AM2: Tracce delle lezioni- Settimana XII

SISTEMI DI EQUAZIONI DIFFERENZIALI LINEARI

Sia $\mathcal{A} = (a_{ij}), \quad i, j = 1, \dots, n$ matrice $n \times n$. Siccome $\|\mathcal{A}x\| \leq \left(\sum_{ij} a_{ij}^2\right)^{\frac{1}{2}} \|x\|$ le soluzioni del sistema differenziale lineare di n equazioni nelle n incognite $x_i(t)$

(*)
$$\dot{x} = \mathcal{A}x$$
, ovvero $\dot{x}_i(t) = a_{i1}x_1(t) + \ldots + a_{in}x_n(t)$, $i = 1, \ldots, n$

sono definite per tutti i tempi (segue dal Teorema di esistenza globale).

NOTA. Lo stesso vale se $a_{ij} \in C(\mathbf{R})$ (sistemi lineari a coefficenti variabili). Infatti ogni sistema non autonomo, ovvero della forma

$$\dot{x}(t) = f(x(t), t)$$
 $t \in \mathbf{R}$ ove $f \in C^1(\mathbf{R}^n \times \mathbf{R}, \mathbf{R}^n)$

si puó riscrivere come sistema autonomo nelle nuove incognite $y = (x, s) \in \mathbf{R}^n \times \mathbf{R}$, introducendo un nuovo campo $g \in C^1(\mathbf{R}^n \times \mathbf{R}, \mathbf{R}^n \times \mathbf{R})$ cosí definito : g(y) = g(x, s) := (f(x, s), 1). Si ha infatti

$$y(t) = (x(t), s(t)) : \dot{y} = g(y(t)), \quad y(t_0) = (x_0, t_0)$$
 \Leftrightarrow

$$y(t) = (x(t), t),$$
 con $\dot{x}(t) = f(x(t), t),$ $x(t_0) = x_0$

In effetti, se $\dot{x} = f(x(t), t)$, $x(t_0) = x_0$ e y(t) := (x(t), t) allora

$$\frac{d}{dt}y(t) = (f(x(t), t)), 1) = g(x(t), t) = g(y(t)) \quad \text{e} \quad y(t_0) = (x_0, t_0)$$

Viceversa, se y(t) = (x(t), s(t)) soddisfa il sistema $\dot{y} = g(y(t)), \quad y(t_0) = (x_0, t_0),$ allora $\dot{x}(t) = f(x(t), t), \quad x(t_0) = x_0$ e $\dot{s}(t) = 1$ $s(t_0) = t_0$ ovvero s(t) = t. In particolare, se $\dot{x}(t) = f(x(t), t), \quad \text{ove } f \in C^1(\mathbf{R}^n \times \mathbf{R}, \mathbf{R}^n)$ é tale che

$$\forall T > 0 \quad \exists A(T), B(T) > 0 : \qquad \sup_{|t| \le T} ||f(x,t)|| \le A(T) + B(T)||x|| \qquad \forall x \in \mathbf{R}^n$$

allora x(t) é definita in **R**. Infatti, se y(t) = (x(t), t), t < T, da $\dot{y}(t) = g(y(t))$ segue

$$||y(t)|| \le ||y(0)|| + A(T)t + B(T) \int_{0}^{t} ||y(\tau)|| d\tau$$
 $\forall t < T$

Per Gronwall, $\{y(t); t \in [0, T)\}$ é insieme limitato e quindi y(t) é prolungabile oltre T. Segue che le soluzioni di $\dot{x}(t) = f(x(t), t)$ sono definite per tutti i tempi .

Proposizione L'insieme di tutte le soluzioni di (*), cioé

$$\mathcal{N} := \{ x \in C^1(\mathbf{R}, \mathbf{R}^n) : Lx := \dot{x} - \mathcal{A}x = 0 \}$$

é un sottospazio linare di $C^1(\mathbf{R}, \mathbf{R}^n)$ di dimensione n.

