Universitá degli Studi di Roma Tre

Corso di Laurea in Matematica, a.a. 2001/2002

Tutorato GE4 - 12/11/2001

Esercizi sulle derivate di applicazioni su una superficie

Ricordiamo la definizione. La derivata in un punto è l'applicazione lineare definita sul piano tangente che manda il vettore velocità di una curva nel vettore velocità della curva immagine.

Esercizio 0.1. Mostrare che la derivata dell'applicazione identità $id: \Sigma \to \Sigma$ è l'identità.

Esercizio 0.2. Mostrare che la derivata di un diffeomorfismo $\Phi: \Sigma_1 \to \Sigma_2$ è un isomorfismo lineare.

Esercizio 0.3. Sia $f: \Sigma \to \mathbb{R}$ una funzione liscia su una superficie connessa. Dimostrare che f è costante se e solo se la sua derivata $df_p: T_p\Sigma \to \mathbb{R}$ è uguale a zero per ogni p.

Esercizio 0.4. Sia Σ una superficie regolare in \mathbb{R}^3 e consideriamo la funzione distanza al quadrato dall'origine, cioè $l:\Sigma\to\mathbb{R}$ che manda $p\mapsto ||p||^2$. Calcolare il differenziale di l e mostrare che $p\in\Sigma$ è un punto critico di l, cioè $dl_p=0$ se e solo se il vettore p è perpendicolare al piano tangente $T_p\Sigma$.

Esercizio 0.5. Sia k = (0, 0, 1) il versore normale al piano orizzontale z = 0 e sia $\Sigma \subset \mathbb{R}^3$ una superficie regolare. Consideriamo la funzione 'altezza' $h: \Sigma \to \mathbb{R}$ che manda $p \mapsto p \cdot k$ e che misura la distanza di p dal piano z = 0. Abbiamo calcolato a lezione che la derivata $dh_p: T_p\Sigma \to \mathbb{R}$ manda $w \mapsto w \cdot k$.

- (i) Dimostrare che p è un punto critico della funzione altezza se e solo se il piano tangente $T_p\Sigma$ è orizzontale.
- (ii) Dimostrare che se Σ interseca un piano affine $\pi \subset \mathbb{R}^3$ in un solo punto p, allora π coincide con il piano tangente a Σ in p.
- (iii) Dimostrare che se Σ interseca un piano affine $\pi \subset \mathbb{R}^3$ e inoltre Σ giace in uno solo dei due semispazi di bordo π allora π è il piano tangente a Σ in ogni punto dell'intersezione $\Sigma \cap \pi$.

Soluzioni

Soluzione esercizio 0.1. Dalla definizione la derivata in un punto è l'applicazione lineare definita sul piano tangente che manda il vettore velocità di una curva nel vettore velocità della curva immagine che in questo caso è la curva stessa, quindi è l'identità.

Soluzione esercizio 0.2. Usare l'esercizio precedente e il fatto che la derivata dell'applicazione composta è la composizione delle derivate.

Soluzione esercizio 0.3. (\Rightarrow) Ovvio.

(\Leftarrow) Sia $a \in Im(f)$, allora $\emptyset \neq A := f^{-1}(a) \subseteq \Sigma$ è un chiuso perché f è continua. Se mostriamo che A è anche aperto allora $A = \Sigma$ perché Σ è connessa.

Sia $p \in A$ e sia $x : U \to \Sigma$ una carta locale intorno a p; notiamo che $f \circ x : U \subseteq \mathbb{R}^2 \to \mathbb{R}$ ha derivate parziali nulle quindi è costante, ma x è un diffeomorfismo quindi f è costante su x(U) (infatti $f \circ x = c \Rightarrow f = f \circ x \circ x^{-1} = c \circ x^{-1} = c$). Quindi $x(U) \subseteq A \Rightarrow A$ è intorno di ogni suo punto ovvero A è aperto.

Soluzione esercizio 0.4. Se $w \in T_p\Sigma$, prendiamo una curva γ su Σ con $\gamma(0) = p$ e $\gamma'(0) = w$. Abbiamo $l(p) = ||p||^2 = p \cdot p$ con \cdot prodotto scalare in \mathbb{R}^3 quindi $dl_p(w) = \frac{d}{dt}l(\gamma(t)) \mid_{t=0} = \frac{d}{dt}(\gamma(t) \cdot \gamma(t)) \mid_{t=0} = 2\dot{\gamma}(t) \cdot \gamma(t) \mid_{t=0} = 2w \cdot p$. Cioè $dl_p : T_p\Sigma \to \mathbb{R}$ è l'applicazione lineare $w \mapsto 2w \cdot p$ in particolare p è critico se e solo se il prodotto scalare $w \cdot p$ è zero per ogni $w \in T_p\Sigma$ cioè se e solo se $T_p\Sigma \perp p$.

Soluzione esercizio 0.5. (i) $w \cdot k = 0$ per ogni $w \in T_p\Sigma$ se solo se $T_p\Sigma \perp k$ se e solo se il piano tangente è orizzontale. (iii) implica (ii) quindi dimostriamo (iii). Dopo una traslazione e una rotazione di tutto \mathbb{R}^3 possiamo assumere che π coincide con il piano z = 0 e che Σ sia tutta 'sopra' a π . Cioè la funzione h è non-negativa. Ma per ipotesi la funzione h si annulla esattamente nei punti dell'intersezione $\Sigma \cap \pi$ quindi ognuno di questi punti è un minimo per h e in particolare è un punto critico concludiamo che il piano tangente deve essere orizzontale e quindi coincide con π .