UNIVERSITÀ DEGLI STUDI ROMA TRE

Corso di Laurea in Matematica GEOMETRIA 1

Seconda prova di esonero - a.a. 2001-2002

- 1. Sia V uno spazio vettoriale di dimensione finita e $F: V \to V$ un'applicazione lineare.
- (a) Si definiscano le nozioni di autovalore, autovettore ed diagonalizzabilità di F;
- (b) Si enunci il risultato che caratterizza la diagonalizzabilità di F (senza usare le basi);
- (c) si dimostri tale risultato.
- 2. In uno spazio affine di dimensione 3 sia O, e_1 , e_2 , e_3 , un riferimento affine e si considerino le tre rette di equazioni parametriche seguenti:

$$\mathcal{R}_1: \begin{cases} x=0 \\ y=0 \\ z=t \end{cases}, \mathcal{R}_2: \begin{cases} x=1 \\ y=0 \\ z=3s \end{cases}, \mathcal{R}_3: \begin{cases} x=2 \\ y=u \\ z=0 \end{cases}$$

- (a) Esiste un piano che contiene tutte e tre le rette?
- (b) Determinare tutte le terne di punti $P_1 \in \mathcal{R}_1, P_2 \in \mathcal{R}_2, P_3 \in \mathcal{R}_3$ tali che P_1, P_2 e P_3 sono allineati.
- **3.** Siano V e W due spazi vettoriali reali di dimensione finita e siano $F_1, F_2 : V \to W$ due applicazioni lineari tali che $N(F_1) = N(F_2), Im F_2 \subseteq Im F_1$.
- (a) Dimostrare che $ImF_2 = ImF_1$ e far vedere con un esempio che non è detto che $F_1 = F_2$;
 - (b) se $dimImF_2 = 1$ segue necessariamente che $F_1 = F_2$?
 - (c) Data una F_2 che soddisfa (b) trovare tutte le possibili F_1 .
- **4.** Siano $v_1=(0,1,1,1), v_2=(1,0,1,0)\in\mathbb{R}^4$ e sia $F:\mathbb{R}^4\to\mathbb{R}^4$ un'applicazione lineare tale che $N(F)\supseteq < v_1,v_2>, F(E_4)=E_4, F(E_1+E_4)=E_1+cE_3$ per qualche numero reale c, dove E_1,E_2,E_3,E_4 è la base canonica di \mathbb{R}^4 .
 - (a) Determinare una matrice di F;
 - (b) trovare basi per gli autospazi di F;
 - (c) determinare i valori di c per i quali F è diagonalizzabile.
- **5.** Sia A uno spazio affine di dimensione $n \geq 1$ su uno spazio vettoriale V e siano H un iperpiano di A e S un sottospazio di A di dimensione positiva. Si dimostri che o H è parallelo ad S o H interseca S.

SOLUZIONI

- **1.** (a) [Sernesi] Definizioni 13.4 e 13.3; (b) e (c) Teorema 13.13. ■
- 2. Si osservi che le rette \mathcal{R}_1 e \mathcal{R}_2 sono parallele e distinte, dunque contenute in un'unico piano. Dalle loro equazioni si vede subito che tale piano è necessariamente il piano p di equazione Y=0. Ora $\mathcal{R}_3 \cap p=(2,0,0)=P_3$. Quindi le tre rette non sono contenute in un piano. Inoltre, per come sono poste le rette, le terne di punti $P_1 \in \mathcal{R}_1, P_2 \in \mathcal{R}_2, P_3 \in \mathcal{R}_3$ tali che P_1, P_2 e P_3 sono allineati si ottengono scegliendo un qualsiasi punto $P_1(0,0,t) \in \mathcal{R}_1$ e intersecando la retta $\overline{P_1P_3}$ con la retta \mathcal{R}_2 . Ora $\overline{P_1P_3}=(2,0,-t)$ e dunque la retta $\overline{P_1P_3}$ ha equazioni parametriche

