AL1 - TUTORATO 8 - 27/11/2002

- (1) Determinare quali tra le seguenti applicazioni sono suriettive, quali iniettive e quali biiettive. Determinarne anche un'inversa a destra f'' se suriettiva, un'inversa a sinistra f' se iniettiva, l'inversa f^{-1} se biiettiva:

(a)
$$f: \mathbb{R} \to \mathbb{R}$$

 $f(x) := \begin{cases} \frac{5x+3}{x-2} & \text{se } x \neq 2 \\ 5 & \text{altrimenti} \end{cases}$
(b) Per $n \ge 2$, $a \in \mathbb{Z}$ fissati:
 $f: \mathbb{Z} \to \frac{\mathbb{Z}}{\equiv n}$
 $f(x) := [x+a]_{\equiv n}$
(c) $f: \mathbb{Z} \to \mathbb{Z}$
 $f(x) := (-1)^x \cdot x$

$$f: \mathbb{Z} \to \frac{\mathbb{Z}}{\equiv n}$$

$$f(x) := [\overline{x} + a]_{\equiv}$$

$$f(x) := (-1)^x \cdot x$$

(2) Dato un qualunque insieme X e una qualunque applicazione $f: X \to P(X)$, si definisca

$$X^f := \{ x \in X : x \notin f(x) \} \subseteq X$$

- (a) Dimostrare che non esiste x tale che $f(x) = X^f$.
- (b) Dedurre da a) che non esiste $f: X \to P(X)$ suriettiva qualunque sia
- (3) Sia X un insieme finito e $f: X \to X$. Dimostrare che:

$$f$$
iniettiva $\Leftrightarrow f$ suriettiva $\Leftrightarrow f$ biiettiva

- (4) Dimostrare che i seguenti insiemi sono gruppi rispetto alle operazioni indi-
 - (a) $G = \{1, -1, i, -i\}$ rispetto al prodotto, con $i \cdot i = -1$
 - (b) $G = \mathbb{Z}$ rispetto all'operazione x * y = x + y a, con $a \in \mathbb{Z}$ fissato
 - (c) $G = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ rispetto all'operazione $(a, b) \star (c, d) = (a + c, bd)$
 - (d) Dato X un insieme, (H, *) un gruppo:

$$G = H^X := \{f : X \to H\}$$
 rispetto all'operazione $(f \star g)(x) = f(x) \star g(x)$