Il fatto, evidente, che **combinazioni lineari** $\alpha x(t) + \beta y(t)$ di soluzioni sia ancora soluzione si traduce nella linearità dell'insieme delle soluzioni (che è infatti il nucleo dell' operatore lineare L). Poi, dire che \mathcal{N} ha dimensione n equivale a dire che

- 1. Esistono $x^i \in \mathcal{N}$, i = 1, ..., n linearmente indipendenti, cioé esistono n soluzioni x^i tali che $\sum_{i=1}^n c_i x^i(t) = 0 \quad \forall t \implies c_i = 0 \quad \forall i$.
- 2. Tali x^i generano \mathcal{N} : $\forall x \in \mathcal{N}$, $\exists c = (c_1, \ldots, c_n) : x(t) = \sum_{i=1}^n c_i x^i(t) \quad \forall t$

Basta prendere x^i nel modo seguente: fissati n vettori $v^i \in \mathbf{R}^n$ linearmente indipendenti , x^i é la soluzione di (*) soddisfacente la condizione iniziale $x^i(0) = v^i$. Chiaramente le x^i sono linearmente indipendenti. Poi, se x é soluzione, siano $c_i \in \mathbf{R}$ tali che $x(0) = \sum_{i=1}^n c_i v^i = \sum_{i=1}^n c_i x^i(0)$ e sia $\hat{x}(t) := \sum_{i=1}^n c_i x^i(t)$. Siccome x e \hat{x} sono soluzioni dello stesso problema di Cauchy, allora $x \equiv \hat{x}$ (per il Teorema di Picard).

Definizione. Un sistema di n soluzioni linearmente indipendenti x^i di (*) é sistema fondamentale per (*).

Se x^i é sistema fondamentale, $X(t) = (x^1, ..., x^n) = (x^i_j(t))_{i,j=1,...,n}$ é matrice fondamentale.

Se X(t) é matrice fondamentale e X(0) é la matrice identitá, cioé $X(0) = (e_1, \ldots, e_n)$ ovvero $x_i^i(0) = \delta_{ij}$, X é **matrice principale**.

Se X é matrice fondamentale allora le soluzioni di (*) si scrivono nella forma

$$x(t) = \sum_{i=1}^{n} c_i x^i(t) = X(t)c$$
 $c = (c_1, \dots, c_n) \in \mathbf{R}^n$ (Integrale Generale)

Se X é matrice principale X(t)c, $c \in \mathbf{R}^n$ é la soluzione del problema di Cauchy con condizione iniziale x(0) = c. Infine, con ovvie notazioni, $\dot{X} = \mathcal{A}X$.

NOTA. Date n funzioni $x^i \in C(\mathbf{R}, \mathbf{R}^n)$, é subito visto che $\exists t_0 : i \ vettori \ x^i(t_0)$ sono linearmente indipendenti \Rightarrow le funzioni x^i sono linearmente indipendenti, ma il viceversa non é vero, in generale: $x^1(t) = (1, t), x^2(t) = (t, t^2)$ sono chiaramente funzioni linearmente indipendenti, ma $x^2(t) = tx^1(t) \quad \forall t$, cioé, per ogni t, $x^1(t) \in x^2(t)$ sono vettori (di \mathbf{R}^2) linearmente dipendenti.

Definizione. Date $x^i \in C(\mathbf{R}, \mathbf{R}^n), i = 1, ..., n$ sia $X(t) := (x^i_j(t)).$ $W(t) := \det X(t)$ si dice determinante **Wronskiano** delle x^i .

Siccome, dati $v^i \in \mathbf{R}^n, i = 1, \dots, n$, come é ben noto

$$v^i$$
 linearmente indipendenti \Leftrightarrow $\left(\sum_{i=1}^n c_i v^i = 0 \Rightarrow c_i = 0 \quad \forall i\right) \Leftrightarrow \det(v^i_j) \neq 0$

si ha allora che: $\exists t_0$ tale che $W(t_0) \neq 0 \Rightarrow x^i$ linearmente indipendenti. Il viceversa, come visto in NOTA, é falso in generale, : x^i linearmente indipendenti non implica $\det(x_i^i(t)) \neq 0$ (anche solo per qualche t). Tuttavia

Proposizione Siano x^i , i = 1, ..., n soluzioni di (*), $X(t) := (x_i^i(t))$.

$$X(t)$$
 é matrice fondamentale \Leftrightarrow $\det X(t) \neq 0 \quad \forall t \Leftrightarrow (X(t))^{-1}$ esiste $\forall t$

Prova. C'é solo da provare la prima \Rightarrow . Supponiamo, per assurdo, che esista t_0 tale che $W(t_0)=0$ e quindi che i vettori $x^i(t_0)$ siano linearmente dipendenti: esistono c_i costanti non tutte nulle tali che $\sum_{i=1}^n c_i x^i(t_0)=0$. Ora, se $\hat{x}(t):=\sum_{i=1}^n c_i x^i(t), \quad \hat{x}$ é soluzione che si annulla in t_0 , e quindi, per l'unicitá della soluzione del problema di Cauchy, $\sum_{i=1}^n c_i x^i(t)=\hat{x}\equiv 0$, cioé le x^i sono linearmente dipendenti.

