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Summary of the thesis

Introduction

For open domains Ω ⊂ RN the case p = N is considered a limiting case for

the embeddings of Sobolev spaces W 1,p
0 (Ω); in fact, when p < N the Sobolev

space W 1,p
0 (Ω) is embedded just in some Lq(Ω) with q > p, precisely

W 1,p
0 (Ω) ↪→ Lp

∗
(Ω) for p∗ =

Np

N − p
> p

and thus, through interpolation, the same embedding holds for any q ∈ [p, p∗];

on the other hand, functions in W 1,p
0 (Ω) for p > N are bounded and even

Hölder continuous:

W 1,p
0 (Ω) ↪→ C0,α

(
Ω
)

for α = 1− N

p
> 0

RegardingW 1,N
0 (Ω), its functions actually belong to any Lq(Ω) for q ∈ [N,+∞),

but they are not bounded; however, the known counterexamples of un-

bounded functions in W 1,N
0 (Ω) have only logarithmic singularities, hence

one may suspect that a condition of exponential integrability holds.

In fact, Trudinger [Tru67] found that, for bounded domains, it holds

sup
u∈W 1,N

0 (Ω),
∫
Ω |∇u|N≤1

∫
Ω
eαu

N
N−1

< +∞ (1)

for some α > 0; this was later refined by Moser [Mos71], who proved that (1)

holds if and only if α ≤ αN = Nω
1

N−1

N−1, where ωN−1 is the N − 1-dimensional

measure of the unit sphere SN−1; Moser also showed that the supremum in

(1) depends linearly on the measure of Ω and that for higher exponents the

integral is pointwise defined for any u ∈W 1,N
0 (Ω) even though, for any fixed

α > 0, it can be made arbitrarily large between functions with the integral

of |∇u|N less then 1.
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Sobolev embeddings in the limiting case

Exponential integrability and the asymptotic behavior of the best Sobolev

constant, defined as

Sp(Ω) = inf
06≡u∈W 1,N

0 (Ω)

∫
Ω |∇u|

N(∫
Ω |u|p

)N
p

are actually closely related, as the following lemmas show:

Lemma 1.

Let Ω ⊂ RN be an open domain.

If the following exponential integrability condition holds

sup
u∈W 1,N

0 (Ω),
∫
Ω |∇u|N≤1

∫
Ω

eα|u|q − k∑
j=0

αj |u|jq

j!

 < +∞

for some α > 0, q > 0, k ∈ N, then the best Sobolev constant Sp(Ω) satisfies

lim inf
p→+∞

p
N
q Sp(Ω) ≥ (eαq)

N
q

Lemma 2.

Let Ω ⊂ RN be an open domain.

If the best Sobolev constant Sp(Ω) satisfies

lim inf
p→+∞

p
N
q Sp(Ω) ≥ (eαq)

N
q

for some α > 0, q > 0, then the following exponential integrability condition

holds

sup
u∈W 1,N

0 (Ω),
∫
Ω |∇u|N≤1

∫
Ω

eβ|u|q − k∑
j=0

βj |u|jq

j!

 < +∞

for some k ∈ N and for any β ∈ (0, α).

The latter result was used by Trudinger in its original proof of (1), where

he derives exponential integrability from estimates on the best Sobolev con-

stants; moreover, Mugelli and Talenti [MT98] gave the following estimate

on for hyperbolic discs:
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Theorem 3.

Let Ω = B1(0) ⊂ R2 be the unit ball and gh =

(
2

1− |x|2

)2

ge the hyperbolic

metric.

Then, it holds

Sp(Ω, gh) = inf
06≡u∈H1

0 (Ω,gh)

∫
Ω |∇ghu|

2dVgh(∫
Ω |u|pdVgh

) 2
p

≥

 8πpΓ
(

p
p−2

)2

(p− 2)2Γ
(

2p
p−2

)


1− 2
p

Hence, applying lemma 2, one gets exponential integrability for conformal

metrics on the unit disc, independently from Trudinger and Moser’s results:

Corollary 4.

Let gρ = ρ(x)ge be a conformal metric on Ω = B1(0) ⊂ R2 that is bounded

by the hyperbolic one, namely ρ(x) ≤ C
(

2

1− |x|2

)2

.

Then, it holds

sup
u∈H1

0 (Ω,gρ),
∫
Ω |∇gρu|2dVgρ≤1

∫
Ω

(
eαu

2 − 1
)
dVgh < +∞

for all α <
4π

e
.

