AM210 2011-2012: RECUPERO I ESONERO

ESERCIZIO 0. Sia
$$f(x,y) = \frac{\sin(x^2y)}{x^2+y^2}$$
 se $x^2 + y^2 > 0$, $f(0,0) = 0$.

Stabilire se f é, in (0,0), continua, dotata di derivate direzionali, differenziabile.

TEMA 1

Sia $f: \mathbf{R}^n \to \mathbf{R}$. Dare la definizione di differenziabilitá, e di gradiente, per f in $u \in \mathbf{R}^n$ e dire che cosa significa che $f \in C^1(\mathbf{R}^n, \mathbf{R})$. Provare poi che

 $f \in C^1(\mathbf{R}^n, \mathbf{R}) \iff f \text{ \'e differenziabile in ogni punto} \quad \mathbf{e} \quad \nabla f \in C(\mathbf{R}^n, \mathbf{R}^n).$

ESERCIZIO 1. Sia $f \in C^1(\mathbb{R}^n)$ tale che

$$<\nabla f(x) - \nabla f(y), x - y > \ge ||x - y||^2 \qquad \forall x, y \in \mathbf{R}^n$$

Provare che

$$f(x) \ge f(0) - \|\nabla f(0)\| \|x\| + \frac{1}{2} \|x\|^2 \qquad \forall x \in \mathbf{R}^n$$

Concludere che, per ogni $h \in \mathbf{R}^n$, $f_h(x) := f(x) - h$ ha esattamente un punto critico e che quindi $x \to \nabla f(x)$ é una biiezione di \mathbf{R}^n in se, e quindi esiste la funzione inversa $(\nabla f)^{-1} : y \to (\nabla f)^{-1}(y)$. Si puó dire che $(\nabla f)^{-1}$ é continua?

TEMA 2 . Enunciare e dimostrare il Lemma di Schwartz.

ESERCIZIO 2. Sia $\varphi = (\varphi_1(u, v), \varphi_2(u, v))$ in $C^2(\mathbf{R}^2, \mathbf{R}^2)$ e tale che

$$\varphi_{1,u} = \varphi_{2,v}, \qquad \varphi_{1,v} = -\varphi_{2,u}$$

Provare che

(i)
$$\Delta \varphi_1 = \Delta \varphi_2 \equiv 0$$
 e $\det J_{\varphi} = |\nabla \varphi_1(u, v)|^2 = |\nabla \varphi_2(u, v)|^2$ $\forall (u, v) \in \mathbf{R}^2$
Sia $U \in C^1(\mathbf{R}^2, \mathbf{R})$. Provare che

(ii)
$$|\nabla U(\varphi(u,v))|^2 = |\nabla U|^2(\varphi(u,v)) \det J_{\varphi}(u,v) \quad \forall (u,v) \in \mathbf{R}^2.$$

TEMA/ESERCIZIO 3 Dimostrare, usando Cauchy-Schwartz, le diseguaglianze

(ii)
$$\int_{0}^{+\infty} \frac{f^{2}(x)}{x^{2}} dx \le 4 \int_{0}^{+\infty} |f'(x)|^{2} dx \qquad \forall f \in C^{1}([0, \infty)) \quad \text{con} \quad f(0) = 0$$

TEMA 4 (Formula di Taylor) Sia $f \in C^2(B_r(u)), u \in \mathbf{R}^n$. Provare che:

$$f(u+h) = f(u) + \langle \nabla f(u), h \rangle + \frac{1}{2} \langle H_f(u) h, h \rangle + \circ (||h||^2)$$

TEMA 5. Sia $u \in \mathbb{R}^n$, $f \in C^2(B_r(u))$. Provare che

 $\nabla f(u) = 0, < H_f(u) \ h, h > < 0 \quad \forall h \in \mathbf{R}^n, \ h \neq 0, \quad \Rightarrow \quad u \quad \text{\'e massimo locale}.$

Mostrare con un esempio che in un punto di massimo locale puó accadere che $< H_f(u) h, h > = 0$ per qualche $h \in \mathbf{R}^n, h \neq 0$.

ESERCIZIO 4.

Sia
$$f(x,y) = e^{-(x^2+y^2)}(x^2+y^2-2xy)$$
 $(x,y) \in \mathbf{R}^2$.

Determinare i punti stazionari di f e, se esistono, massimo e minimo valore di f

ESERCIZIO 5.

Sia \mathcal{A} matrice $n \times n$ definita positiva. Sia

$$m := \inf\{ \langle Ax, x \rangle : \|x\|^2 = 1 \}$$

Provare che m é il piú piccolo autovalore di A.