AM3 - Soluzioni Esercitazione 1 12 marzo 2007

1) Date $u, v \in C([0,1], \mathbb{R})$, si ha che

$$|\Phi(u)(x) - \Phi(v)(x)| \le \int_0^1 e^{-xy} y |u(y) - v(y)| dy \le ||u - v||_{\infty} \int_0^1 y dy = \frac{1}{2} ||u - v||_{\infty}.$$

Quindi Φ è una mappa da $C([0,1],\mathbb{R})$ in sé che è una contrazione. Ammette quindi un unico punto fisso.

2) Date $u, v \in C([0,1], \mathbb{R})$, si ha che

$$|\Phi(u)(x) - \Phi(v)(x)| \le \frac{1}{2} \int_0^x |u - v|(t)dt \le \frac{1}{2} ||u - v||_{\infty}.$$

Quindi Φ è una contrazione su $C([0,1],\mathbb{R})$. L'unico punto fisso u di Φ : $\Phi(u)=u$, soddisfa

$$u(x) = 1 + \frac{1}{2} \int_0^x u(t)dt.$$

Equivalentemente, dal Teorema fondamentale del calcolo $u \in C^1((0,1),\mathbb{R})$ e, per derivazione, vale

$$\dot{u}(x) = \frac{1}{2}u(x)$$
 in $(0,1)$, $u(0) = 1$.

Quindi $u(x) = e^{\frac{x}{2}}$ è l'unico punto fisso di Φ .

3) Dato $x \in B_a$, dalla disuguaglianza di Minkowski segue che

$$\|\Phi(x)\|_2^2 = c^2 \sum_{n=0}^{\infty} |x_n||y_n| \le c^2 \|x\|_2 \|y\|_2 \le abc^2,$$

poiché $y \in B_b$. Quindi Φ prende valori in l_2 e, se $c \leq \sqrt{\frac{a}{b}}$, prende valori in B_a . Un punto fisso $x \in B_a$ deve soddisfare per ogni $n \in \mathbb{N}$: $c\sqrt{|x_ny_n|} = x_n$. Quindi $x_n = 0$ oppure $x_n = c^2|y_n|$. Dato $J \subset \mathbb{N}$, l'elemento

$$x = \begin{cases} 0 & \text{se } n \in J \\ c^2 |y_n| & \text{se } n \in \mathbb{N} \setminus J \end{cases}$$

è quindi un punto fisso di Φ . Al variare di $J \subset \mathbb{N}$, se $y \neq 0$, la mappa Φ ammette almeno due punti fissi. Quindi, per ogni $c < \sqrt{\frac{a}{b}}$ la mappa Φ non puó essere una contrazione da B_a in sé.