Convergenza e leggi dei Grandi Numeri

Appunti per il corso di CP2, a.a. 2001/2002

1 Convergenza

In questo paragrafo studieremo la convergenza quasi certa, in probabilità e in L^p , stabilendo eventuali implicazioni e mostrando esempi e controesempi.

Cominciamo dalle definizioni.

Definizione 1.1 Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità, dov'è definita una successione $\{X_n\}_n$ di v.a. e una ulteriore v.a. X.

• Diremo che $\{X_n\}_n$ converge a X quasi certamente (q.c.) se esiste $N \in \mathcal{F}$ tale che $\mathbb{P}(N) = 0$ e per ogni $\omega \notin N$,

$$\lim_{n\to\infty} X_n(\omega) = X(\omega)$$

(o, equivalentemente, se $P(\{\omega: X_n(\omega) \not\rightarrow X(\omega)\}) = 0$).

• Diremo che $\{X_n\}_n$ converge a X in probabilità se per ogni $\delta > 0$

$$\lim_{n\to\infty} \mathbb{P}(|X_n - X| > \delta) = 0.$$

• Se $X_n \in L^p$ per ogni $n \in X \in L^p$, con $p \ge 1$, diremo che $\{X_n\}_n$ converge a X in L^p se

$$\lim_{n\to\infty}||X_n-X||_p=0.$$

La convergenza quasi certa coincide quindi con la convergenza puntuale $(X_n(\omega) \xrightarrow{n \to \infty} X(\omega))$ a meno di un insieme di probabilità nulla e quindi trascurabile. La convergenza in probabilità invece richiede che asintoticamente (cioè per $n \to \infty$) divenga trascurabile l'evento $\{\omega : |X_n(\omega) - X(\omega)| > \delta\}$, che corrisponde all'evento " X_n dista da X per più di δ ", per ogni $\delta > 0$. Infine, la convergenza in L^p è forse quella più semplice intuitivamente. Infatti, poiché $L^p(\Omega, \mathcal{F}, \mathbb{P})$ è uno spazio di Banach con la norma $||\cdot||_p$, la convergenza di X_n a X in L^p corrisponde alla convergenza a 0 della distanza (in L^p : $||X_n - X||_p$) tra X_n e X.

Cominciamo a dimostrare un primo risultato sulla convergenza q.c.:

Proposizione 1.2 (i) $X_n \to X$ q.c. se e solo se $\mathbb{P}(|X_n - X| > \delta \ i.o.) = 0$, per ogni $\delta > 0$.

(ii) Se per ogni $\delta > 0$ la serie $\sum_n \mathbb{P}(|X_n - X| > \delta)$ converge allora $X_n \to X$ q.c.

Dimostrazione. (i) Osserviamo anzitutto che $X_n(\omega) \to X(\omega)$ se e solo se per ogni $\delta > 0$ esiste un n tale che per ogni $k \geq n$ si ha $|X_k(\omega) - X(\omega)| \leq \delta$. Ora, poiché ogni numero reale si può

Ovviamente, in tal caso si ha anche $||X_n||_p \to ||X||_p$, o equivalentemente $\mathbb{E}(|X_n|^p) \to \mathbb{E}(|X|^p)$. Infatti, dalla disuguaglianza triangolare segue che $|||X_n||_p - ||X||_p = ||X_n - X||_p$, quindi se $||X_n - X||_p \to 0$ per $n \to \infty$ allora $||X_n||_p \to ||X||_p$ per $n \to \infty$. In particolare, se p = 1 allora $\mathbb{E}(X_n) \to \mathbb{E}(X)$.

approssimare con dei razionali, non cambia nulla se il δ in questione si sceglie nei razionali \mathbb{Q} . Quindi, in simboli possiamo scrivere

$$\{\omega: X_n(\omega) \to X(\omega)\} = \bigcap_{\delta > 0, \delta \in \mathbb{D}} \cup_n \bigcap_{k > n} \{\omega: |X_k(\omega) - X(\omega)| \le \delta\}$$

il che peraltro prova che $\{\omega: X_n(\omega) \to X(\omega)\} \in \mathcal{F}$ perché unione e intersezione numerabile di eventi $(\{\omega: |X_k(\omega) - X(\omega)| \le \delta\})$ che appartengono a \mathcal{F} . Quindi,

$$\begin{split} \{\omega\,:\,X_n(\omega)\to X(\omega)\}^c &= \cup_{\delta>0,\delta\in\mathbb{Q}}\cap_n \cup_{k\geq n}\{\omega\,:\,|X_k(\omega)-X(\omega)|>\delta\} \\ &= \cup_{\delta>0,\delta\in\mathbb{Q}}\{|X_n-X|>\delta\ \text{i.o.}\}. \end{split}$$