SISTEMI LINEARI NON OMOGENEI

Siano $a_{ij}, b_i \in C(\mathbf{R}), \quad i, j = 1, ..., n, \ \mathcal{A} = (a_{ij}), \quad b = (b_1, ..., b_n)$. Sia X matrice fondamentale per il sistema lineare omogeneo $\dot{x} = \mathcal{A}x$. Sia \overline{x} soluzione del sistema lineare non omogeneo

$$\dot{x} = \mathcal{A}x + b \tag{**}$$

L'insieme di tutte le soluzioni del sistema lineare non omogeneo é dato da

$$\mathcal{N} + \overline{x} = \{ \overline{x} + X(t)c : c \in \mathbf{R}^n \}$$
 (integrale generale)

Una soluzione particolare \overline{x} del sistema non omogeneo é data da

$$\overline{x}(t) = X(t) \int_{0}^{t} (X(\tau))^{-1} b(\tau) d\tau$$

Infatti, $\frac{d\overline{x}}{dt} = \dot{X} \int_{0}^{t} (X(\tau))^{-1} b(\tau) d\tau + X(t) (X(t))^{-1} b(t) = \mathcal{A} X \int_{0}^{t} X^{-1} b d\tau + b = \mathcal{A} \overline{x} + b$. L'integrale generale di (**)é dunque dato da

$$x(t) = X\left(b + \int_{0}^{t} X^{-1}bd\tau\right)$$
 (formula della variazione delle costanti)

SISTEMI A COEFFICENTI COSTANTI : RIDUZIONE A FORMA CANONICA

Sia e_i , i = 1, ..., n base canonica di \mathbf{R}^n . Sia $\mathcal{D}(\lambda_1, ..., \lambda_n) := (\lambda_1 e_1, ..., \lambda_n e_n)$ (matrice diagonale avente $\lambda_1, ..., \lambda_n$ come elementi sulla diagonale principale). Il (piú semplice) sistema differenziale

$$\dot{x} = \mathcal{D}(\lambda_1, \dots, \lambda_n)x$$
 $x(t) = ((x_1(t), \dots, x_n(t))$

é formato dalle n equazioni disaccoppiate $\dot{x}_i = \lambda_i x_i, \quad i = 1, \dots, n$. Il sistema ammette quindi le soluzioni $x^i = e^{\lambda_i t} e_i$.

Queste soluzioni sono a Wronskiano diverso da zero e quindi **formano un sistema fondamentale** e ogni soluzione é della forma

$$x = \sum_{i=1}^{n} c_i e^{\lambda_i t} e_i = \left(c_1 e^{\lambda_1 t}, \dots, c_n e^{\lambda_n t} \right), \qquad c_i \in \mathbf{R}$$
 (Integrale Generale)

Se \mathcal{A} ha n autovalori reali distinti, allora \mathcal{A} ha una base di autovettori $v^i \in \mathbb{R}^n$, i = 1, ..., n. L'Integrale Generale del sistema $\dot{x} = \mathcal{A}x$ si scrive

$$\sum_{i=1}^{n} c_i e^{\lambda_i t} v^i, \qquad c_i \in \mathbf{R}$$

Per provarlo, introduciamo la matrice avente come colonne gli autovettori

$$\mathcal{P} := \left(v^1, \dots, v^n\right) = \left(v_j^i\right)_{i,j=1,\dots,n}$$

 \mathcal{P} é invertibile e $\mathcal{P}^{-1}\mathcal{A}\mathcal{P}e_i = \mathcal{P}^{-1}\mathcal{A}v^i = \lambda_i\mathcal{P}^{-1}v^i = \lambda_ie_i$ ovvero λ_ie_i é la i-esima colonna di $\mathcal{P}^{-1}\mathcal{A}\mathcal{P}$. Dunque

$$\mathcal{P}^{-1}\mathcal{A}\mathcal{P} = (\lambda_1 e_1, \dots, \lambda_n e_n) = \mathcal{D}(\lambda_1, \dots, \lambda_n)$$
 (forma canonica)