$$\begin{cases} x = 2 + 2v \\ y = 0 \\ z = -tv \end{cases}$$

dove v è il parametro. Intersecando con \mathcal{R}_2 si ottiene

$$\begin{cases} 1 = 2 + 2v \\ 3s = -tv \end{cases}$$

e quindi $v=-\frac{1}{2}, s=-\frac{tv}{3}=\frac{t}{6},$ e le terne sono, al variare di t,

$$P_1(0,0,t), P_2(1,0,\frac{t}{2}), P_3(2,0,0).$$

3. (a) per il Teorema 11.6 del [Sernesi] si ha:

$$dimImF_2 = dimV - dimN(F_1) = dimV - dimN(F_2) = dimImF_2$$

e, visto che $ImF_2\subseteq ImF_1$, ne segue che $ImF_2=ImF_1$. Sia ora $\{v_1,\ldots,v_k\}$ una base di $N(F_1)$ e $\{v_1,\ldots,v_n\}$ un suo completamento ad una base di V. Supponiamo n>k. Sappiamo che $F_1(v_i)=F_2(v_i)=0, i=1,\ldots,k$. Allora ponendo $F_1(v_i)=F_2(v_i)$ per $i=k+1,\ldots,n-1,F_1(v_n)=2F_2(v_n)$ si ha certamente che $N(F_1)=N(F_2),ImF_1=ImF_2,$ ma $F_1\neq F_2$. Per un esempio esplicito, che va bene anche per (b), si prenda $V=W=\mathbb{R}, F_1=id_V, F_2=2id_V$. Dunque la risposta a (b) è no. (c) Visto che $dimImF_2=1$, presa una base di V come in (a) si ha k=n-1 e quindi $ImF_2=ImF_1=< F_2(v_n)>$, dunque esiste un numero reale $c\neq 0$ tale che $F_1(v_n)=cF_2(v_n)$. Questo, insieme a $F_1(v_i)=0, i=1,\ldots,n-1$ determina tutte le possibili F_1 per il Teorema 11.3 del [Sernesi].

4. (a) Si ha che $F(E_1) = E_1 + cE_3 - E_4$. Ora i quattro vettori v_1, v_2, E_4, E_1 sono linearmente indipendenti dato che

$$\begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{vmatrix} = -1 \neq 0$$

dunque scegliamo come base $e = \{v_1, v_2, E_4, E_1\}$. Per scrivere la matrice di F in tale base occorre esprimere le immagini di F in tale base. Sappiamo che $F(v_1) = F(v_2) = 0, F(E_4) = E_4$, mentre si calcola facilmente che $F(E_1) = 0v_1 + cv_2 - E_4 + (1-c)E_1$ e quindi la matrice di F nella base e è

$$M_e(F) = egin{pmatrix} 0 & 0 & 0 & 0 \ 0 & 0 & 0 & c \ 0 & 0 & 1 & -1 \ 0 & 0 & 0 & 1 - c \end{pmatrix}.$$

(b) e (c) Il polinomio caratteristico di F è

$$P_F(T) = egin{bmatrix} -T & 0 & 0 & 0 \ 0 & -T & 0 & c \ 0 & 0 & 1-T & -1 \ 0 & 0 & 0 & 1-c-T \end{bmatrix} = T^2(1-T)(1-c-T)$$

da cui gli autovalori sono $\lambda_1 = 0, \lambda_2 = 1, \lambda_3 = 1 - c$. Osserviamo intanto che, per quanto sappiamo, $v_1, v_2 \in V_0(F) = N(F), dim V_0(F) = dim N(F) \geq 2$ (in quanto v_1 e v_2 sono linearmente indipendenti), $E_4 \in V_1(F)$ (dato che $F(E_4) = E_4$).