On the other hand, from lemma 1, sharp Moser-Trudinger inequality pro-

vides information about the optimal Sobolev constant, giving not only a

lower bound but a sharp asymptotic behavior, as proved by Ren and Wei

[RW95]:

Theorem 5.

Let Ω ⊂ RN be an open domain having finite measure.

Then,

lim
p→∞

pN−1Sp(Ω) = ωN−1

(
N2e

N − 1

)N−1

This result regarding Sp(Ω) allows to give asymptotic information even on

the functions up which attain the supremum in Sobolev inequality, whose

existence is ensured by the Rellich-Kondrachov compactness theorem for

bounded domains.

Adimurthi and Grossi [AG04] found out the following result on some renor-

malized sequences:
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Theorem 6.

Let Ω ⊂ R2 a bounded domain.

Defining xp ∈ Ω as a point such that up(xp) = ‖up‖L∞(Ω),

εp =
1√

(p− 1)Sp(Ω)‖up‖
p−2

2

L∞(Ω)

Ωp =
Ω− xp
εp

and

zp(x) =
p− 1

‖up‖L∞(Ω)
(up(εpx+ xp)− ‖up‖L∞(Ω)) ∈ H1

0 (Ωp)

then, for any subsequence pk →
k→+∞

+∞, it holds

zpk(x) →
k→+∞

z(x) = log
1(

1 + |x|2
8

)2 in C1
loc

(
R2
)

Using this result, Adimurthi and Grossi also discovered the exact asymptotic

value of the supremum norm of up, which was estimated from above and

below and conjectured by Ren and Wei [RW96].

Theorem 7.

It holds

lim
p→+∞

‖up‖L∞(Ω) =
√
e

Ren and Wei [RW94, RW96] studied the blow-up of up, showing that, for

p→ +∞, the extremal functions asymptotically vanish except for xp; more-

over, they found out some convergence properties of other renormalized

sequences.

Theorem 8.

Let Ω ⊂ R2 a bounded domain.

Defining

vp =
up

Sp(Ω)
∫

Ω u
p−1
p

and fp =
up−1
p∫

Ω u
p−1
p

and, for a sequence pk →
x→+∞

+∞, the blow-up set of vpk as

S =

{
x ∈ Ω : ∃xk →

k→+∞
x, vpk(xk) →

k→+∞
+∞

}
then, the following facts hold, up to a subsequence:
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1. S contains exactly one point, say S = {x̃}.

2.

fpk ⇀ δx̃

in the sense of distribution.

3.

vpk(x) →
k→+∞

Gx̃(x)

in C2
loc

(
Ω\{x̃}

)
and weakly in W 1,q(Ω) for all q ∈ [1, 2), where Gx̃ = GΩ,x̃

is the Green function of −∆ on Ω.

4. x̃ is a critical point for the Robin function R(x) = Hx(x), where

Hx̃(x) = −Gx̃(x)− 1

2π
log |x− x̃|

is the regular part of Gx̃.

Extensions of Moser-Trudinger inequality

The second part of the thesis is devoted to extensions of Moser-Trudinger

inequality, particularly in the case of unbounded domains; first of all, in this

case one has to consider, rather than just eαN |u|
N
N−1

, the integral of

Φ(u) = eαN |u|
N
N−1 −

N−2∑
j=0

αjN |u|
jN
N−1

j!

because powers with an exponent lower than N might not be summable.

The first case considered is the unit ball endowed with a conformal metric;

a result from Gianni Mancini and Sandeep [MS10] improves corollary 4:

Theorem 9.

Let gρ = ρ(x)ge be a conformal metric on Ω = B1(0) ⊂ RN .

Then the following conditions are equivalent:

1. gρ is bounded by the hyperbolic metric, that is

∃C > 0 such that ρ(x) ≤ C
(

2

1− |x|2

)N
∀x ∈ Ω
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2. Sharp Moser-Trudinger inequality holds for the metric g, that is

sup
u∈W 1,N

0 (Ω,gρ),
∫
Ω |∇gρu|NdVgρ≤1

∫
Ω

Φ(u)dVgρ < +∞

The validity of sharp Moser-Trudinger inequality for metrics bounded by

gh implies that theorem 5 also holds for the Sobolev constants for these

metrics; moreover, in the 2-dimensional case, a stronger result, again from

Gi. Mancini and Sandeep [MS10], holds for the metrics corresponding to a

conformal diffeomorphism with simply connected domains.

