Università degli Studi Roma Tre - Dipartimento di Matematica Corso di GE3 - Corso di Laurea in Matematica - a.a. 2004/2005 Docente: Prof. A. Lopez - Esercitatrice: Dott.ssa A. Scaramuzza -Tutore: I. Olivieri

19/04/2005

Esercizio 1. Sia $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ una identificazione. Se (X,\mathcal{T}_X) è separabile allora anche (Y,\mathcal{T}_Y) è separabile.

Esercizio 2. La restrizione di una identificazione ad un aperto saturo è una identificazione.

Esercizio 3. Sia $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$, siano ρ,σ due relazioni di equivalenza, la prima su X e la seconda su Y. Se f è compatibile rispetto a ρ,σ allora f induce $\tilde{f}:(X/\rho,\mathcal{T}_{X/\rho})\to (Y/\sigma,\mathcal{T}_{Y/\sigma})$. Dimostrare che:

- 1. se f è continua allora \tilde{f} lo è;
- 2. se f è una identificazione allora \tilde{f} lo è.

Esercizio 4 (Lo spazio proiettivo). Sia $X = \mathbb{R}^{n+1} - \{0\}$ con $n \geq 0$ e sia \mathcal{E}_X la topologia euclidea indotta su X da \mathbb{R}^{n+1} . Definiamo su X la relazione di equivalenza

$$\forall x, y \in X \quad x \sim y \quad \Longleftrightarrow \quad \exists t \in \mathbb{R} - \{0\} \quad \text{tale che } y = tx$$
 (1)

Lo spazio topologico quoziente $(X/\sim,\mathcal{E}_{X/\sim})$ è detto spazio proiettivo reale n dimensionale e lo si denota con $(\mathbb{P}^n_{\mathbb{R}},\mathcal{E}_{\mathbb{P}^n_{\mathbb{R}}})$. Si verifichi che:

- 1. la proiezione canonica $p:X\to\mathbb{P}^n_{\mathbb{R}}$ è aperta ma non chiusa se $n\geq 1;$
- 2. gli insiemi $U_i = \{[x] \in \mathbb{P}^n_{\mathbb{R}} \mid x_i \neq 0 \}$ sono tali che
 - (a) U_i è aperto e $U_0 \cup \ldots \cup U_n = \mathbb{P}^n_{\mathbb{R}}$;
 - (b) U_i è denso in $\mathbb{P}^n_{\mathbb{R}}$;
 - (c) si può scrivere un omeomorfismo tra gli spazi topologici $(U_i, \mathcal{E}_{\mathbb{P}^n_{\mathbb{R}}}|_{U_i})$ e $(\mathbb{R}^n, \mathcal{E})$.
- 3. dati gli insiemi $H_i = \mathbb{P}^n_{\mathbb{R}} U_i$ con i = 0, ..., n, vale che $(H_i, \mathcal{E}_{pn}|_{H_i})$ è omeomorfo a $\mathbb{P}^{n-1}_{\mathbb{R}}$.