Ora, $X_n \to X$ q.c. se e solo se il complementare di $\{\omega: X_n(\omega) \to X(\omega)\}$ ha probabilità nulla, ciè se e solo se

$$\mathbb{P}(\cup_{\delta>0,\delta\in\mathbb{Q}}\{|X_n-X|>\delta \text{ i.o.}\})=0,$$

il che è vero se e solo se $\mathbb{P}(|X_n-X|>\delta$ i.o.) = 0 per ogni $\delta>0$. Infatti, se $\mathbb{P}(\cup_{\delta>0,\delta\in\mathbb{Q}}\{|X_n-X|>\delta$ i.o.}) = 0 per ogni $\delta>0$, $\delta\in\mathbb{Q}$. Preso $\delta\in\mathbb{R}\setminus\mathbb{Q}$ con $\delta>0$, allora esiste un $\delta'\in\mathbb{Q}$ tale che $\delta'\in(0,\delta)$, quindi $\{|X_n-X|>\delta$ i.o.} $\in\mathbb{Q}$. δ i.o.} $\in\mathbb{Q}$.

Viceversa, se $\mathbb{P}(|X_n-X|>\delta \text{ i.o.})=0$ per ogni $\delta>0$, allora $\cup_{\delta>0,\delta\in\mathbb{Q}}\{|X_n-X|>\delta \text{ i.o.}\}$ ha probabilità nulla, quindi $X_n\to X$ q.c.

(ii) Se per ogni $\delta > 0$ la serie $\sum_n \mathbb{P}(|X_n - X| > \delta)$ converge allora usando il primo Lemma di Borel-Cantelli segue che $\mathbb{P}(\{|X_n - X| > \delta \text{ i.o.}\}) = 0$ e da (i) si ottiene $X_n \to X$ q.c.

Osserviamo che la proposizione precedente dà delle condizioni sulla convergenza q.c. che coinvolgono le leggi di X_n e X e non le loro espressioni come funzioni di ω . Questo è particolarmente importante in probabilità perché spesso (quasi sempre...) non si conosce il valore che una generica v.a. assume sulle ω ma si hanno informazioni su come si comporta in probabilità, ad esempio se ne conosce la legge, oppure la media o la varianza o i momenti etc (tipicamente, solo negli esempi "mirati", come i controesempi, si sa chi sono Ω , \mathcal{F} , \mathbb{P} e quindi chi è $X(\omega)$...). A tale riguardo, si propone il seguente esercizio.

Esercizio 1.3 Sia $\{Y_n\}_n$ una successione di v.a. i.i.d. $\operatorname{Exp}(\lambda)^2$. Posto $X_n = Y_n/\log n$, discutere se $X_n \to 0$ in probabilità e/o in L^p e/o q.c.

Soluzione. Fissato $\delta > 0$, studiamo $\mathbb{P}(|X_n - X| > \delta)$, dove qui X = 0:

$$\mathbb{P}(|X_n - X| > \delta) = \mathbb{P}(X_n > \delta) = \mathbb{P}(Y_n > \delta \log n)$$
$$= \int_{\delta \log n}^{\infty} \lambda \, e^{-\lambda x} dx = e^{-\lambda \delta \log n} = \frac{1}{n^{\lambda \delta}} \to 0 \quad \text{se } n \to \infty$$

quindi $X_n \to 0$ in probabilità. Inoltre, una volta osservato che una $Z \sim \text{Exp}(\lambda)$ è in L^p per ogni $p \ge 1$ (dimostrare!!), si ha

$$||X_n-X||_p^p=\mathbb{E}(X_n^p)=rac{1}{(\log n)^p}\mathbb{E}(Y_n^p)=rac{c_{\lambda,p}}{(\log n)^p} o 0\quad ext{ se } n o \infty$$

²Cioè, con densità $p(x) = \lambda e^{-\lambda x} \mathbb{1}_{x>0}$

avendo posto $c_{\lambda,p} = \mathbb{E}(Z^p)$, con $Z \sim \text{Exp}(\lambda)$. Quindi $X_n \to 0$ in L^p .

