Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2003/2004 AL 1

Esercizi per casa, V prova

1. Siano
$$\sigma, \tau \in S_7, \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 3 & 4 & 6 & 7 & 5 \end{pmatrix}, \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 6 & 4 & 3 & 2 & 1 & 7 \end{pmatrix}.$$

- (a) Determinare σ^{-1} e τ^{-1} .
- (b) Scrivere σ e τ come prodotto di cicli disgiunti.
- (c) Determinare l'ordine di σ e di τ .
- (d) Calcolare $\sigma \tau$ (:= $\tau \circ \sigma$) e $\tau \sigma$ (:= $\sigma \circ \tau$).
- (e) Determinare l'ordine di $\sigma \tau \sigma^{-1}$.
- **2.** Sia $A = \{\frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0, 3 \nmid n\}$. Dimostrare che A è un anello rispetto alla somma e al prodotto fra numeri razionali. Verificare che A non è un campo.
- **3.** Siano $R = \{[0]_{30}, [6]_{30}, [12]_{30}, [18]_{30}, [24]_{30}\} (\subset \mathbb{Z}/\equiv_{30})$ e $A = \{[0]_{20}, [5]_{20}, [10]_{20}, [15]_{20}\} (\subset \mathbb{Z}/\equiv_{20}).$

Determinare se R e A sono anelli (sottoanelli rispettivamente di \mathbb{Z}/\equiv_{30} e di \mathbb{Z}/\equiv_{20}), se sono unitari, se hanno divisori dello zero, se sono campi.

- **4.** Determinare quali dei seguenti polinomi sono irriducibili in $\mathbb{Z}[X]$:
 - (a) $X^2 + X + 1$
 - (b) $X^4 + 4X^2 + 3$
 - (c) $X^{57} + 49X^{23} + 21X^{17} + 77X^6 + 399$
- **5.** Scomporre il polinomio X^4-4 in fattori irriducibili in $\mathbb{Z}[X], \mathbb{Q}[X], \mathbb{R}[X], \mathbb{C}[X]$.
- 6. Dimostrare che X^2+X+1 è l'unico polinomio irriducibile di grado 2 su \mathbb{Z}/\equiv_2 .
- **7.** Siano $f_1(X) = 2X^2 + 4X + 4$ e $f_2(X) = X^3 X$. Determinare $MCD(f_1, f_2)$ in $\mathbb{Q}[X]$.