Theorem 10.

Let Ω ⊂ R2 be a simply connected domain.

Then, the following conditions are equivalent:

1. Sharp Moser-Trudinger inequality holds for Ω, that is

sup
u∈H1

0 (Ω),
∫
Ω |∇u|2≤1

∫
Ω

(
e4πu2 − 1

)
< +∞

2. Subcritical Moser-Trudinger inequality holds for Ω, that is

sup
u∈H1

0 (Ω),
∫
Ω |∇u|2≤1

∫
Ω

(
eαu

2 − 1
)
< +∞ for some α > 0

3. Poincaré inequality holds for Ω, that is

λ1(Ω) = inf
06≡u∈H1

0 (Ω)

∫
Ω |∇u|

2∫
Ω |u|2

> 0

4. Ω’s inner radius

ω(Ω) = sup{R > 0 : ∃x ∈ Ω such that BR(x) ⊂ Ω}

is finite.

However, in the general case, things are not so simple: subcritical exponen-

tial integrability trivially implies Poincaré inequality, but the converse is no

longer true; some original results have been given in this context.

Actually, if the metric goes to infinity faster than gh around some point of

∂Ω, then Poincaré inequality does not hold, as proved by Gabriele Mancini

in his degree thesis, precisely:
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Theorem 11.

Let gρ = ρ(x)ge = ζ(x)gh be a conformal metric defined on Ω = B1(0) ⊂ RN

such that

lim
x→x̃

ζ(x) = +∞ for some x̃ ∈ ∂Ω

Then, λ1(Ω, gρ) = 0.

However, there exist some strange metrics where exponential integrability

does not hold up to the exponent αN but it does for lower ones:

Theorem 12.

Let gρ = ρ(x)ge = ζ(x)gh be a conformal metric on Ω = B1(0) ⊂ RN such

that

0 ≤ ζ − C ∈ Lq(Ω, gh) for some q > 1, C > 0

Then,

sup
u∈W 1,N

0 (Ω,gρ),
∫
Ω |∇gρu|NdVgρ≤1

∫
Ω

Φ(θu)dVgρ < +∞ ∀θ < 1− 1

q

Moreover, for some of these metrics, the critical exponent

α̃ = sup

α > 0 : sup
u∈W 1,N

0 (Ω,gρ),
∫
Ω |∇gρu|NdVgρ≤1

∫
Ω

Φ

(
α

αN
u

)
< +∞


is strictly less than αN

Theorem 13.

For any q > 1, there exist some conformal metrics satisfying the hypotheses

of theorem 12 and

sup
0 6≡u∈W 1,N

0 (Ω,gρ),
∫
Ω |∇gρu|NdVgρ≤1

∫
Ω

Φ(θu)dVgρ = +∞ ∀θ > 1− 1

Nq

Finally, one can easily discover that, for any metric that verifies Poincaré

inequality, sharp Moser-Trudinger inequality holds for radially decreasing

functions; this is quite surprising, since for Euclidean domains and for hy-

perbolic metric one can apply symmetrization to find out that the supremum

in Moser-Trudinger inequality is the same as the one taken between radially

decreasing functions: the following result shows that this does not happen

for general metrics.
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Proposition 14.

Let gρ = ρ(x)ge be a conformal metric on Ω = B1(0) ⊂ RN such that λ1(Ω, gρ) > 0.

Then, setting

W̃ (Ω, gρ) =

{
0 ≤ u ∈W 1,N

0 (Ω, gρ) radially nonincreasing

such that

∫
Ω
|∇gρu|NdVgρ ≤ 1

}
one has

sup
u∈W̃ (Ω,gρ)

∫
Ω

Φ(u)dVgρ < +∞

Finally, one considers the case of unbounded Euclidean domains.

Again, it is very simple to notice that the positivity of the first eigenvalue

of −∆ on Ω is a necessary condition for Moser-Trudinger inequality to hold;

however, if the Sobolev norm

∫
Ω

(
|u|N + |∇u|N

)
is set to be less than 1, the

same result as Moser’s holds for any domain, and moreover the supremum

is bounded independently by Ω; this result was proved by Ruf [Ruf05] for

N = 2 and later extended in any dimension by Li and Ruf himself [LR08].

