Primo Esonero di CP2 a.a. 2001/2002

Esercizio 1 Sia $(\Omega, \mathcal{F}, \mathbb{P})$ e sia $X : \Omega \to \mathbb{R}$ una v.a.

- a) Dare la definizione di $\sigma(X)$.
- **b)** Sia $a \in \mathbb{R}$. Dimostrare che X = a se e solo se $\sigma(X) = \{\emptyset, \Omega\}$.
- c) Siano $a, b \in \mathbb{R}$, con $a \neq b$, e $A \in \mathcal{F}$, con $A \neq \emptyset, \Omega$. Dimostrare che $X = a \mathbb{1}_A + b \mathbb{1}_{A^c}$ se e solo se $\sigma(X) = \{\emptyset, A, A^c, \Omega\}$.

Esercizio 2 Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità e $A_0 \in \mathcal{F}$ tale che $\mathbb{P}(A_0) > 0$. Sia

$$\mathcal{F} \ni A \mapsto \mathbb{P}_0(A) = \mathbb{P}(A \mid A_0) = \frac{\mathbb{P}(A \cap A_0)}{\mathbb{P}(A_0)}.$$

- a) Verificare che $(\Omega, \mathcal{F}, \mathbb{P}_0)$ è uno spazio di probabilità e che $\mathbb{P}_0 \ll \mathbb{P}$. Scrivere $\frac{d\mathbb{P}_0}{d\mathbb{P}}$.
- b) Mostrare che $\mathbb{P} \ll \mathbb{P}_0$ se e solo se $\mathbb{P}(A_0) = 1$ e scrivere in tal caso $\frac{d\mathbb{P}}{d\mathbb{P}_0}$.
- c) Fissato $p \geq 1$, mostrare che se $X \in L^p(\Omega, \mathcal{F}, \mathbb{P})$ allora $X \in L^p(\Omega, \mathcal{F}, \mathbb{P}_0)$. Detta \mathbb{E}_0 la media rispetto a \mathbb{P}_0 , dimostrare che esiste una costante positiva c_p tale che $\mathbb{E}_0(|X|^p) \leq c_p \mathbb{E}(|X|^p)$.
 - d) Posto invece,

$$\mathcal{F} \ni A \mapsto \mathbb{P}^0(A) = \left\{ \begin{array}{ll} \mathbb{P}(A_0 \mid A) & \text{se } \mathbb{P}(A) > 0 \\ 0 & \text{se } \mathbb{P}(A) = 0 \end{array} \right.$$

dire se \mathbb{P}^0 è una misura, eventualmente di probabilità, su (Ω, \mathcal{F}) .

Esercizio 3 Enunciare e dimostrare i due lemmi di Borel-Cantelli e verificare, con un controesempio, che il secondo lemma di Borel-Cantelli non vale in generale se si elimina l'ipotesi di indipendenza.

Esercizio 4 Sia X una v.a. con densità $p_X(x) = c e^{-|x|}$ e sia $Y = X^2 \mathbb{1}_{|X| < a}$, con a, c > 0 fissate.

- a) Determinare c e dire se $X \in L^2$.
- **b)** Calcolare Cov(X,Y). $X \in Y$ sono indipendenti?
- c) Dire se Y ha densità e scrivere la f.d. F_Y di Y.

Esercizio 1 a) Si rimanda al libro di testo. Nel seguito, useremo $\sigma(X) = \{X^{-1}(B); B \in \mathcal{B}(\mathbb{R})\}.$

b) Se X = a allora per ogni boreliano B,

$$X^{-1}(B) = \begin{cases} \emptyset & \text{se } a \notin B \\ \Omega & \text{se } a \in B \end{cases}$$

quindi $\sigma(X) = \{\emptyset, \Omega\}.$

Viceversa, supponiamo che $\sigma(X) = \{\emptyset, \Omega\}$. Se per assurdo X potesse assumere due valori a_1, a_2 diversi, allora $A_1 = X^{-1}(\{a_1\})$ e $A_2 = X^{-1}(\{a_2\})$ sarebbero due elementi di $\sigma(X)$ disgiunti e non vuoti, il che non è possibile. Quindi X assume un unico valore a.