Studiamo ora $V_{1-c}(F)$: gli autovettori sono $v = xv_1 + yv_2 + zE_4 + wE_1$ dove x, y, z, w sono soluzioni del sistema

$$\begin{pmatrix} -1+c & 0 & 0 & 0 \\ 0 & -1+c & 0 & c \\ 0 & 0 & c & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

cioè

$$\begin{cases} (c-1)x = 0\\ (c-1)y + cw = 0\\ cz - w = 0 \end{cases}$$

Da questo troviamo gli autovettori associati a $\lambda_3 = 1 - c$. Se $c \neq 1$, posto z = 1 si trova $x = 0, y = -\frac{c^2}{c-1}, w = c$ e quindi il vettore $u(0, -\frac{c^2}{c-1}, 1, c)$ (nella base data). Si noti che

questo vettore coincide con E_4 se c=0. Se c=1 si trova z=w=0 e quindi solo due vettori indipendenti $v(1,0,0,0)=v_1, v(0,1,0,0)=v_2$ (nella base data).

CASO 1:
$$c \neq 0, 1$$
.

Dato che la molteplicità algebrica non può superare quella geometrica, ne segue che basi per gli autospazi sono

$$\{v_1, v_2\} \text{ per } V_0(F),$$

$$\{E_4\}$$
 per $V_1(F)$ e

$$\{u\} \text{ per } V_{1-c}(F).$$

In questo caso F è diagonalizzabile per il Teorema 13.13 del [Sernesi].

CASO 2:
$$c = 0$$
.

Dato che la molteplicità algebrica non può superare quella geometrica, e, per quanto detto sopra, le basi sono

$$\{v_1, v_2\} \text{ per } V_0(F),$$

$$\{E_4\}$$
 per $V_1(F)$.

In questo caso F non è diagonalizzabile per il Teorema 13.13 del [Sernesi].

CASO 3:
$$c = 1$$
.

Per quanto detto sopra le basi sono

$$\{v_1, v_2\} \text{ per } V_0(F),$$

$$\{E_4\}$$
 per $V_1(F)$.

In questo caso F non è diagonalizzabile per il Teorema 13.13 del [Sernesi]. \blacksquare

5. Siano W la giacitura di H e U la giacitura di S. Dato che dimW = n - 1 e $dimU \ge 1$ si ha che o $U \not\subset W$ ed allora U + W = V e dunque $H \cap S \ne \emptyset$ per la Proposizione 8.9 del Sernesi; oppure $U \subset W$ e dunque H||S.

Altra dimostrazione: sia dimS = s e siano

$$a_{i1}X_1 + a_{i2}X_2 + \dots + a_{in}X_n = b_i, i = 1, \dots n - s$$

le equazioni di S in un dato riferimento affine; in particolare si ha $r(a_{ij}) = n - s$. Sia ora

$$a_1X_1 + a_2X_2 + \dots + a_nX_n = b$$

l'equazione di H. L'intersezione $H \cap S$ è data dal sistema

$$\begin{cases} a_{i1}X_1 + a_{i2}X_2 + \dots + a_{in}X_n = b_i, i = 1, \dots n - s \\ a_1X_1 + a_2X_2 + \dots + a_nX_n = b \end{cases}$$

da cui o $H \cap S \neq \emptyset$, oppure il sistema è incompatibile, e quindi, per il Teorema di Kronecker-Rouchè-Capelli, necessariamente il rango della matrice dei coefficienti deve essere n-s, e dunque l'ultima riga $(a_1a_2...a_n)$ è combinazione lineare delle precedenti. Da questo segue che le soluzioni del sistema omogeneo

$$a_{i1}X_1 + a_{i2}X_2 + \dots + a_{in}X_n = 0, i = 1, \dots n - s$$

sono anche soluzioni di

$$a_1 X_1 + a_2 X_2 + \dots + a_n X_n = 0$$

cioè la giacitura di S è contenuta nella giacitura di H. \blacksquare