Ma allora, se $\dot{x} = \mathcal{A}x$ e $y := \mathcal{P}^{-1}x$, é $x = \mathcal{P}y$ e $\dot{y} = \mathcal{P}^{-1}\dot{x}$ e quindi

$$\dot{y} = \mathcal{P}^{-1} \mathcal{A} \mathcal{P} y = \mathcal{D}(\lambda_1, \dots, \lambda_n) y$$
 e quindi $y = \sum_{i=1}^n c_i e^{\lambda_i t} e_i$

Quindi l'integrale generale di $\dot{x} = Ax$ si scrive appunto

$$\mathcal{P}\left(\sum_{i=1}^{n} c_i e^{\lambda_i t} e_i\right) = \sum_{i=1}^{n} c_i e^{\lambda_i t} v^i$$

In Appendice discuteremo la riduzione a forma canonica nel caso di autovalori multipli e/o complessi.

EQUAZIONI DIFFERENZIALI DI ORDINE SUPERIORE

Consideriamo il problema di Cauchy: data $f \in C^1(\mathbf{R}^n \times \mathbf{R}, \mathbf{R}), t_0 \in \mathbf{R}$, trovare $\delta > 0$ e $y \in C^n((t_0 - \delta, t_0 + \delta))$ tale che

$$y^{(n)}(t) = f(y(t), y'(t), \dots, y^{(n-1)}(t), t), \qquad t \in (t_0 - \delta, t_0 + \delta)$$

$$y(t_0) = c_0,$$
 $y'(t_0) = c_1,$ $y^{(n-1)}(t_0) = c_n$

Se y é una soluzione, allora $x_1 := y, x_2 := y', \dots, x_{n-1} := y^{(n-2)}, x_n := y^{(n-1)}$ risolvono il problema di Cauchy per il sistema differenziale del primo ordine associato

$$\dot{x}_1 = x_2, \dots, \dot{x}_{n-1} = x_n, \qquad \dot{x}_n = f(x_1, \dots, x_n, t)$$

 $x_1(t_0) = c_0, \dots, x_n(t_0) = c_n$

In particolare il problema di Cauchy dato ha al più una soluzion, ed ha in effetti esattamente una soluzione ottenuta a partire dalla soluzione del problema di Cauchy per il sistema del primo ordine associato. Si estendono poi in modo ovvio i teoremi di esistenza globale validi per i sistemi del primo ordine. In particolare, se $a_j, j = 1, \ldots n$ sono funzioni continue in I, l'equazione lineare di ordine n

$$(EDL) y^{(n)}(t) + a_1(t)y^{(n-1)}(t) + \dots, a_n(t)y(t) = 0$$

ha soluzioni definite in I e tali soluzioni formano un sottospazio lineare di dimensione n di $C^n(I)$. Una base di tale spazio, diciamo y_1, \ldots, y_n , si chiama Sistema Fondamentale. Un sistema di n soluzione é un sistema fondamentale se e solo se il Wronskiano

$$W(t) := \det \left(y_j^{(i-1)}(t) \right)_{i,j=1,\dots,n}$$

é diverso da zero per ogni t (equivalentemente: per qualche t). Se $y_j, j = 1, \ldots, n$ é sistema fondamentale, allora le soluzioni di (EDL) sono tutte e sole le funzioni

$$y = c_1 y_1 + \ldots + c_n y_n, \quad c_i \in \mathbf{R}$$
 Integrale Generale

Se a_i sono costanti, e se λ é uno zero reale di molteplicitá q di

$$p(\lambda) := \lambda^n + a_1 \lambda^{n-1} + \ldots + a_n$$
 polinomio caratteristico

allora (EDL) ha le q soluzioni

$$y_1 = e^{\lambda t}, \qquad y_2 = te^{\lambda t}, \quad \dots \quad y_q = t^{q-1}e^{\lambda t}$$

Se invece $\lambda = \alpha + i\beta$ é uno zero complesso di molteplicitá p (e cosí pure $\overline{\lambda}$) (EDL) ha le 2p soluzioni

$$y_1 = e^{\alpha t} \sin \beta t$$
, $y_2 = t e^{\alpha t} \sin \beta t$, ... $y_p = t^{p-1} e^{\alpha t} \sin \beta t$

$$\hat{y}_1 = e^{\alpha t} \cos \beta t,$$
 $\hat{y}_2 = e^{\alpha t} \cos \beta t,$... $\hat{y}_p = t^{p-1} e^{\alpha t} \cos \beta t$

Si ottiene in questo modo un sistema fondamentale.