c) Supponiamo $X = a \, \mathbb{1}_A + b \, \mathbb{1}_{A^c}$. Allora per ogni boreliano B,

$$X^{-1}(B) = \begin{cases} \emptyset & \text{se } a, b \notin B \\ A & \text{se } a \in B \text{ e } b \notin B \\ A^c & \text{se } a \notin B \text{ e } b \in B \\ \Omega & \text{se } a, b \in B \end{cases}$$

quindi $\sigma(X) = \{\emptyset, A, A^c, \Omega\}.$

Viceversa, sia $\sigma(X) = \{\emptyset, A, A^c, \Omega\}$. Supponiamo per assurdo che X possa assumere $n \geq 3$ valori diversi. Se a_1, a_2, a_3 denotano tre di questi valori diversi, allora $A_1 = X^{-1}(\{a_1\}), A_2 = X^{-1}(\{a_2\})$ e $A_3 = X^{-1}(\{a_3\})$ sono tre elementi di $\sigma(X)$ disgiunti e non vuoti, il che non è possibile. Quindi X assume o un solo valore α oppure due valori α e β distinti. Ovviamente il primo caso qui non è possibile, altrimenti da α) si avrebbe $\sigma(X) = \{\emptyset, \Omega\}$. Quindi esistono α, β diversi tali che $X = \alpha \, \text{ll}_{\Gamma} + \beta \, \text{ll}_{\Gamma^c}$, con $\Gamma = X^{-1}(\{\alpha\}) \in \mathcal{F} \text{ e } \Gamma \neq \emptyset, \Omega$. Ora, come visto sopra, in tal caso si avrebbe $\sigma(X) = \{\emptyset, \Gamma, \Gamma^c, \Omega\}$ e poiché per ipotesi $\sigma(X) = \{\emptyset, A, A^c, \Omega\}$, dev'essere $\Gamma = A$ oppure $\Gamma = A^c$, da cui la tesi.

Esercizio 2 a) Si ha: \mathbb{P}_0 è in effetti definita su tutto \mathcal{F} ; $\mathbb{P}_0(\Omega) = 1$; $\mathbb{P}_0(A) \geq 0$ per ogni $A \in \mathcal{F}$; se $\{A_k\}_k \subset \mathcal{F}$ è tale che $A_{k_1} \cap A_{k_2}$ per ogni $k_1 \neq k_2$, allora

$$\mathbb{P}_{0}(\cup_{k} A_{k}) = \mathbb{P}(\cup_{k} A_{k} \mid A_{0}) = \frac{\mathbb{P}(\cup_{k} A_{k} \cap A_{0})}{\mathbb{P}(A_{0})} = \frac{\sum_{k} \mathbb{P}(A_{k} \cap A_{0})}{\mathbb{P}(A_{0})} = \sum_{k} \mathbb{P}(A_{k} \mid A_{0}) =$$

dunque \mathbb{P}_0 è una misura di probabilità su (Ω, \mathcal{F}) .

Poi, se $\mathbb{P}(A) = 0$ allora $\mathbb{P}(A \cap A_0) = 0$, quindi $\mathbb{P}_0(A) = 0$, cioè $\mathbb{P}_0 \ll \mathbb{P}$. Inoltre, per ogni $A \in \mathcal{F}$,

$$\mathrm{IP}_0(A) = \frac{\mathrm{IP}(A \cap A_0)}{\mathrm{IP}(A_0)} = \frac{1}{\mathrm{IP}(A_0)} \int_{A \cap A_0} d\mathrm{IP} = \int_A \frac{\mathbb{1}_{A_0}}{\mathrm{IP}(A_0)} d\mathrm{IP},$$

da cui segue che IP-q.o.

$$\frac{d \mathbb{P}_0}{d \mathbb{P}}(\omega) = \frac{1}{\mathbb{P}(A_0)} \, 1\!\!1_{A_0}(\omega).$$

b) Supponiamo $\mathbb{P} \ll \mathbb{P}_0$. Poiché $\mathbb{P}_0(A_0^c) = 0$, dev'essere $\mathbb{P}(A_0^c) = 0$ cioè $\mathbb{P}(A_0) = 1$.

