GE2, a.a. 2005/2006 Esercitazione n° 3

2 novembre 2005

Ricordiamo anzitutto che ad ogni forma quadratica è associata, fissata una base, una matrice simmetrica, i cui autovalori sono tutti reali. Ha senso quindi la seguente definizione

Definizione 0.1 Una forma quadratica q si dice **definita positiva** (risp: **negativa**) quando tutti i suoi autovalori sono strettamente maggiori (risp: minori) di 0. q è **semidefinita positiva** (risp: **negativa**) quando tutti i suoi autovalori sono maggiori (risp: minori) od uguali a 0. Se q possiede sia autovalori positivi che negativi, allora è **indefinita**.

Si noti che quando q è semidefinita (positiva o negativa) ci possono essere dei vettori isotropi non nulli, mentre quando q è definita ciò non accade.

Definizione 0.2 Due forme quadratiche q e q' sono **congruenti** se si ottengono l'una dall'altra con un cambiamento di base. Ciò avviene se e solo se le due forme quadratiche hanno la stessa segnatura.

Esercizio 1: Date su \mathbb{R}^3 le due forme quadratiche

$$q(\underline{x}) = -x_1^2 + 2x_1x_2 - 2x_2^2 - 2x_2x_3 - 2x_3^2$$
$$q'(\underline{x}) = x_1^2 + 4x_1x_2 + x_2^2$$

si dica se q e q' sono definite, semidefinite (positive e negative) e indefinite. Si dica inoltre se sono congruenti.

Sol.: Per risolvere l'esercizio dobbiamo calcolare gli autovalori di q e q'. Iniziamo da quelli di q. La matrice associata a q è la seguente:

$$M_q := \begin{pmatrix} -1 & 1 & 0 \\ 1 & -2 & -1 \\ 0 & -1 & -2 \end{pmatrix}$$

Procediamo trovando una base diagonalizzante. Come primo vettore possiamo scegliere $v_1=(1,0,0)$ ed abbiamo $q(v_1)=-1<0$. Gli altri due vettori devono essere ortogonali a v_1 , ossia devono soddisfare la condizione

$$(x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & 0 \\ 1 & -2 & -1 \\ 0 & -1 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 0$$

e cioè

$$-x_1 + x_2 = 0.$$

Possiamo quindi prendere come secondo vettore $v_2 = (0,0,1)$ e si ha $q(v_2) = -2 < 0$. Il terzo vettore deve essere ortogonale anche a v_2 quindi deve soddisfare la condizione aggiuntiva

$$(x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & 0 \\ 1 & -2 & -1 \\ 0 & -1 & -2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 0$$

ossia

$$-x_2 - 2x_3 = 0.$$

Poniamo quindi $v_3 = (-2, -2, 1)$ e si ha $q(v_3) = -2 < 0$. Una forma diagonale di q è quindi

$$\Delta_q = \begin{pmatrix} -1 & 0 & 0\\ 0 & -2 & 0\\ 0 & 0 & -2 \end{pmatrix}$$

e q è una forma quadratica definita negativa.

Analizziamo ora q'. La matrice associata è

$$M_{q'} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Si può subito notare che q e q' non possono essere congruenti, perché q non ha autovalori nulli, mentre q' ne ha uno. Anche per q' cerchiamo una base diagonalizzante: il primo vettore $v_1=(1,0,0)$ verfica $q(v_1)=1>0$. La condizione di ortogonalità a v_1 è

$$(x_1, x_2, x_3) \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 0$$

ossia

$$x_1 + 2x_2 = 0$$

Come secondo vettore scegliamo $v_2=(2,-1,0)$ e $q(v_2)=-3<0$. Il terzo vettore è ortogonale anche a v_2

$$(x_1, x_2, x_3) \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} = 3x_2 = 0$$

Dunque $v_3 = (0, 0, 1)$ e $q(v_3) = 0$. Quindi q' è indefinita.

Esercizio 2: Si consideri la famiglia di forme quadratiche su \mathbb{R}^3

$$q_a(\underline{x}) = x_1^2 + 2ax_1x_2 + ax_2^2 + x_3^2$$

- 1. Se ne studi il rango, la segnatura e la nullità al variare del parametro $a \in \mathbb{R}$ e se ne trovi una base diagonalizzante $\forall a \in \mathbb{R}$.
- 2. Si determini inoltre il massimo sottospazio V di \mathbb{R}^3 su cui q_a è definita positiva per ogni $a \in \mathbb{R}$.

Sol.:

1. La matrice M_a associata alla forma quadratica q_a è

$$M_a = \begin{pmatrix} 1 & a & 0 \\ a & a & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Notiamo anzitutto che il determinante di M_a vale $a-a^2$ e si annulla se e solo se a=0,1. In questi due casi si vede subito che la matrice M_a ha rango 2, mentre in tutti gli altri casi ha rango 3.

