Tutorato di TE1 - Teoria delle Equazioni

Andrea Susa 27 marzo 2002

- (1) Sia $f(x) = x^3 x + 3$ un polinomio su \mathbb{Q} , indichiamo con \mathbb{K} il suo campo di spezzamento e sia $G = Gal(\mathbb{K} : \mathbb{Q})$ il suo gruppo di Galois.
- (a) Descrivere \mathbb{K} , stabilire se l'estensione è semplice ed eventualmente determinarne un generatore;
- (b) Determinare il grado dell'estensione.
- (c) Descrivere il gruppo di Galois G, specificare a quale gruppo finito è isomorfo ed esplicitare l'isomorfismo.
- (2) Sia $f(x) = x^5 + 2x^3 x^2 + x 1$ un polinomio su \mathbb{F}_5 , indichiamo con \mathbb{K} il suo campo di spezzamento e sia $G = Gal(\mathbb{K} : \mathbb{F}_5)$ il suo gruppo di Galois.
- (a) Descrivere \mathbb{K} , stabilire se l'estensione è semplice ed eventualmente determinarne un generatore;
- (b) Determinare il grado dell'estensione.
- (c) Descrivere il gruppo di Galois G, specificare a quale gruppo finito è isomorfo ed esplicitare l'isomorfismo.
- (3) L'angolo $\alpha = \frac{2\pi}{18}$ può essere costruito con riga e compasso?
- (4) Sia $L\supseteq K$ un'estensione di campi, e sia $f\in K[x]$. Rispondere vero o falso alle seguenti:
- (a) Ciascun $\phi: K \longrightarrow L$ che è un autormorfismo di K è un automorfismo di L.
- (b) L'unico automorfismo di L è l'identità.
- (c) Il gruppo di Galois di L: K è ciclico.
- (d) Il gruppo di Galois di $\mathbb{C} : \mathbb{R}$ è ciclico.
- (e) Gal(L:K) = 1 se e soltanto se L = K.
- (f) Ciascuna estensione normale è il campo di spezzamento di un qualche polinomio.
- (g) Ogni sottocampo di $\mathbb C$ è il campo di spezzamento di un qualche polinomio a coefficienti razionali.
- (h) Tutte le radici di f che non sono in L sono in K.
- (i) Se f è irriducibile ed ammette una radice in L, allora ammette tutte le radici in L.
- (1) Se L è il campo di spezzamento di f, allora $[L:K] = \deg f$.
- (m) Se L è il campo di spezzamento di f, allora $[L:K]=(\deg f)!$.
- (n) Se $K = \mathbb{Q}$ e L è ciclotomica, allora il gruppo di Galois è ciclico.

- (5) Sia $\xi = \xi_{10}$ una radice primitiva 10-esima dell'unità.
- (1) Determinare il polinomio minimo di ξ su \mathbb{Q} .
- (2) Costruire l'estensione $\mathbb{Q}(\xi)$ esplicitandone una base e determinarne il grado su \mathbb{Q} .

Esercizi per Casa

- (1) Sia $f(x) \in \mathbb{Q}[x]$ un polinomio, ed indichiamo con $\mathbb{K}(f)$ il suo campo di spezzamento. Determinare il gruppo di Galois G dei seguenti polinomi, specificare a quale gruppo finito è isomorfo e, per ogni sottogruppo proprio, determinare i sottocampi invarianti:
- (a) $f(x) = x^3 x + 3$;
- (b) $f(x) = x^4 + x^2 1$;
- (c) $f(x) = x^4 + x^3 + x + 1$;
- (d) $f(x) = x^6 2$.
- (2) Sia $f(x) \in \mathbb{F}_p[x]$ un polinomio, ed indichiamo con $\mathbb{K}(f)$ il suo campo di spezzamento. Determinare il gruppo di Galois G dei seguenti polinomi, specificare a quale gruppo finito è isomorfo e, per ogni sottogruppo proprio, determinare i sottocampi invarianti:
- (a) $f(x) = x^2 7$, con p = 3, 5;
- (b) $f(x) = x^3 3$, con p = 2, 3, 5;
- (c) $f(x) = x^5 1$ con p = 7;
- (d) $f(x) = x^4 2$ con p = 5, 7.
- (3) Mostrare le seguenti affermazioni:
- (a) Sia $f(x) \in F[x]$ un polinomio, F un campo ed indichiamo con $\mathbb{K}(f)$ il suo campo di spezzamento. Mostrare che il gruppo di Galois di f è isomorfo ad S_n se e soltanto se $[\mathbb{K}(f):F]=n!$.
- (b) Per ogni p primo, il gruppo di Galois del p-esimo polinomio ciclotomico su \mathbb{Q} è isomorfo ad un sottogruppo proprio di S_p . Determinare tale sottogruppo.
- (c) Sia $\xi_n = \exp^{\frac{2\pi i}{n}}$. Se MCD(r, s) = 1, allora $Gal(\mathbb{Q}(\xi_{rs})) \cong Gal(\mathbb{Q}(\xi_r)) \times Gal(\mathbb{Q}(\xi_s))$. Esplicitare tale isomorfismo per r = 3, s = 5.

- (4) Descrivere le seguenti estensioni dei razionali, indicando se l'estensione è normale ed eventualmente trovarne un generatore:
- (a) $\mathbb{Q}(\sqrt[3]{1+\sqrt{2}}), i-1, i\sqrt{2});$ (b) $\mathbb{Q}(\sqrt{e+1}), i, \sqrt{2});$ (c) $\mathbb{Q}(e^{2\pi i}, i).$