Università degli Studi di Roma Tre

Corso di Laurea in Matematica, a.a. 2001/2002

Tutorato GE4 - 11/12/2001

Soluzione esercizio 0.1. Σ è rigata, cioè ammette una parametrizzazione del tipo $\alpha(u) + v \cdot w(u)$ con $\alpha(u) = (u, 0, 0)$ cioè l'asse x e w(u) = (0, 1, u). Le curve del tipo u = cost. sono tutte rette contenute in Σ : $\alpha(u) + v \cdot w(u) = (u, v, uv)$.

Un piano che contiene l'asse z ha equazione y=mx e quindi le curve intersezione sono parabole $z=mx^2$ - se $m\neq 0$ - oppure l'asse delle x o l'asse delle y.

Per la formula a p.163 $K = -\frac{1}{1+x^2+y^2}$

Per trovare il piano tangente in O consideriamo la parametrizzazione (x, y, xy) quindi $f_x = (1, 0, y) = (1, 0, 0)$ in O e $f_y = (0, 1, x) = (0, 1, 0)$ in O da cui $T_O\Sigma$ è il piano orizzontale z = 0. In ogni intorno di O ci sono punti di Σ con z > 0, se xy > 0 e con z < 0, se xy < 0.

Soluzione esercizio 0.2. prendiamo $\alpha(u)$ la circonferenza $(\cos u, \sin u, 0)$ e il vettore $w(u) = \dot{\alpha} + \vec{k} = (-\sin u, \cos u, 0) + (0, 0, 1)$ allora $\alpha(u) + vw(u) = (\cos u - v \sin u, \sin u + v \cos u, v)$ è una parametrizzazione che contiene la famiglia di rette del tipo $u = \cos t$.

L'altra famiglia di rette su Σ si trova prendendo la stessa circonferenza $\alpha(u)$ e invece il vettore $w(u) = (-\sin u, \cos u, 0) - (0, 0, 1)$.