AM3 - Tutorato IV

Logaritmi e serie di potenze nel campo complesso

Venerdì 18 novembre 2004

Esercizio 1. Per quali valori di z si ha che $e^z=2$, -1, i, $-\frac{i}{2}$, -i-2, 1+2i?

Esercizio 2. Trovare tutti i valori di 2^i , i^i , $(-1)^{2i}$, $(-1)^{\sqrt{2}}$.

Esercizio 3. Trovare la parte reale ed immaginaria di $\exp(e^z)$.

Esercizio 4. Esprimere in termini del logaritmo complesso la funzione di variabile complessa $\arctan w$

Esercizio 5. Dimostrare che:

$$\pi < 2\sqrt{3}$$

ed utilizzare questo risultato per mostrare che il resto nelle serie delle funzioni $\cos z$ e $\sin z$ ha lo stesso segno del suo termine principale (il primo termine del resto). Dedurne infine che:

$$\pi > 3$$

Esercizio 6. Considerare la funzione

$$\exp: \mathbb{C} \to \mathbb{C}$$

e discutere in che modo essa agisce sulle rette parallele agli assi coordinati del piano complesso. Determinare inoltre le immagini delle regioni

$$A = \{z \in \mathbb{C}; \ Re(z) < 0, \ 0 < Im(z) < \pi\}$$

$$B = \{z \in \mathbb{C}; \ 0 < Im(z) < \frac{\pi}{2}\}$$

Esercizio 7. Supponiamo di trovarci nel piano complesso in 1 e di intraprendere una singolare passeggiata; muoviamoci di una unità di lunghezza verso l'alto, poi svoltiamo a sinistra e procediamo per mezza unita di lunghezza, poi sempre girando verso sinistra percorriamo $\frac{1}{3}$ dello spostamento precedente poi $\frac{1}{4}$, $\frac{1}{5}$, $\frac{1}{6}$ e così via... dove arriviamo?