so D restricts to a group automorphism of tSn,m. For
the same reason, there are well-de�ned maps log : 1 + tSn,m Ã tSn,m

and exp : tSn,m Ã 1 + tSn,m with

log(1− x) = −
m∑

i=1

xi/i, exp(x) =
m∑

i=0

xi/i!

for x ∈ tSn,m. It is well known that log and exp are inverse group
isomorphisms. An easy computation shows L = D ∘ log. It follows
that L is an isomorphism, with inverse exp ∘D−1.

83



(b) In [14, Section 8] one �nds an algorithm that computes L(u) by means
of #̃(m) ring operations in ℤ/nℤ; this particular algorithm does not
depend on the condition, in [14, Section 8], that the �eld Q of rational
numbers be contained in the coe�cient ring. By [15, sections 8.3 and
9.1], each ring operation in ℤ/nℤ can be done in time #̃(logn).

(c) We describe an algorithm with the stated properties. Using the extended
Euclidean algorithm, see [15, Corollary 11.10], one attempts to com-
pute i−1 ∈= nℤ for i = 1, 2, . . . ,m; this can only fail if among those i a
prime factor of n is found, in which case the algorithm halts. Suppose
it does not fail. Then one computes D−1(s) directly from the de�nition
of D by means of m multiplications in ℤ/nℤ, and next one uses the
algorithm from [14, Section 9] to compute L−1(s) = exp(D−1(s)) using
#̃(m) ring operations in ℤ/nℤ; inspection of this algorithm shows that
the condition from [14, Section 9] that Q be contained in the coe�cient
ring may be replaced by the weaker condition that multiplicative in-
verses of each of i = 1, 2, . . . ,m be available; this condition is satis�ed
in the present case.

■

Proposition A.1.5. There is an algorithm with the following property.
Given an integer n and two pseudo�elds of characteristic n and of coprime
degrees d1, d2 greater than 1, it either �nds a prime factor of n that is at
most d1d2 or it constructs the tensor product of the two given pseudo�elds,
and it does so in time #̃(d1d2 logn).

Proof. The following algorithm has the stated properties. Let f1, f2 be the
characteristic polynomials of the two given pseudo�elds. Put m = d1d2 and
S = (ℤ/nℤ)[t]/(tm+1), and compute f̂1, f̂2 ∈ 1 + tS from the de�nition of
f̂ . Next compute L(f̂1) and L(f̂2) by means of the algorithm of Proposition
A.1.4(b), and compute L(f̂1)∗L(f̂2) by d1d2 multiplications in ℤ/nℤ. Finally,
apply the algorithm of Proposition A.1.4(c) to s = −L(f̂1)∗L(f̂2); this either
yields a prime factor of n that is at mostm = d1d2, or it �nds L−1(s) ∈ 1+tS;
in the latter case, the characteristic polynomial of the tensor product is
the unique monic polynomial f ∈ (ℤ/nZ)[X] of degree d1d2 that satis�es
f̂ = L−1(s). This completes the description of the algorithm. It is correct
by Proposition A.1.3, and Proposition A.1.4 readily implies that it runs in
time #̃(d1d2 log n). ■
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