Theorem 15.

Let Ω ⊂ RN be an open domain.

Then

sup
u∈W 1,N

0 (Ω),
∫
Ω(|u|N+|∇u|N )≤1

∫
Ω

Φ(u) ≤ C < +∞

where C = C(N) is a constant that depends only on the dimension.

This result allows to give a partial extension to theorem 10, that is Poincaré

inequality implies Moser-Trudinger inequality for any subcritical exponent

α < αN .

Corollary 16.

Let Ω ⊂ RN be an open domain.

Then the following conditions are equivalent:

1. Subcritical Moser-Trudinger inequality holds for Ω, that is

sup
u∈W 1,N

0 (Ω),
∫
Ω |∇u|N≤1

∫
Ω

Φ(θu) < +∞ ∀θ ∈ (0, 1)
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2. Poincaré inequality holds for Ω, that is

λ1(Ω) = inf
06≡u∈W 1,N

0 (Ω)

∫
Ω |∇u|

N∫
Ω |u|N

> 0

A stronger result was recently given by Ga. Mancini, who proved that

Poincaré inequality is actually equivalent to sharp Moser-Trudinged inequal-

ity for any domain Ω ⊂ RN .

Extremal functions for Moser-Trudinger inequality

The first result concerning the problem of extremal functions for Moser-

Trudinger inequality is the so-called concentration-compactness principle by

Lions [Lio85]; whereas for subcritical exponent the Moser-Trudinger func-

tional is compact, in the case α = αN there exist some noncompact sequences

which concentrate in a point, but this is the only possible alternative to com-

pactness:

Theorem 17.

Let Ω ⊂ RN be a bounded domain and uk a sequence satisfying

∫
Ω
|∇uk|N ≤ 1.

Then, up to a subsequence,

uk ⇀
k→+∞

u and |∇uk|Ndx ⇀
k→+∞

µ

for some u ∈W 1,N
0 (Ω) and a probability measure µ on Ω, and one of the

following occurs:

1. u ≡ 0 and µ = δx̃ for some x̃ ∈ Ω, and

lim
k→+∞

∫
Ω\Bε(x̃)

(
eαN |uk|

N
N−1 − 1

)
= 0 ∀ε > 0

2. eαN |uk|
N
N−1

is bounded in Lp(Ω) for some p > 1 and converges in L1(Ω)

to eαN |u|
N
N−1

.

Hence, to prove the existence of extremals, the following two steps suffice:

estimating the maximum level of concentrating sequences and showing that

the functional attains higher values; this is the method used by Carleson

and Chang [CC86], who proved the first existence result of this kind, for

balls.
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Theorem 18.

Let Ω = BR(x̃) ⊂ RN be the ball centered in x̃ ∈ RN with radius equal to

R > 0.

Then, there exists a function ũ ∈W 1,N
0 (Ω) with

∫
Ω
|∇ũ|N ≤ 1 and

∫
Ω
eαN |ũ|

N
N−1

= sup
u∈W 1,N

0 (Ω),
∫
Ω |∇u|N≤1

∫
Ω
eαN |u|

N
N−1

This result was extended to bounded planar domains by Flucher [Flu92] and

later generalized to any dimension by Lin [Lin96]; they show that the ratio

between the supremum of Moser-Trudinger functional and the concentration

level can only increase when passing from a ball to another domain, so it is

always higher than 1 and so extremals are attained.

To prove this theorem, Flucher uses tools from complex analysis in the

case of planar domains, and the Green function of −∆ for the general case;

similarly, Lin uses the Green function of the N -Laplacian −∆N to extend

Flucher’s result.

Theorem 19.

Let Ω ⊂ RN be a bounded domain.

Then, setting

FΩ(u) =

∫
Ω

(
eαN |u|

N
N−1 − 1

)
and

CΩ(x) = sup

{
lim sup
k→+∞

FΩ(uk) : uk concentrates in x ∈ Ω

}
it holds

supFΩ

supCΩ
≥

supFB1(0)

CB1(0)(0)
> 1

and there exists a function ũ ∈W 1,N
0 (Ω) with

∫
Ω
|∇ũ|N ≤ 1 and

∫
Ω
eαN |ũ|

N
N−1

= sup
u∈W 1,N

0 (Ω),
∫
Ω |∇u|N≤1

∫
Ω
eαN |u|

N
N−1

The arguments used by Carleson-Chang, Flucher and Lin cannot be ex-

tended to search extremals in unbounded domains, since the concentration-

compactness principle does not hold in this case, mainly because of noncom-

pact sequences which vanish at the infinity.
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Hence, in the last part of the thesis, where the existence of extremals for