Sudiamo ora la convergenza q.c. Cominciamo a vedere se vale la condizione sufficiente del punto (ii) della Proposizione 1.2. Per $\delta>0$, abbiamo visto che $\mathbb{P}(|X_n-X|>\delta)=\frac{1}{n^{\lambda\delta}}$ quindi la serie $\sum_n \mathbb{P}(|X_n-X|>\delta)$ converge se e solo se $\delta>1/\lambda$. Ciò significa che, purtroppo, non possiamo dire se $X_n\to 0$ q.c. Però, abbiamo visto che la serie $\sum_n \mathbb{P}(|X_n-X|>\delta)$ diverge per $\delta\le 1/\lambda$ e abbiamo a disposizione uno strumento, il secondo Lemma di Borel-Cantelli, che dà informazioni sulla probabilità dell'evento $\{|X_n-X|>\delta\}$ i.o.} purché però gli eventi $\{|X_n-X|>\delta\}$ siano indipendenti. Qui,

$$\{|X_n - X| > \delta\} = \{Y_n > \delta \log n\}$$

e le v.a. Y_n sono indipendenti per ipotesi, quindi gli eventi $\{|X_n-X|>\delta\}$ sono indipendenti. Allora, usando BC2, si ha

$$\mathbb{P}(|X_n - X| > \delta \text{ i.o.}) = 1$$

per $\delta \in (0,1/\lambda]$ e dal punto (i) della Proposizione 1.2 possiamo concludere che non c'è convergenza q.c.

La proposizione che segue dà delle interessanti implicazioni tra le convergenze definite nella Definizione 1.1.

Proposizione 1.4 (a) Se $X_n \to X$ q.c. allora $X_n \to X$ in probabilità.

- (b) Se $X_n \to X$ in probabilità allora esiste una sottosuccessione $\{X_{n_k}\}_k$ tale che $X_{n_k} \to X$ q.c.
- (c) Se $X_n \to X$ in L^p allora $X_n \to X$ in probabilità.
- (d) Se $X_n \to X$ q.c. ed esiste $Z \in L^p$, $Z \ge 0$ q.c. tale che $|X_n| \le Z$ allora $X_n \to X$ in L^p . In particolare, $||X_n||_p \to ||X||_p$ per $n \to \infty$ e se p = 1, $\mathbb{E}(X_n) \to \mathbb{E}(X)$.

Dimostrazione. (a) Se $X_n \to X$ q.c. allora, dalla Proposizione 1.2, per ogni $\delta > 0$ si ha

$$0 = \mathbb{P}(|X_n - X| > \delta \text{ i.o.}) = \mathbb{P}(\cap_n \cup_{k \ge n} \{\omega : |X_k(\omega) - X(\omega)| > \delta\})$$
$$= \lim_{n \to \infty} \mathbb{P}(\cup_{k \ge n} \{\omega : |X_k(\omega) - X(\omega)| > \delta\}) \ge \lim_{n \to \infty} \mathbb{P}(\{|X_n - X| > \delta\})$$

quindi $\lim_{n\to\infty} \mathbb{P}(\{|X_n-X|>\delta\})=0$, per ogni $\delta>0$, e $X_n\to X$ in probabilità.

(b) Per ipotesi, per ogni $\delta > 0$ si ha che $\lim_{n \to \infty} \mathbb{P}(\{|X_n - X| > \delta\}) = 0$. Quindi, per ogni $k \ge 1$, $\lim_{n \to \infty} \mathbb{P}(|X_n - X| > 1/k) = 0$, dunque esiste un indice n_k tale che

$$\mathbb{P}(|X_{n_k} - X| > 1/k) < \frac{1}{2^k}.$$

Consideriamo la sottosuccessione $\{X_{n_k}\}_k$ appena costruita e mostriamo che $X_{n_k} \to X$ q.c. per $k \to \infty$.