Viceversa, supponiamo che $\mathbb{P}(A_0) = 1$. Allora $\mathbb{P}(A \cap A_0) = \mathbb{P}(A)$ quindi $\mathbb{P}_0(A) = \mathbb{P}(A)$ per ogni $A \in \mathcal{F}$, e ovviamente $\mathbb{P} \ll \mathbb{P}_0$.

In particolare, $\mathbb{P} \ll \mathbb{P}_0$ se e solo se $\mathbb{P}_0 \equiv \mathbb{P}$, ma allora $\frac{d\mathbb{P}}{d\mathbb{P}_0} = 1$.

c) Abbiamo visto che $\mathbb{P}_0 \ll \mathbb{P}$. Allora,

$$Z \in L^1(\Omega, \mathcal{F}, \mathbb{P}_0)$$
 se e solo se $Z \frac{d\mathbb{P}_0}{d\mathbb{P}} \in L^1(\Omega, \mathcal{F}, \mathbb{P})$

i

e in tal caso, $\mathbb{E}_0(Z) = \int Z d\mathbb{P}_0 = \int Z \frac{d\mathbb{P}_0}{d\mathbb{P}} d\mathbb{P}$. Ora, sia $X \in L^p(\Omega, \mathcal{F}, \mathbb{P})$, cioè $Z = |X|^p \in L^1(\Omega, \mathcal{F}, \mathbb{P})$. Allora,

$$\left|Z\,\frac{d\mathbb{P}_0}{d\mathbb{P}}\right| = \frac{1}{\mathbb{P}(A_0)}\,|X|^p\,1\!\!1_{A_0} \le c_p\,|X|^p$$

dove si è posto $c_p = 1/\mathbb{P}(A_0)$, quindi (per dominazione) $Z \frac{d\mathbb{P}_0}{d\mathbb{P}} \in L^1(\Omega, \mathcal{F}, \mathbb{P})$. Ciò prova che $|X|^p \in L^1(\Omega, \mathcal{F}, \mathbb{P}_0)$, o meglio $X \in L^p(\Omega, \mathcal{F}, \mathbb{P}_0)$, ed inoltre

$${
m I\!E}_0(|X|^p) = c_p \int |X|^p \, 1\!{
m l}_{A_0} \, d{
m I\!P} \le c_p \int |X|^p \, d{
m I\!P} = c_p \, {
m I\!E}(|X|^p).$$

d) No: in generale \mathbb{P}^0 non è una misura, tanto meno di probabilità. Infatti, se $\mathbb{P}(A_0) = 1$, allora $\mathbb{P}^0(A) = 1$ per ogni $A \in \mathcal{F}$ tale che $\mathbb{P}(A) > 0$, quindi \mathbb{P}^0 non è additiva. Se invece $\mathbb{P}(A_0) < 1$ si prenda, ad esempio, $A = A_0$ e $B = A_0^c$. Allora, $A \cap B = \emptyset$ e $A \cup B = \Omega$, quindi

$$\mathbb{P}^{0}(A \cup B) = \mathbb{P}(A_{0} \mid \Omega) = \mathbb{P}(A_{0}) < 1.$$

Inoltre, $\mathbb{P}^0(A) = \mathbb{P}^0(A_0) = 1$ e $\mathbb{P}^0(B) = \mathbb{P}^0(A_0^c) = 0$, quindi $\mathbb{P}^0(A \cup B) < \mathbb{P}^0(A) + \mathbb{P}^0(B)$, ovvero \mathbb{P}^0 non è una funzione additiva, dunque non è una misura.

Esercizio 3 Si rimanda al libro di testo. Per il controesempio, si consideri, ad esempio, una successione $\{A_n\}_n$ tale che $A_n = A$ per ogni n, dove A è tale che $\mathbb{P}(A) = p \in (0,1)$. Allora, $\sum_n \mathbb{P}(A_n) = \sum_n p = +\infty$ ma $\mathbb{P}(A_n \text{ i.o.}) = \mathbb{P}(A) < 1$. Infatti, qui gli eventi A_n ovviamente non sono indipendenti.

