Tutorato

10/5/2004

Esercizio 1. Sia X_1, \ldots, X_n una campione estratto dalla densità

$$f(x;\theta) = \theta x^{\theta-1} I_{(0,1)}(x) \qquad \theta > 0.$$

- a) Trovare lo stimatore di massima verosimiglianza per θ .
- b) Vedere se è corretto o asintoticamente corretto.
- c) Vedere se è consistente.
- d) Trovare gli stimatori di massima verosimiglianza per $1/\theta \in \theta(1-\theta)$.

Esercizio 2. Consideriamo una variabile aleatoria x con distribuzione:

$$f(x;\theta) = \theta x^{\theta-1} I_{(0,1)}(x)$$
 $\theta > 0$.

Per controllare l'ipotesi $H_0: \theta \leq 1$ contro $H_1: \theta > 1$ si è scelto un campione di ampiezza 2 e si è utilizzati il test con regione critica data da:

$$C_{\alpha} = \{(x_1, x_2) : \frac{3}{4}x_1 \le x_2\}.$$

Trovare la funzione potenza $\pi(\theta)$ e l'ampiezza α del test.

Esercizio 3. Sia x un'osservazione singola dalla densità:

$$f(x;\theta) = \theta x^{\theta-1} I_{(0,1)}(x) \qquad \theta > 0.$$

a) Nel controllare l'ipotesi $H_0: \theta \leq 1$ contro l'alternativa $H_1: \theta > 1$ determinare la funzione potenza e l'ampiezza del test con regione critica data da:

$$C_{\alpha} = \{x : x \ge \frac{1}{2}\}.$$

- b) Determinare il test più potente di ampiezza α per $H_0: \theta=2$ contro $H_1: \theta=1.$
- c) Fra tutti i test possibili per $H_0: \theta = 2$ contro $H_1: \theta = 1$ trovare quello che minimizza la quantità $\alpha + \beta$.

1

d) Determinare un test UMP di ampiezza α per $H_0: \theta \leq 2$ contro $H_1: \theta > 2$.

Esercizio 4. Sia x un'osservazione singola estratta dalla densità:

$$f(x;\theta) = (2\theta x + 1 - \theta)I_{[0,1]}$$
 $\theta \in [-1, 1].$

- a) Trovare il test più potente di dimensione α per controllare $H_0:\theta=0$ contro $H_1:\theta=1.$
- b) Per controllare $H_0: \theta \leq 0$ contro $H_1: \theta > 0$ si è usato il test con regione critica:

$$C_{\alpha} = \{x : x > \frac{1}{2}\},\$$

determinare la funzione potenza.