Fissato $\varepsilon > 0$, esiste un k_0 tale che $1/k < \varepsilon$ per ogni $k \ge k_0$. Allora, per $k \ge k_0$,

$$\{|X_{n_k}-X|>\varepsilon\}\subset\{|X_{n_k}-X|>1/k\}$$

quindi $\sum_k \mathbb{P}(|X_{n_k} - X| > \varepsilon) = \sum_{k < k_0} \mathbb{P}(|X_{n_k} - X| > \varepsilon) + \sum_{k \ge k_0} \mathbb{P}(|X_{n_k} - X| > \varepsilon) \le \sum_{k < k_0} \mathbb{P}(|X_{n_k} - X| > \varepsilon) + \sum_{k \ge k_0} 1/2^k < \infty$. Il punto (ii) della Proposizione 1.2 consente di affermare che $X_{n_k} \to X$ q.c. per $k \to \infty$.

(c) Usando la disuguaglianza di Markov,

$$\mathbb{P}(|X_n - X| > \delta) \le \frac{\mathbb{E}(|X_n - X|^p)}{\delta^p} = \frac{||X_n - X||_p^p}{\delta^p}.$$

Quindi se $||X_n - X||_p \to 0$ allora $\mathbb{P}(|X_n - X| > \delta) \to 0$ per $n \to \infty$, per ogni $\delta > 0$, cioè $X_n \to X$ in probabilità.

(d) Posto $U_n = |X_n - X|^p$, basta dimostrare che $\mathbb{E}(U_n) \to 0$ per $n \to \infty$ (si noti infatti che $\mathbb{E}(U_n) = ||X_n - X||_p^p$). Per ipotesi, $U_n \to U = 0$ q.c. Inoltre, $|U_n| \le c_p(|X_n|^p + |X|^p) \le 2 c_p Z^p$, con $Z^p \in L^1$ e c_p opportuna. Allora, usando il Teorema della Convergenza Dominata, si ottiene che $\mathbb{E}(U_n) \to \mathbb{E}(U) = 0$. Ricordando infine la Nota 1, la tesi è dimostrata.

Osservazione 1.5 La proposizione precedente si può riassumere come segue:

- convergenza q.c. $\stackrel{\ensuremath{\checkmark}}{\Rightarrow}$ convergenza in probabilità, e convergenza in probabilità \Rightarrow esistenza di una sottosuccessione che converge q.c.;
- convergenza in $L^p \stackrel{\not\leftarrow}{\Rightarrow}$ convergenza in probabilità;

• convergenza q.c. \neq convergenza in L^p , ma se la successione è dominata da una v.a. in L^p allora convergenza q.c. \Rightarrow convergenza in L^p .

Mostriamo alcuni controesempi che mostrano la validità delle ≠ e ≠ nell'Osservazione 1.5.

Esempio 1.6 [convergenza in probabilità, convergenza in $L^p \not\Rightarrow$ convergenza q.c.] Sia $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathcal{B}[0, 1], \text{Leb})$ e fissati $m \ge 1$ e $k = 0, 1, 2, \ldots, 2^m - 1$, sia

$$Y_{k,2^m}(\omega) = 1_{[k/2^m,(k+1)/2^m]}(\omega).$$

Si ponga ora $X_1 = 1$ e per $n \ge 1$, $X_n = Y_{k,2^m}$, dove $m \ge 1$ e $k \le 2^m - 1$ sono tali che $n = k + 2^m$. Mostriamo che $X_n \to 0$ in L^p :

 $\mathbb{E}(|X_n|^p) = \mathbb{E}(\mathbb{1}_{[k/2^m,(k+1)/2^m]}) = \mathbb{P}([k/2^m,(k+1)/2^m]) = \text{Leb}([k/2^m,(k+1)/2^m]) = 1/2^m$ quindi

$$\lim_{n \to \infty} \mathbb{E}(|X_n|^p) = \lim_{m \to \infty} 1/2^m = 0$$

e, in particolare (parte (c) della Proposizione 1.4), $X_n \to 0$ in probabilità³. Ma X_n non converge a 0 q.c. Infatti, per ogni $\omega \in \Omega = [0,1]$ e per ogni $m \geq 1$ esiste un $k^* = k^*(\omega, m)$ tale che

