GE2 - Tutorato IV

Chiara Del Vescovo

13 dicembre 2006

Definizione 0.1. Sia \mathbb{A} uno spazio affine definito sullo spazio vettoriale V. Una AFFINITA' su \mathbb{A} è una coppia $f=(f,\psi)$ data da un'applicazione biunivoca $f:\mathbb{A} \longrightarrow \mathbb{A}$ e da un automorfismo $\psi:V\longrightarrow V$, in modo tale che $\forall P,Q\in\mathbb{A}$ risulti $\overline{f(P)f(Q)}=\psi(\overrightarrow{PQ})$.

Definizione 0.2. In \mathbb{A}^n si scelgano n+1 punti P_0,P_1,\ldots,P_n . Tali punti sono detti INDIPENDENTI se gli n vettori $P_0P_1,P_0P_2,\ldots,P_0P_n$ sono linearmente indipendenti, e dunque formano una base di $V_{\mathbb{R}}^n$.

Lemma 0.3. Fissato un punto $O \in \mathbb{A}$, $\forall O' \in \mathbb{A}'$ e $\forall \psi \in GL(V)$, esiste un'unica affinità $f : \mathbb{A} \to \mathbb{A}'$ t.c. f(O) = O' e t.c. l'automorfismo associato ad f sia ψ .

In particolare, un'affinità è univocamente determinata dall'automorfismo di V ad essa associato e dall'immagine f(O) di un qualsiasi punto $O \in \mathbb{A}$.

Teorema 0.4 (Teorema fondamentale delle affinità). Consideriamo in \mathbb{A}^n i due insiemi $\{P_0, P_1, \dots, P_n\}$ e $\{Q_0, Q_1, \dots, Q_n\}$ formati da n+1 punti linearmente indipendenti; allora, esiste un'unica affinità $f = (f, \psi)$ tale che $f(P_i) = Q_i$ $\forall i = 0, \dots, n$.

ESEMPI:

- 1. L'identità $\mathbb{1}_{\mathbb{A}}: \mathbb{A} \to \mathbb{A}$ è una affinità, con automorfismo associato l'identità $\mathbb{1}_V \in GL(V)$.
- 2. Un'importante classe di trasformazioni afini di uno spazio affine \mathbb{A} su V è quella costituita dalle traslazioni: sia $v \in V$; definiamo la TRASLAZIONE DEFINITA DA v come l'affinità che associa ad ogni $P \in \mathbb{A}$ il punto $t_v(P)$ t.c. $Pt_v(P) = v$. Si vede facilmente che l'automorfismo associato ad una qualsiasi traslazione è ancora l'identità $\mathbb{1}_V: V \to V$.
- 3. Dato $O \in \mathbb{A}$, consideriamo il gruppo di trasformazioni affini formato da tutte le affinità che lasciano fisso il punto O; per il lemma precedente, ognuna di esse sarà individuata dalla matrice dell'automorfismo associato $\psi \in GL(V)$.
- 4. Dato $c \in \mathbb{K}$, una OMOTETIA di centro O e fattore $c \in f \in \mathbf{Aff}(\mathbb{A})_O$ dove l'automorfismo associato è la matrice $c\mathbb{1}_V$.

- 1. Sia $\mathbb{A} = \mathbb{A}^2_{\mathbb{R}}$ uno spazio affine con riferimento affine (O, \mathbb{E}) .
 - (a) Determinare l'equazione di ogni affinità f che fissa i punti della retta r di equazione x + y = 1;
 - (b) Considerati i punti $P=(1,2),\ Q=(2,1)\in\mathbb{A},$ tra le affinità considerate in (a) determinare quelle (eventuali) che trasformano P in Q:
 - (c) Tra le affinità considerate in (a) determinare eventuali traslazioni.
- 2. Sia $\mathbb{A}=\mathbb{A}^3_{\mathbb{R}}$ uno spazio affine con riferimento affine $(O,\mathbb{E}).$ Consideriamo i punti:

$$\begin{split} P_0 &= (1,0,0), \ P_1 = (1,0,1), \ P_2 = (0,0,-1), \ P_3 = (0,1,0) \ \mathrm{e} \\ Q_0 &= (1,0,0), \ Q_1 = (0,0,-1), \ Q_2 = (1,0,1), \ Q_3 = (1,2,1). \end{split}$$

- (a) Verificare che le due quaterne sono quaterne di punti indipendenti;
- (b) Scrivere le equazioni dell'unica affinità (f, ψ) di $\mathbb{A}^3_{\mathbb{R}}$ tale che $f(P_i) = Q_i$ per ogni i = 0, 1, 2, 3;
- (c) Determinare i punti fissi di f.
- 3. Classificare le seguenti coniche definite su $\mathbb{A}^2_{\mathbb{R}}$, determinarne la forma canonica e, se esiste, il centro:

(a)
$$x^2 + y^2 - 2xy - 4x + 4y + 6 = 0$$
;

(b)
$$x^2 - 2y + 3 = 0$$
;

(c)
$$2xy - 2x + 1 = 0$$
;

(d)
$$x^2 + y^2 - 2xy + 2x - 2y = 0$$
;

(e)
$$x^2 + 4y^2 - 4xy + 6x - 12y + 9 = 0$$
:

(f)
$$\frac{1}{4}x^2 + y^2 - \frac{1}{2}x + 2y + \frac{5}{4} = 0$$
;

(g)
$$\frac{1}{4}x^2 + y^2 - x - 2y + 1 = 0$$
.

- 4. In $\mathbb{P}^2_{\mathbb{R}}$ dotato di riferimento proiettivo standard $RP(\mathbb{E})$ sono assegnati i punti: $P_0 = [1, 0, 0], P_1 = [-1, 1, 0], P_2 = [2, -1, 1], P_3 = [0, 0, 1].$
 - (a) Verificare che tali punti sono in posizione generale in $\mathbb{P}^2_{\mathbb{R}}$;
 - (b) Determinare l'unica proiettività che trasforma ordinatamente P_0, P_1, P_2, P_3 nei punti [1, 0, 0], [0, 1, 0], [0, 0, 1] e [1, 1, 1];
 - (c) Calcolare i punti fissi di f.