Esercitazione AM2 n. 1 - A.A. 2005-2006 - 26/9/05

Successioni di funzioni

Studiare la convergenza puntuale ed uniforme delle seguenti successioni di funzioni negli intervalli indicati:

1.
$$f_n(x) = \frac{n}{(1+nx)^2}, x \in (0,1).$$

$$2. \ f_n(x) = \frac{xe^{-nx}}{1+nx}, \ x \in \mathbb{R}.$$

3.
$$f_n(x) = \frac{1}{1+n^x}, x \in \mathbb{R}$$
.

4.
$$f_n(x) = \chi_{[n,n+1)}, x \in \mathbb{R}$$
.

5.
$$f_n(x) = \frac{e^{-nx}}{1+n^2x^2}, x \in \mathbb{R}.$$

Studiare anche la successione delle derivate.

6.
$$f_n(x) = \sqrt{n} \chi_{\left[\frac{1}{2n}, \frac{1}{n}\right)}, x \in (0, 1).$$

Verificare che non converge uniformemente ma che vale il passaggio al limite sotto segno di integrale.

7.
$$f_n(x)$$

$$\begin{cases} an^2x & 0 \le x < \frac{1}{n} \\ \frac{a}{1-b}n^2x + \frac{ab}{b-1}n & \frac{1}{n} \le x < \frac{b}{n} \\ 0 & \frac{b}{n} \le x \le b \end{cases}$$

Verificare che non converge uniformemente e che non vale il passaggio al limite sotto segno di integrale.

8.
$$f_n(x) = \frac{1}{n}e^{\frac{x}{n}} + x^n, x \in \mathbb{R}.$$

9.
$$f_n(x) = e^{\frac{n^3}{n(x-1)}} \chi_{[n,\infty)}, x \in \mathbb{R}.$$

10.
$$f_n(x)$$

$$\begin{cases} n^3 |x|^3 & |x| \le \frac{1}{n} \\ 1 & \frac{1}{n} < |x| \le 1 \end{cases}$$

E' vero che $\lim_{n\to\infty} \int_{-1}^{1} f_n(x) dx = \int_{-1}^{1} f(x) dx$?

Soluzioni Esercitazione AM2 n. 1 - 26/9/05

- 1. $f_n(x) = \frac{n}{(1+nx)^2}$, $x \in (0,1)$. La successione converge puntualmente alla funzione $f(x) \equiv 0$ su (0,1). Non converge uniformemente perché $\sup_{(0,1)} f_n(x) = n \xrightarrow[n \to \infty]{} +\infty$, quindi si ha convergenza uniforme su [a,1) con a > 0.
- 2. $f_n(x) = \frac{xe^{-nx}}{1+nx}$, $x \in \mathbb{R}$. La successione converge puntualmente alla funzione $f(x) \equiv 0$ su per $x \geq 0$. Poiché esiste $x_0 > 0$ tale che $\sup_{x\geq 0} |f_n(x)| \leq x_0 e^{-nx_0} \xrightarrow[n\to\infty]{} 0$, la convergenza é uniforme su tutto $[0,+\infty)$.
- 3. $f_n(x) = \frac{1}{1+n^x}$, $x \in \mathbb{R}$. La successione converge alla funzione f(x) = 0 per x > 0, $f(x) = \frac{1}{2}$ per x = 0 e f(x) = 1 per x < 0. Chiaramente $f(x) \notin C(\mathbb{R})$, quindi la convergenza é uniforme solo su $\mathbb{R} \setminus (-\delta, \delta)$ per ogni $\delta > 0$.
- 4. $f_n(x) = \chi_{[n,n+1)}, x \in \mathbb{R}$. La successione converge alla funzione nulla su \mathbb{R} , ma il $\sup_{\mathbb{R}} f_n(x) = 1$ per ogni n, quindi la convergenza é uniforme solo sui compatti di \mathbb{R} .
- 5. $f_n(x) = \frac{e^{-nx}}{1+n^2x^2}$, $x \in \mathbb{R}$. La successione converge puntualmente ma non uniformemente alla funzione f(x) = 0 per x > 0 e f(0) = 1. La successione delle derivate converge puntualmente ma non uniformemente alla funzione f(x) = 0 per x > 0.
- 6. $f_n(x) = \sqrt{n}\chi_{[\frac{1}{2n},\frac{1}{n})}, x \in (0,1)$. La successione converge puntualmente alla funzione nulla su \mathbb{R} , non vi converge uniformemente perché $\sup_{(0,1)} f_n(x) = \sqrt{n} \xrightarrow[n \to \infty]{} \infty$, ma $\int_0^1 f_n(x) = \frac{1}{2\sqrt{n}} \xrightarrow[n \to \infty]{} 0$.
- 7. La successione converge puntualmente a zero perché $\left[\frac{b}{n},b\right] \to [0,b]$, ma non converge uniformemente perché $\sup_{[0,b]} f_n(x) = f_n(\frac{1}{n}) = an \to \infty$. Inoltre non vale il passaggio al limite sotto segno di integrale perché $\int_0^b f_n(x) = ab > 0$ per ogni n.
- 8. $f_n(x) = \frac{1}{n}e^{\frac{x}{n}} + x^n$, $x \in \mathbb{R}$. La successione converge a f(x) = 0 per -1 < x < 1, f(1) = 1. La convergenza non é uniforme ma lo é su $|x| \le a$ per ogni a < 1 visto ché $\sup_{|x| \le a} |f_n(x)| \le \frac{e^{\frac{a}{n}}}{n} + a^n \to 0$.
- 9. $f_n(x) = e^{\frac{n^3}{n(x-1)}} \chi_{[n,\infty)}, x \in \mathbb{R}$. La successione converge puntualmente a zero perché per ogni x esiste $n_x = \max\{[x], 0\}$ tale che $f_n(x) \equiv 0$ per ogni $n \geq n_x$. La convergenza é uniforme solo sui compatti di \mathbb{R} in quanto $f_n(n) = e^{\frac{n^3}{n(n-1)}} \to \infty$.

10. La successione converge puntualmente a f(x)=1 per $x\neq 0$ e f(0)=0. La convergenza é uniforme solo in $[-1,1]\setminus (-\delta,\delta)$ per ogni $\delta>0$. Inoltre $\int_{-1}^1 (f_n(x)-f(x))\,dx=0$ per ogni n.