COMPLEMENTI

Supponiamo adesso che \mathcal{A} abbia ancora tutti **autovalori distinti**, ma che abbia q **autovalori reali** μ_i , $i=1,\ldots,q$ **e** $2p\geq 2$ **autovalori complessi** , q+2p=n (notiamo che se $\lambda=\alpha+i\beta$ é autovalore complesso allora anche $\overline{\lambda}=\alpha-i\beta$ lo é, perché \mathcal{A} é matrice di numeri reali e quindi il suo polinomio caratteristico é a coefficenti reali).

Siano $\lambda_j, \overline{\lambda}_j j = 1, \ldots, p$ e $\mu_i, i = 1, \ldots, q$ gli autovalori complessi e, rispettivamente, reali, di \mathcal{A} . A tali autovalori corrispondono n autovettori linearmente indipendenti, diciamo $v^j, \overline{v}^j, j = 1, \ldots, p, \quad u^i, \quad i = 1, \ldots, q$: notiamo che mentre $u^i \in \mathbf{R}^n$, i v^j sono vettori in \mathbf{C}^n (vettori a componenti complesse) e compaiono in coppie complesse coniugate giacché $\mathcal{A}v^j = \lambda_j v^j \Leftrightarrow \mathcal{A}\overline{v}^j = \overline{\lambda}_j \overline{v}^j$ (la lineare indipendenza sussiste, nei fatti, in \mathbf{C}^n). Posto $\xi^j := \Re v^j, \eta^j := \Im v^j$ (ovvero $v^j = \xi^j + i\eta^j, \quad \xi^j, \eta^j \in \mathbf{R}^n$), é

$$\mathcal{A}\xi^{j} + i\mathcal{A}\eta^{j} = \mathcal{A}v^{j} = \lambda_{j}v^{j} = (\alpha_{j} + i\beta_{j})(\xi^{j} + i\eta^{j}) = \alpha_{j}\xi^{j} - \beta_{j}\eta^{j} + i(\beta_{j}\xi^{j} + \alpha_{j}\eta^{j}) \Rightarrow$$

$$\mathcal{A}\xi^{j} = \alpha_{j}\xi^{j} - \beta_{j}\eta^{j}, \qquad \mathcal{A}\eta^{j} = \beta_{j}\xi^{j} + \alpha_{j}\eta^{j}$$

Sia ora

$$\mathcal{P} := \left(\xi^1, \eta^1, \dots, \xi^p, \eta^p, u^1, \dots u^q\right)$$

la matrice $(n \times n \text{ reale})$ avente le prime 2p colonne formate dai vettori parte reale e coefficente dell'immaginario degli autovettori corrispondenti ai λ_i e le rimanenti q colonne formate dagli autovettori reali. Ovviamente tali vettori sono linearmente indipendenti e quindi \mathcal{P} é invertibile. Mostriamo che

$$\mathcal{P}^{-1}\mathcal{A}\mathcal{P} =$$

$$(\alpha_1 e_1 - \beta_1 e_2, \beta_1 e_1 + \alpha_1 e_2, \dots, \alpha_p e_p - \beta_p e_{p+1}, \beta_p e_p + \alpha_p e_{p+1}, \quad \mu_1 e_{2p+1}, \dots, \mu_q e_n)$$

 $(\mathcal{P}^{-1}\mathcal{A}\mathcal{P} \text{ \'e qui, come altrove, descritta come } n$ -upla di vettori colonna). É questa la forma canonica di \mathcal{A} in presenza di autovalori distinti, reali o complessi. Verifichiamolo:

$$\mathcal{P}^{-1}\mathcal{A}\mathcal{P}e_1 = \mathcal{P}^{-1}\mathcal{A}\xi^1 = \mathcal{P}^{-1}\left(\alpha_1\xi^1 - \beta_1\eta^1\right) = \alpha e_1 - \beta_1 e_2$$

$$\mathcal{P}^{-1}\mathcal{A}\mathcal{P}e_2 = \mathcal{P}^{-1}\mathcal{A}\eta^1 = \mathcal{P}^{-1}\left(\beta_1\xi^1 + \alpha_1\eta^1\right) = \beta e_1 + \alpha_1 e_2$$

e cosí via fino alle colonne di posto 2p - 1 e 2p.

Per le rimanenti si trova invece $\mathcal{P}^{-1}\mathcal{A}\mathcal{P}e_{2p+i} = \mu_i e_{2p+i}$.