Cerchiamo una base che riduca M_a in forma diagonale: come primo vettore prendiamo $v_1 = (1, 0, 0)$. Si ha $q(v_1) = 1 > 0$. Il secondo vettore deve essere ortogonale a v_1 quindi

$$(x_1, x_2, x_3) \begin{pmatrix} 1 & a & 0 \\ a & a & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = x_1 + ax_2 = 0$$

Possiamo quindi scegliere $v_2=(0,0,1)$ e $q(v_2)=1>0$. Infine il terzo vettore v_3 deve soddisfare anche

$$(x_1, x_2, x_3)$$
 $\begin{pmatrix} 1 & a & 0 \\ a & a & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = x_3 = 0$

da cui $v_3 = (a, -1, 0)$. Abbiamo $q(v_3) = a - a^2$. Una forma diagonale di M_a è quindi

$$\Delta_a = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & a - a^2 \end{pmatrix}$$

La segnatura di M_a cambia quindi al variare del parametro a. In particolare:

- se 0 < a < 1, M_a è definita positiva e la sua segnatura è s = (P, N) = (3, 0) e la nullità è n = 0
- se a=0,1, la segnatura di M_a è s=(2,0) e la nullità è n=1
- se a < 0 oppure a > 1, M_a è indefinita e la sua segnatura è s = (2, 1) mentre n = 0
- 2. Sappiamo che $q(v_1)=q(v_2)=1$ per ogni $a\in\mathbb{R}$. Dunque $\forall\,a\in\mathbb{R}\ q_a$ è definita positiva sullo spazio generato da v_1 e v_2 . Sappiamo anche che esistono valori di a per cui q_a non è definita positiva (ad esempio a=0 oppure a=2), pertanto il massimo sottospazio richiesto ha dimensione al più 2. Si ha quindi $V=< v_1, v_2>$.

Esercizio 3: Su \mathbb{R}^4 con il prodotto scalare canonico sia data la famiglia infinita di vettori

$$v_n := (1, n, n, n^2) \quad n \in \mathbb{N}$$

Si applichi il procedimento di ortonormalizzazione di Gram-Schmidt a tale famiglia.

Sol.: Sia V lo spazio generato in \mathbb{R}^4 dai vettori v_n , $n \geq 0$. La matrice

$$\begin{pmatrix} v_0 \\ v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 4 \end{pmatrix}$$

ha chiaramente rango 3, quindi si ha $3 \leq \dim V \leq 4$. Guardiamo dunque il rango della matrice

$$\begin{pmatrix} v_0 \\ v_1 \\ v_2 \\ v_n \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 4 \\ 1 & n & n & n^2 \end{pmatrix}$$

Procedendo con l'eliminazione di Gauss, sottraendo la prima riga alle altre tre otteniamo

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 2 & 4 \\ 0 & n & n & n^2 \end{pmatrix}$$

Sottraendo inoltre alla terza riga la seconda moltiplicata per 2, ed alla quarta riga la seconda moltiplicata per n abbiamo

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 4 \\
0 & 0 & 0 & n^2 - n
\end{pmatrix}$$

Ne segue che dim V = 3 e che $V = \langle v_0, v_1, v_2 \rangle$.

Si può quindi applicare il procedimento di Gram-Schmidt alla base di V trovata. Si ottiene quindi

$$w_0 = \frac{v_0}{\|v_0\|} = (1, 0, 0, 0) = v_0$$

$$w_1 = \frac{v_1 - \langle v_1, w_0 \rangle w_0}{\|v_1 - \langle v_1, w_0 \rangle w_0\|} = \frac{(0, 1, 1, 1)}{\sqrt{3}}$$

$$w_2 = \frac{v_2 - \langle v_2, w_0 \rangle w_0 - \langle v_2, w_1 \rangle w_1}{\|v_2 - \langle v_2, w_0 \rangle w_0 - \langle v_2, w_1 \rangle w_1\|} = \frac{(0, -1, -1, 2)}{\sqrt{6}}$$

Esercizio 4: Si fissi su \mathbb{R}^2 un prodotto scalare <,> ed una base ortonormale per tale prodotto scalare. Sia $F:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ un operatore lineare la cui matrice M_F , rispetto a tale base, sia simmetrica. Si provi che se gli autovalori di F sono distinti, allora gli autovettori corrispondenti sono ortogonali.

Sol.: Notiamo anzitutto che data una base ortonormale per un prodotto scalare fissato, la matrice del prodotto scalare rispetto a tale base è la matrice identità I. Sappiamo che $M_F=M_F^t$. Siano inoltre $F(v_1)=M_Fv_1=\lambda_1v_1$ e $F(v_2)=M_Fv_2=\lambda_2v_2$ gli autovettori corrispondenti agli autovalori distinti λ_1 e λ_2 . Dunque

$$\lambda_1 < v_1, v_2 > = <\lambda_1 v_1, v_2 > = < M_F v_1, v_2 > = (M_F v_1)^t I v_2 = v_1^t M_F^t I v_2$$
$$= v_1^t M_F I v_2 = v_1^t I(M_F v_2) = < v_1, M_F v_2 > = \lambda_2 < v_1, v_2 >$$

Quindi, in particolare,

$$(\lambda_1 - \lambda_2) < v_1, v_2 > = 0$$

ossia $\langle v_1, v_2 \rangle = 0$ poiché $\lambda_1 \neq \lambda_2$.