Università degli Studi Roma Tre - Corso di Laurea in Matematica

AM3 tutorato 9

A.A 2008-2009

Docente: Prof. P. Esposito Tutori: G.Mancini, E. Padulano Tutorato 9 del 20 Maggio 2009

- Esercizio 1 Sia γ la curva in \mathbb{R}^2 di equazione polare $\rho(\theta) = \cos \theta + \sin \theta \; \cos \theta \in [0, \pi]$. Calcolare la lunghezza di γ e l'integrale curvilineo $\int_{\gamma} \frac{xy^2}{x^2 + y^2} ds$
- Esercizio 2 Calcolare $\int_{\alpha} \frac{y^2 \sin z}{\sqrt{2+3y^2+2y^4}} ds$ dove $\alpha(t) = (\sqrt{1+t^2}, t, \arctan t)$ $t \in [0, 1]$
- Esercizio 3 Calcolare l'area della superficie $\Sigma \subseteq \mathbb{R}^3$ definita dalla parametrizzazione $\Phi(u,v)=(u\cos v,u\sin v,u^2)\quad u\in[0,\sqrt{2}]\;,\;v\in[0,2\pi]$
- Esercizio 4 Calcolare $\int_S \frac{z}{x} d\sigma$ dove S è la superficie in \mathbb{R}^3 definita dalla parametrizzazione $\Phi(u,v) = (u^2 + v^2, u^2 v^2, 2uv) \text{ con } (u,v) \in D = \{(x,y) \in \mathbb{R}^2 \mid \frac{4}{x^2} \leq y \leq 5 x^2 \text{ , } x \geq 0\}$
- Esercizio 5 Calcolare l'area superficiale del bordo del sottoinsieme di \mathbb{R}^3 ottenuto intersecando il cono $z^2 \geq x^2 + y^2$ con la palla unitaria di \mathbb{R}^3 .
- Esercizio 6 Sia $\Sigma = \{(x,y,z) \in \mathbb{R}^3 \mid z = \arctan \frac{y}{x} \mid x^2 + y^2 \ge 1 , \ x^2 + y^2 \le 2x , \ y \ge 0 \}$. Calcolare l' integrale di superficie $\int_{\Sigma} \frac{yz}{\sqrt{1+x^2+y^2}} d\sigma$
- Esercizio 7 Sia $\omega = (x + y^2)dx + xzdy + xz^3dz$ calcolare $\int_{\gamma} \omega$ dove $\gamma : [0, \pi] \longrightarrow \mathbb{R}^3$ è la curva $\gamma(t) = (\sin t, \cos t, \sin t)$.
- Esercizio 8 Sia $\omega = \frac{e^x}{1+y^2}dx + \left(2y \frac{2e^xy}{(1+y^2)^2}\right)dy$
 - (a) Provare che ω è una forma differenziale chiusa
 - (b) Dimostrare che ω è una forma esatta è determinarne un potenziale
 - (c) Calcolare $\int_{\gamma} \omega \text{ dove } \gamma(t) = (t \arctan t , e^{\frac{\pi}{4}t t^2}) \quad t \in [0, \frac{\pi}{4}]$
- Esercizio 9 Sia $\omega = \frac{2y^3}{(x^2+y^2)^2}dx \frac{2xy^2}{(x^2+y^2)^2}dy$
 - (a) Stabilire se ω è una forma chiusa in $\mathbb{R}^2 \{(0,0)\}$.
 - (b) Stabilire se ω è una forma esatta in $\mathbb{R}^2 \{(0,0)\}.$
- Esercizio 10 Calcolare il volume e l'area della superficie laterale di un generico toro di raggi r ed R ($cio\`{e}$ del solido di rotazione ottenuto ruotando attorno all' asse delle z il cerchio del piano yz di equazione $(y-R)^2+z^2=r^2$)

1