Posto $y = (x, \xi, \eta) \in \mathbf{R}^q \times \mathbf{R}^p \times \mathbf{R}^p$, il sistema $\dot{y} = \mathcal{P}^{-1} \mathcal{A} \mathcal{P} y$ si disaccoppia nelle q equazioni

$$\dot{x}_i = \mu_i x_i \qquad i = 1, \dots, q$$

e nei p sistemi 2×2

$$\dot{\xi}_j = \alpha_j \xi_j - \beta_j \eta_j, \qquad \dot{\eta}_j = \beta_j \xi_j + \alpha_j \eta_j, \qquad \xi_j, \eta_j \in C^1(\mathbf{R}, \mathbf{R}) \qquad j = 1, \dots, p$$

Posto $z_j(t) := \xi_j(t) + i\eta_j(t),$ $\dot{z}_j := \dot{\xi}_j + i\dot{\eta}_j,$ il sistema si riscrive come

$$\dot{z}_j = (\alpha_j + i\beta_j)z_j$$

che ha le soluzioni

$$z_i = c \exp(\alpha_i t + i\beta_i t) = c e^{\alpha_i t} (\cos \beta_i t + i \sin \beta_i t), \quad c \in \mathbf{C}$$

Prendendo c = 1, c = i otteniamo coppie di soluzioni in forma reale

$$\xi_i = e^{\alpha_j t} \cos \beta_i t, \qquad \eta_i = e^{\alpha_j t} \sin \beta_i t, \qquad \xi_i = e^{\alpha t_j} \sin \beta_i t, \quad \eta_i = -e^{\alpha_j t} \cos \beta_i t$$

Si ottiengono cosí 2p + q soluzioni che, come é immediato verficare, sono a Wronskiano diverso da zero e quindi formano un sistema fondamentale per il sistema in forma canonica e che, applicando \mathcal{P} , fornisce un sistema fondamentale per il sistema dato $\dot{x} = \mathcal{A}x$.

Piú in generale, se \mathcal{P} é matrice invertibile e $\sum_{i=1}^{n} c_i y^i$ é Integrale Generale di $\dot{y} = \mathcal{P}^{-1} \mathcal{A} \mathcal{P} y$, allora

$$\sum_{i=1}^{n} c_i \mathcal{P} y^i$$

é Integrale Generale di $\dot{x} = Ax$.

Si tratta allora di trovare una matrice \mathcal{P} che riduca \mathcal{A} nella forma più semplice possibile, la sua **forma canonica**.

Cosí abbiamo proceduto nel caso diagonalizzabile. Si puó procedere in questo modo anche quando, a causa della presenza di autovalori multipli, fosse impossibile diagonalizzare \mathcal{A} (ricordiamo che anche in presenza di autovalori multipli \mathcal{A} puó avere n autovettori linearmente indipendenti e quindi essere diagonalizzabile: é questo il caso se \mathcal{A} é simmetrica).

In tali casi la forma canonica risulterá peró piuttosto complicata (forme di Jordan).

Ci limitiamo a considerare il caso

 \mathcal{A} ha un solo autovalore, reale, cui corrisponde un unico autovettore.

Cominciamo dalla situazione più semplice, cioé n=2. Sia dunque λ zero di molteplicitá 2 (**molteplicitá algebrica** di λ) del polinomio caratteristico di \mathcal{A} , matrice 2×2 . Se la **molteplicitá geometrica** di λ , ovvero dim (ker($\mathcal{A} - \lambda \mathcal{I}$)) é uguale alla molteplicitá algebrica di λ (cioé é 2) cioé a λ corrispondono due autovettori linearmente indipendenti, allora \mathcal{A} é, come sopra, diagonalizzabile.

Supponiamo quindi che λ abbia un unico autovettore v. Ció implica che

$$Im(\mathcal{A} - \lambda \mathcal{J}) = \{ h \in \mathbf{R}^2 : \exists u \in \mathbf{R}^2 \text{ tale che } \mathcal{A}u - \lambda u = h \}$$