Esercizio 4 a) p_X è integrabile su \mathbb{R} : posto $f_n(x) = p(x) 1_{|x| < n}$, evidentemente $0 \le f_n \uparrow p_X$ e quindi (MON) $\int_{\mathbb{R}} f_n(x) dx \uparrow \int_{\mathbb{R}} p_X(x) dx$. Ora,

$$\int_{\mathbb{B}} f_n(x) dx = 2c \int_0^n e^{-x} dx = 2c(1 - e^{-n}) \uparrow 2c = \int_{\mathbb{B}} p_X(x) dx,$$

da cui segue che p_X è integrabile e c=1/2. Perché $X\in L^2$, la funzione $x^2p_X(x)$ dev'essere integrabile su \mathbb{R} . Ora, $0\leq x^2p_X(x)$ $\mathbbm{1}_{|x|<n}\uparrow x^2p_X(x)$ e

$$\int_{\mathbb{R}} x^2 p_X(x) \, 1\!\!1_{|x| < n} dx = 2c \int_0^n x^2 e^{-x} dx = 2c \left(-x^2 e^{-x} \Big|_0^n - 2x e^{-x} \Big|_0^n - 2e^{-x} \Big|_0^n \right) \uparrow 4c = 2.$$

Dunque, $X \in L^2$ e $\mathbb{E}(X^2) = 2$. In particolare, $X \in L^1$ e $\mathbb{E}(X) = \int_{\mathbb{R}} x p_X(x) dx = 0$ perché la funzione $x \mapsto x p_X(x)$ è dispari.

b) Per $X,Y \in L^2$, $Cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = \mathbb{E}(XY)$ perché qui $\mathbb{E}(X) = 0$. Quindi, occorre dimostrare che $Y \in L^2$ e calcolare $\mathbb{E}(XY)$. Poiché $Y = X^2 \mathbb{1}_{|X| < a}$, in particolare $|Y|^2 \le a^4$, quindi (per dominazione) la sua media esiste. Inoltre,

$$\mathbb{E}(XY) = \mathbb{E}(X^3 \, 1\!\!1_{|X| < a}) = \int x^3 \, 1\!\!1_{|x| < a} \, p_X(x) dx = \int_{-a}^a x^3 p_X(x) dx = 0$$

perché $x\mapsto x^3p_X(x)$ è dispari. Quindi $\mathrm{Cov}(X,Y)=0$. Ma X e Y non sono indipendenti. Ad esempio, $\mathbb{P}(X>a,Y>0)=\mathbb{P}(X>a,X^21_{|X|<a}>0)=\mathbb{P}(X>a,0>0)=\mathbb{P}(\emptyset)=0$ ma

$$\mathbb{P}(X > a)\mathbb{P}(Y > 0) = \mathbb{P}(X > a)\mathbb{P}(|X| < a) \neq 0 = \mathbb{P}(X > a, Y > 0).$$

c) Y non ha densità perché la sua legge Λ_Y non è assolutamente continua rispetto alla misura di Lebesgue. Infatti, Leb $(\{0\}) = 0$ ma $\Lambda_Y(\{0\}) = \mathbb{P}(Y=0) = \mathbb{P}(|X| \ge a) = 2c \int_a^\infty e^{-x} dx > 0$. Scriviamo la f.d. di Y: per $y \in \mathbb{R}$,

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(X^2 1_{|X| \le a} \le y)$$

quindi $F_Y(y)=0$ per y<0 ma anche $F_Y(y)=1$ per $y>a^2.$ Per $0\leq y\leq a^2$ si ha:

$$\begin{split} F_Y(y) &= \mathbb{P}(X^2 \, 1\!\!1_{|X| < a} \le y) = \mathbb{P}(X^2 \le y, |X| < a) + \mathbb{P}(|X| > a) \\ &= 2c \int_0^{\sqrt{y}} e^{-x} dx + 2 \int_a^\infty e^{-x} dx = 1 - e^{-\sqrt{y}} + e^{-a}. \end{split}$$

Quindi,

$$F_Y(y) = \begin{cases} 0 & \text{se } y < 0\\ 1 - e^{-\sqrt{y}} + e^{-a} & \text{se } 0 \le y < a^2\\ 1 & \text{se } y \ge a^2. \end{cases}$$

Si noti che $\Delta F_Y(0) = e^{-a} > 0$, quindi Y non può avere densità (nel qual caso F_Y sarebbe continua).