R - Esercitazione 2

Lorenzo Di Biagio
dibiagio@mat.uniroma3.it

Università Roma Tre
14 Ottobre 2013

Quantili (1)

Sia $0 \leq p \leq 1$.
Il quantile p-esimo di una variabile causale X è il più piccolo numero ξ per cui $F_{X}(\xi) \geq p$.

Dato un insieme finito di valori, ordinati in modo non decrescente, il quantile p-esimo è un valore ξ tale che la frazione di osservazioni inferiori o uguali a ξ sia almeno p, mentre la frazione di osservazioni maggiori o uguali a ξ non sia inferiore a $1-p$.
ξ in genere non è definito univocamente. Noi adotteremo la convenzione di R, i.e., il valore della funzione quantile (x, p) con parametro type implicitamente preimpostato a 7 . Mediana: quantile con $\mathrm{p}=0.5$
Quartili: quantili con $\mathrm{p}=0.25,0.5,0.75$
Percentili: quantili con $\mathrm{p}=0.01,0.02, \ldots, 0.99$

Quantili (2)

Siano $x_{1}, x_{2}, \ldots, x_{N}, N$ osservazioni ordinate in modo non decrescente.
Allora $Q(p)=(1-\gamma) x_{j}+\gamma x_{j+1}$ dove:
$j=[1+p(N-1)]$ ([.]: parte intera inferiore)
$\gamma=\{1+p(N-1)\}$ (\{•\}: parte frazionaria)
E.g.:

Matrici (1)

Le matrici in R si generano con matrix applicato ad un vettore e specificando il numero di righe (nrow) e il numero di colonne (ncol) oppure fissando le dimensioni di un oggetto con dim.
$>\operatorname{matrix}(1: 10,2,5)$
crea la matrice $\left(\begin{array}{ccccc}1 & 3 & 5 & 7 & 9 \\ 2 & 4 & 6 & 8 & 10\end{array}\right)$
Se si vuole che gli elementi del vettore siano disposti per riga, utilizzare l'opzione byrow=T.
rbind(), cbind(): fondono matrici per righe o per colonne. det(), solve() : calcolano determinante e inverso di una matrice quadrata.
t() genera la matrice trasposta.
diag() genera matrici diagonali o estrae il vettore della diagonale principale.
$\% * \%$ prodotto righe per colonne

Matrici (2)

Esercizio 1

1. Si definisca $\mathrm{A}<-\operatorname{matrix}(1: 5$, nrow $=3$, $\mathrm{ncol}=3$). Cosa si ottiene con l'estrazione A $[2,3]$? Ipotizzarlo e poi verificarlo con R.
2. Verificare che il seguente sistema lineare ha una e una sola soluzione e calcolarla: $\begin{cases}3 X+2 Y+Z & =8 \\ X+7 Y & =12 \\ 5 Y-3 Z & =3\end{cases}$
3. Verificare che la matrice $\left(\begin{array}{cc}\cos (3 \pi / 5) & -\sin (3 \pi / 5) \\ \sin (3 \pi / 5) & \cos (3 \pi / 5)\end{array}\right)$ è ortogonale.

Distribuzioni di probabilità (1)

In R sono già implementate le principali distribuzioni di probabilità.
Ad esempio:

- binomiale: binom
- poisson: pois
- normale: norm
- uniforme: unif
- chi quadrato: chisq
- t di Student: t

Per ognuna di esse si può ottenere la densità di probabilità (d), la funzione di ripartizione (p), i quantili (q), generazione di numeri casuali (r).

Distribuzioni di probabilità (2)

Una variabile aleatoria X si dice bernoulliana di parametro p se assume il valore 1 con probabilità p e il valore 0 con probabilità $1-p$.

Una variabile aleatoria X si dice binomiale di parametri p e n se è la somma di n variabili aleatorie i.i.d bernoulliane di parametro p. $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$.

Esercizio 2

1. Creare in un'unica pagina quattro grafici con le densità di probabilità di quattro binomiali di parametri $n=10 \mathrm{e}$ $p=1 / 100,1 / 10,1 / 2,99 / 100$.
2. Inserire i quattro grafici in un unico grafico: le linee della densità saranno distinguibili dal colore e dalla legenda.

Distribuzioni di probabilità (3)

Una variabile aleatoria X si dice normale di media μ e varianza σ^{2} se la sua densità è data da

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} .
$$

Densità di probabilità - variabili al. normali di media 0

Distribuzioni di probabilità (4)

Data la densità di probabilità di una normale di media 0 e varianza 1, evidenziamo la coda sinistra e la coda destra in modo che l'area centrale sia 0.95 .

La legge debole dei grandi numeri (1)

Sia $f(\cdot)$ una densità con media μ e varianza finita σ^{2}. Sia $M(n)=\bar{X}_{n}$ la media campionaria di un campione casuale di ampiezza n da $f(\cdot)$. Sia $\epsilon>0$. Allora

$$
P\left(\left|\bar{X}_{n}-\mu\right|<\epsilon\right) \xrightarrow{n \rightarrow+\infty} 1 .
$$

Si vuole simulare la legge dei grandi numeri considerando la densità uniforme tra-1 e 1: $f(x)=\frac{1}{2} \int_{[-1,1]}(x)$. Per ogni $n=1, \ldots, 300$ consideriamo 1000 realizzazioni campionarie di \bar{X}_{n}, indicando i punti su un grafico. Ci aspettiamo che più è alto n più i punti si addensino attorno a $\mu=0$.

La legge debole dei grandi numeri (2)

Il teorema limite centrale (1)

Sia $f(\cdot)$ una densità con media μ e varianza finita σ^{2}. Sia \bar{X}_{n} la media campionaria di un campione casuale di ampiezza n estratto da $f(\cdot)$. Sia Z_{n} la variabile casuale definita da

$$
Z_{n}=\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} .
$$

Allora la distribuzione di Z_{n} si avvicina alla distribuzione normale standardizzata al tendere di n all'infinito.

Verifichiamo il teorema per $f(\cdot)=\frac{e^{-1}(1)^{x}}{x!} l_{\mathbb{N}}(x)$ (distr. di Poisson con $\lambda=1$), ricordando che la somma di due variabili i.i.d. di Poisson di parametri λ_{1} e λ_{2} è una Poisson di parametro $\lambda=\lambda_{1}+\lambda_{2}$. Quindi:

$$
F_{Z_{n}}(x)=F_{\text {poisson }(\lambda=n)}(\sqrt{n} x+n) .
$$

Il teorema limite centrale (2) $n=1,5,10,200$

Elementi di programmazione

Un semplice ciclo for:
for (i in 1:100) \{print(i);print(i+1)\}
Una semplice espressione condizionale:
$\mathrm{x}<-\mathrm{F}$
if (x == T) print("yes") else print("no")
Una semplice funzione:
varianza<-function(v) var(v)*(length(v)-1)/length(v)

Problema

Sia

$$
f(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}
$$

Verificare che $f(x)$ è una densità di probabilità.
Definire in R la funzione rdens (n) che genera un vettore di n estrazioni campionarie da una variabile aleatoria X con legge $f(x)$.
Confrontare la densità di frequenza di 300 estrazioni casuali da una variabile aleatoria con legge $f(x)$ con la densità di probabilità $f(x)$ (usare rdens() e hist() oppure rdens() e density()).