é un sottospazio di dimensione 1: $Im(A - \lambda J) = \{tu : t \in \mathbf{R}\}$ per qualche $u \neq 0$. Di piú,

$$Im(A - \lambda \mathcal{J}) = \{tv : t \in \mathbf{R}\}\$$

Questo perché $\mathcal{A}u - \lambda u = tu \Rightarrow \mathcal{A}u - (\lambda + t)u = 0$ e quindi t = 0 (λ é l'unico autovalore!) e quindi u é un multiplo di v (v é l'unico autovettore!) Dunque esiste u tale che $\mathcal{A}u - \lambda u = v$. In particolare, $u \in Ker(\mathcal{A} - \lambda \mathcal{I})^2$ ed u si dice **autovettore generalizzato**. Sia ora

$$\mathcal{P} = (v, u)$$

la matrice avente per colonne l'autovettore e l'autovettore generalizzato; ovviamente \mathcal{P} é invertibile. Si ha

$$\mathcal{P}^{-1}\mathcal{A}\mathcal{P}e_1 = \mathcal{P}^{-1}\mathcal{A}v = \mathcal{P}^{-1}\lambda v = \lambda e_1$$
$$\mathcal{P}^{-1}\mathcal{A}\mathcal{P}e_2 = \mathcal{P}^{-1}\mathcal{A}u = \mathcal{P}^{-1}(\lambda u + v) = \lambda e_2 + e_1$$

Dunque

$$\mathcal{P}^{-1}\mathcal{A}\mathcal{P} = (\lambda e_1, e_1 + \lambda e_2)$$

É questa la forma canonica di \mathcal{A} . Il sistema associato a $\mathcal{P}^{-1}\mathcal{A}\mathcal{P}$ é

$$\dot{x} = \lambda x + y, \qquad \dot{y} = \lambda y$$

Una soluzione di tale sistema é $y \equiv 0, x = e^{\lambda t}$. Una seconda soluzione é $y = e^{\lambda t}$ e quindi $(xe^{-\lambda t})' = 1$ e quindi $x = te^{\lambda t}$. Tali soluzioni sono a Wronskiano non nullo e quindi formano un sistema fondamentale. Dunque un sistema fondamentale per $\dot{x} = \mathcal{A}x$ é dato da

$$\mathcal{P}\left(e^{\lambda t}e_1\right) = e^{\lambda t}v, \qquad \mathcal{P}\left(te^{\lambda t}e_1 + e^{\lambda t}e_2\right) = te^{\lambda t}v + e^{\lambda t}u$$

Argomenti analoghi si applicano al caso piú generale in cui la matrice $n \times n$ \mathcal{A} ha un unico autovalore λ (avente quindi molteplicitá algebrica n) avente molteplicitá geometrica 1, cioé $\mathcal{A}u = \lambda u$ ha una sola soluzione u_1 (a meno di multipli).

La proprietá chiave (che sussiste in effetti senza ipotesi sulla molteplicitá geometrica di λ e che diamo senza dimostrazione) é la seguente:

(!)
$$Ker (A - \lambda I)^n = \mathbf{R}^n$$
 (!)

1. Una conseguenza di (!) é che

$$Ker (A - \lambda I)^k = Ker (A - \lambda I)^{k+1} \quad \Rightarrow \quad Ker (A - \lambda I)^k = \mathbf{R}^n$$

Infatti,
$$u \in Ker(\mathcal{A} - \lambda \mathcal{I})^{k+2} \Rightarrow 0 = (\mathcal{A} - \lambda \mathcal{I})^{k+2}(u) = (\mathcal{A} - \lambda \mathcal{I})^{k+1}(\mathcal{A}u - \lambda u)$$

 $\Rightarrow (\mathcal{A} - \lambda \mathcal{I})^{k}(\mathcal{A}u - \lambda u) = 0 \Rightarrow u \in Ker(\mathcal{A} - \lambda \mathcal{I})^{k+1} = Ker(\mathcal{A} - \lambda \mathcal{I})^{k}.$

2. Una conseguenza di $dim \left[Ker \left(\mathcal{A} - \lambda \mathcal{I} \right) \right] = 1$ é che

(+)
$$dim \left[Ker \left(\mathcal{A} - \lambda \mathcal{I} \right)^{k+1} \right] = dim \left[Ker \left(\mathcal{A} - \lambda \mathcal{I} \right)^{k} \right] + 1$$

se $Ker(A - \lambda I)^k$ é sottospazio proprio di $Ker(A - \lambda I)^{k+1}$. Infatti, da

$$\exists u: (\mathcal{A} - \lambda \mathcal{I})^{k+1} (u) = 0, (\mathcal{A} - \lambda \mathcal{I})^k (u) \neq 0$$

segue

$$0 = (\mathcal{A} - \lambda \mathcal{I})^{k+1} (u) = (\mathcal{A} - \lambda \mathcal{I}) (\mathcal{A} - \lambda \mathcal{I})^k (u) \quad \Rightarrow \quad (\mathcal{A} - \lambda \mathcal{I})^k (\alpha u) = u_1$$

per qualche $\alpha \neq 0$. Ugualmente $(\mathcal{A} - \lambda \mathcal{I})^{k+1}(\overline{u}) = 0 \Rightarrow (\mathcal{A} - \lambda \mathcal{I})^k(\beta \overline{u}) = u_1$ per qualche $\beta \neq 0$ e quindi $\alpha u + \beta \overline{u} \in Ker(\mathcal{A} - \lambda \mathcal{I})^k$. In particolare, da (!) e 1., segue che allora (+) vale per ogni k < n.

