Tutorato di TE1 - Teoria delle Equazioni

Andrea Susa 27 febbraio 2002

- (1) Descrivere i seguenti campi e determinare le relazioni che ne intercorrono.
- (a) $\mathbb{Q}(\sqrt[6]{2})$ e $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$.
- (b) $\mathbb{Q}(\sqrt{4+2\sqrt{3}})$ e $\mathbb{Q}(\sqrt{3})$.
- (c) Siano a, b interi non nulli. Determinare condizioni necessarie e sufficienti affinchè $\mathbb{Q}(\sqrt{a+b\sqrt{3}}) = \mathbb{Q}(\sqrt{3})$.
- (2) Sia $F \subseteq K$ un ampliamento di campi e $\alpha \in K$. Mostrare che α è algebrico su F se e soltanto se α^n è algebrico su F per ogni $n \ge 2$.
- (3) Sia $K = \mathbb{Q}(\sqrt{a}, \sqrt{b})$. Dopo aver mostrato che $\mathbb{Q}(\sqrt{a}, \sqrt{b}) = \mathbb{Q}(\sqrt{a} + \sqrt{b})$, determinare le formule del cambiamento di base da $\{1, \sqrt{a}, \sqrt{b}, \sqrt{ab}\}$ a $\{1, (\sqrt{a} + \sqrt{b}), (\sqrt{a} + \sqrt{b})^2, (\sqrt{a} + \sqrt{b})^3\}$ di K su \mathbb{Q} .
- (4) Sia $F \subseteq K$ un ampliamento di campi e $\alpha \in K$ algebrico di grado dispari su F. Mostrare che $F(\alpha) = F(\alpha^2)$.
- (5) Descrivere le seguenti estensioni di $\mathbb Q$ e determinarne il grado.
- $(a) \mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{3}).$
- (b) $\mathbb{Q}(\pi, \sqrt[19]{2})$.
- $(c) \mathbb{Q}(\sqrt[3]{2} + i).$
- $(d) \ \mathbb{Q}(\xi_5, \sqrt[3]{2}).$
- (6) Mostrare che le estensioni in (5.a), (5.c) e (5.d) sono semplici. Posto α un generatore dell'estensione, determinare il polinomio minimo di α su \mathbb{Q} e su un sottocampo intermedio.