Moser-Trudinger inequality is studied for simply connected unbounded do-

mains, one has to proceed differently: first of all, one considers domains

which are symmetric with respect to two orthogonal axes, such as the strip

Ω = R× (−1, 1), and applies one-dimensional symmetrization with respect

to each axes; this operation shares some properties with the radial Schwarz

symmetrization on balls and thus allows to consider for the supremum only

functions with are even and decreasing with respect to both variables, which

have good decay properties.

Moreover, one uses the conformal diffeomorphism between Ω and B1(0) to

make calculations for maximizing sequences; concentration can be excluded,

whereas for vanishing sequences, due to the decay properties mentioned

before, all the terms of the Moser-Trudinger functional tend to 0 except

for 4πu2, hence the maximum value is
4π

λ1(Ω)
=

16

π
; finally, some functions

such that the Moser-Trudinger functional attains higher values than the

last quantity are found, and thus the existence of extremals for Ω has been

proved:

Theorem 20.

If Ω = R× (−1, 1) ⊂ R2, then there exists a function ũ ∈ H1
0 (Ω) such that∫

Ω
|∇ũ|2 ≤ 1 and

∫
Ω

(
e4πũ2 − 1

)
= sup

u∈H1
0 (Ω),

∫
Ω |∇u|2≤1

∫
Ω

(
e4πu2 − 1

)
The existence of extremals for Moser-Trudinger inequality on the strip has

been proved working with Ga. Mancini.

11



Bibliography

[AG04] Adimurthi and Massimo Grossi. Asymptotic estimates for a two-

dimensional problem with polynomial nonlinearity. Proc. Amer.

Math. Soc., 132(4):1013–1019 (electronic), 2004.

[CC86] Lennart Carleson and Sun-Yung A. Chang. On the existence of an

extremal function for an inequality of J. Moser. Bull. Sci. Math.

(2), 110(2):113–127, 1986.

[Flu92] Martin Flucher. Extremal functions for the Trudinger-Moser in-

equality in 2 dimensions. Comment. Math. Helv., 67(3):471–497,

1992.

[Lin96] Kai-Ching Lin. Extremal functions for Moser’s inequality. Trans.

Amer. Math. Soc., 348(7):2663–2671, 1996.

[Lio85] P.-L. Lions. The concentration-compactness principle in the cal-

culus of variations. The limit case. I. Rev. Mat. Iberoamericana,

1(1):145–201, 1985.

[LR08] Yuxiang Li and Bernhard Ruf. A sharp Trudinger-Moser type in-

equality for unbounded domains in Rn. Indiana Univ. Math. J.,

57(1):451–480, 2008.

[Mos71] J. Moser. A sharp form of an inequality by N. Trudinger. Indiana

Univ. Math. J., 20:1077–1092, 1970/71.

[MS10] G. Mancini and K. Sandeep. Moser-Trudinger inequality on con-

formal discs. Commun. Contemp. Math., 12(6):1055–1068, 2010.

12



[MT98] Francesco Mugelli and Giorgio Talenti. Sobolev inequalities in 2-D

hyperbolic space: a borderline case. J. Inequal. Appl., 2(3):195–228,

1998.

[Ruf05] Bernhard Ruf. A sharp Trudinger-Moser type inequality for un-

bounded domains in R2. J. Funct. Anal., 219(2):340–367, 2005.

[RW94] Xiaofeng Ren and Juncheng Wei. On a two-dimensional elliptic

problem with large exponent in nonlinearity. Trans. Amer. Math.

Soc., 343(2):749–763, 1994.

[RW95] Xiaofeng Ren and Juncheng Wei. Counting peaks of solutions to

some quasilinear elliptic equations with large exponents. J. Differ-

ential Equations, 117(1):28–55, 1995.

[RW96] Xiaofeng Ren and Juncheng Wei. Single-point condensation and

least-energy solutions. Proc. Amer. Math. Soc., 124(1):111–120,

1996.

[Tru67] Neil S. Trudinger. On imbeddings into Orlicz spaces and some

applications. J. Math. Mech., 17:473–483, 1967.

13


