Tutorato di AM110

A.A. 2012/2013 — Docente: Prof. P. Esposito Tutori: Gianluca Lauteri, Mirko Moscatelli

Tutorato 8: Funzioni da \mathbb{R} in \mathbb{R} .

funzioni:

 $(8.1.1) \sqrt{x-19}$

$$(8.1.2) \sqrt[3]{\frac{x-1}{x-2}},$$

$$(8.1.3) \sqrt[4]{\log_2(3x^2+2x)},$$

$$(8.1.4) \frac{x+1}{x^2-3x+2},$$

(8.1.5)
$$\frac{1}{\sqrt{\sin(x)}} + \frac{1}{\sqrt{\cos(x)}}$$
,

$$(8.1.6) \ \sqrt{\frac{|x|-|x+1|}{2}-1},$$

$$(8.1.7) x^{\frac{1}{\log(x)}},$$

(8.1.8)
$$\sqrt{\log\left(\frac{\sqrt{x}+\sqrt{1-x}}{\alpha}\right)} (\alpha > 0).$$

Esercizio 8.2. Trovare l'immagine f(C), dove $f \in C$ sono:

$$(8.2.1)$$
 $f(x) = 1 - \frac{1}{x}$, $C = (0, 1)$,

$$(8.2.2) f(x) = |x - 1|, C = (0, 5),$$

(8.2.3)
$$f(x) = \frac{x^2+1}{x^2-1}$$
, $C = [2, +\infty)$,

$$(8.2.4) f(x) = x^2 + x + 1, C = \mathbb{R},$$

$$(8.2.5) \ f(x) = x + [x], \ C = \mathbb{R},$$

(8.2.6)
$$f(x) = \frac{x+|x|}{2}$$
, $C = \mathbb{R}$.

Esercizio 8.3. Trovare la retroimmagine $f^{-1}(C)$, dove $f \in C$ sono:

$$(8.3.1) f(x) = \log(x), C = (0,1),$$

$$(8.3.2)$$
 $f(x) = 2x + 3$, $C = [1, 3]$

(8.3.3)
$$f(x) = \sqrt{1+x}$$
, $C = [0,1)$,

$$(8.3.4)$$
 $f(x) = [x^2 + x], C = [0, 5],$

(8.3.5)
$$f(x) = x + [x], C = \{\frac{3}{2}\},\$$

(8.3.6)
$$f(x) = \frac{x-|x|}{2}$$
, $C = (-1,1)$.

Esercizio 8.4. Determinare insieme di definizione e l'espressione della funzione composta $g \circ f$, dove g ed f sono

$$(8.4.1) \ g(x) = \sin(x), \ f(x) = \sin(x),$$

$$(8.4.2)$$
 $q(x) = e^{2x}$, $f(x) = x^2 + 1$,

$$(8.4.3)$$
 $g(x) = \sqrt{e^x - 1}$, $f(x) = \sin(x)$,

(8.4.4)
$$g(x) = \sqrt{\log(x)}, f(x) = \frac{x}{x^2+1}.$$

Esercizio 8.1. Trovare l'insieme di definizione delle seguenti Esercizio 8.5. Dare un esempio di un'applicazione $f:A\to B$ che sia

(8.5.1) iniettiva ma non suriettiva,

(8.5.2) suriettiva ma non iniettiva,

(8.5.3) iniettiva e suriettiva,

(8.5.4) né iniettiva, né suriettiva.

Esercizio 8.6. Dimostrare che un'applicazione $f:A\to B$ è iniettiva se e solo se per ogni $X \subset A$ e per ogni $Y \subset A$ si ha $f(X \cap Y) = f(X) \cap f(Y).$

Esercizio 8.7. Determinare se le seguenti funzioni $f: A \to B$ sono iniettive e/o suriettive:

$$(8.7.1) f(x) = [x] + \{x\}, A = \mathbb{R}, B = \mathbb{R},$$

$$(8.7.2) \ f(x) = x - \{x\}, \ A = \mathbb{Q}, \ B = \mathbb{Q},$$

(8.7.3)
$$f(x) = \sin(x), A = [-\pi, \pi], B = [-1, 2],$$

$$(8.7.4) f(x) = e^{-\frac{1}{x^2}}, A = \mathbb{R} \setminus \{0\}, B = \mathbb{R}.$$

Esercizio 8.8. Calcolare (se esistono) i seguenti limiti:

$$(8.8.1) \lim_{x \to 0} \frac{1}{x},$$

(8.8.2)
$$\lim_{x \to +\infty} \left(\sin(x) + \sin\left(\frac{1}{x}\right) \right),$$

(8.8.3)
$$\lim_{x\to 0} \frac{\sin(mx)}{\sin(nx)}$$
, $m, n > 0^{(1)}$,

$$(8.8.4) \lim_{x \to 0} \frac{1 - \cos(x)}{x^2},$$

$$(8.8.5) \lim_{x \to 0} \frac{\tan(x)}{x},$$

$$(8.8.6) \lim_{x \to \infty} \frac{\sum_{i=0}^{k} a_{k-i} x^{i}}{\sum_{i=0}^{m} b_{m-i} x^{i}}, \ k, m \in \mathbb{N} \cup \{0\}, \ a_{i}, \ b_{i} \in \mathbb{R}, \ a_{0}, b_{0} \neq 0,$$

$$(8.8.7) \frac{\cot(x)}{x}$$
.

Esercizio 8.9. Sia $f: A \to A$. Dimostrare che f è idempotente (cioè tale che $f \circ f = f$) se e solo se $f|_{f(A)} = \mathrm{id}_{f(A)}$.

⁽¹⁾Ricordare che $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$.