3. Una conseguenza di 2. é che

$$(A - \lambda I) \left[Ker (A - \lambda I)^{k+1} \right] = Ker (A - \lambda I)^k$$

Intanto, $u \in Ker(\mathcal{A} - \lambda \mathcal{I})^{k+1} \Rightarrow (\mathcal{A} - \lambda \mathcal{I})^{k}(\mathcal{A}u - \lambda u) = 0$ cioé $(\mathcal{A} - \lambda \mathcal{I}) \left[Ker(\mathcal{A} - \lambda \mathcal{I})^{k+1} \right] \subset Ker(\mathcal{A} - \lambda \mathcal{I})^{k}$. Poi, usando 2.,

$$dim\left[Ker\left(\mathcal{A}-\lambda\mathcal{I}\right)\right]=1\Rightarrow dim\left[\left(\mathcal{A}-\lambda\mathcal{I}\right)\left(Ker\left(\mathcal{A}-\lambda\mathcal{I}\right)^{k+1}\right)\right]=0$$

$$= dim \left[Ker \left(\mathcal{A} - \lambda \mathcal{I} \right)^{k+1} \right] - 1 = dim \left[Ker \left(\mathcal{A} - \lambda \mathcal{I} \right)^{k} \right]$$

Da 3. segue che esiste u_2 tale che $\mathcal{A}u_2 - \lambda u_2 = u_1$, e poi, iterando, per ogni k < n esiste $u_{k+1} \in Ker (\mathcal{A} - \lambda \mathcal{I})^{k+1}$ tale che $\mathcal{A}u_{k+1} - \lambda u_{k+1} = u_k$. Sia ora

$$\mathcal{P} = (u_1, \dots, u_n)$$

la matrice avente per colonne l'autovettore u_1 e gli **autovettori generalizzati** u_k $k=2,\ldots,n$. Siccome

$$\mathcal{P}^{-1}\mathcal{A}\mathcal{P}e_1 = \mathcal{P}^{-1}\mathcal{A}u_1 = \mathcal{P}^{-1}\lambda u_1 = \lambda e_1$$

$$\mathcal{P}^{-1}\mathcal{A}\mathcal{P}e_k = \mathcal{P}^{-1}\mathcal{A}u_k = \mathcal{P}^{-1}(\lambda u_k + u_{k-1}) = \lambda e_k + e_{k-1}, \qquad k = 2, \dots, n$$

concludiamo che

$$\mathcal{P}^{-1}\mathcal{A}\mathcal{P} = (\lambda e_1, \lambda e_2 + e_1, \dots, \lambda e_n + e_{n-1})$$

ove $\mathcal{P}^{-1}\mathcal{A}\mathcal{P}$ é descritta come riga di vettori colonna. É questa la **forma canonica** per \mathcal{A} .

Ora, il sistema differenziale associato a $\mathcal{P}^{-1}\mathcal{A}\mathcal{P}$ é

$$\dot{y}_1 = \lambda y_1 + y_2, \quad \dot{y}_2 = \lambda y_2 + y_3, \quad \dots \quad , \dot{y}_{n-1} = \lambda y_{n-1} + y_n, \qquad \dot{y}_n = \lambda y_n$$

Iterando il calcolo effettuato nel caso n=2 troviamo per tale sistema le n soluzioni

$$(e^{\lambda t} , 0, \dots, 0)$$

$$(te^{\lambda t}, e^{\lambda t}, 0, \dots, 0)$$

$$(t^2e^{\lambda t}, te^{\lambda t}, e^{\lambda t}, 0, \dots, 0)$$

$$(t^{n-1}e^{\lambda t}, t^{n-2}e^{\lambda t}, \dots, e^{\lambda t})$$

Tali n soluzioni hanno Wronskiano evidentemente diverso da zero e quindi formano un sistema fondamentale da cui, applicando \mathcal{P} , si ottiene un sistema fondamentale per $\dot{x} = \mathcal{A}x$.