³Si può anche verificare direttamente. Infatti, se $\delta \geq 1$ allora $\{|X_n| > \delta\} = \emptyset$; se $0 < \delta < 1$, $\{|X_n| > \delta\} = \{1_{\lfloor k/2^m, (k+1)/2^m \rfloor} > \delta\} = \{1_{\lfloor k/2^m, (k+1)/2^m \rfloor} = 1\} = \lfloor k/2^m, (k+1)/2^m \rfloor$. Quindi, per ogni $\delta > 0$, $\mathbb{P}(|X_n| > \delta) \leq 1/2^m$, che va a 0 per $m \to \infty$, cioè se $n \to \infty$.

 $\omega \in [k/2^m, (k+1)/2^m]$. Consideriamo la successione (numerica) $\xi_m = Y_{k^*+2^m}(\omega)$: ovviamente $\xi_m = 1$ per ogni m, quindi $\xi_m \to 1$ per $m \to \infty$. Ora, poiché $X_n \le 1$ per ogni n, si ha $\limsup_{n \to \infty} X_n(\omega) \le 1$. Ma per ogni ω , esiste una sottosuccessione ξ_m di $X_n(\omega)$ tale che $\xi_m \to 1$ per $m \to \infty$. Ciò significa che, per ogni ω fissato,

$$\limsup_{n \to \infty} X_n(\omega) = 1$$

e quindi X_n non può convergere a 0 q.c.

Esempio 1.7 [convergenza q.c., convergenza in probabilità \Rightarrow convergenza in L^p] Sia ancora $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathcal{B}[0, 1], \text{Leb})$. Fissato $n \geq 1$, sia

$$X_n(\omega) = n^{\alpha} 1_{(0,1/n)}(\omega),$$

dove $\alpha \in \mathbb{R}$ è fissato. Ora, poiché per ogni $\omega \in [0, 1]$ esiste n_0 tale che per ogni $n > n_0$ si ha $\omega > 1/n$, evidentemente $X_n(\omega) \to 0$ per $n \to \infty$, quindi $X_n \to 0$ q.c. e dunque in probabilità. Ma non è detto che $X_n \to 0$ in L^p . Infatti,

$$\mathbb{E}(|X_n|^p) = n^{\alpha p} \, \mathbb{P}((0, 1/n)) = n^{\alpha p} \, \text{Leb}((0, 1/n)) = n^{\alpha p - 1}.$$

Dunque, $X_n \in L^p$ per ogni p e se si sceglie $\alpha p \ge 1$, cioè $\alpha \ge 1/p$, allora $\mathbb{E}(|X_n|^p)$ non converge a 0, cioè X_n non converge a 0 in L^p .

Proponiamo infine il seguente esercizio, che in qualche modo anticipa il contenuto del prossimo paragrafo.

Esercizio 1.8 Sia $\{X_n\}_n$ una successione di v.a. i.i.d., con media (comune) μ e varianza (comune) σ^2 . Posto $S_n = \sum_{k=1}^n X_k$, dimostrare che $S_n/n \to \mu$ in probabilità.

Soluzione. Fissiamo $\delta > 0$ e studiamo $\mathbb{P}(|S_n/n - \mu| > \delta)$. Osserviamo che $\mathbb{E}(S_n/n) = \mu$, quindi stimiamo la probabilità sopra scritta con la disuguaglianza di Chebycev⁴:

$$\mathbb{P}(|S_n/n - \mu| > \delta) \le \frac{\operatorname{Var}(S_n/n)}{\delta^2}.$$

Ora, ricordando che le X_k sono indipendenti e usando le proprietà della varianza, abbiamo

$$Var(S_n/n) = \frac{1}{n^2} Var(\sum_{k=1}^n X_k) = \frac{1}{n^2} \sum_{k=1}^n Var(X_k) = \frac{\sigma^2}{n},$$

quindi

$$\mathbb{P}(|S_n/n - \mu| > \delta) \le \frac{\sigma^2}{n\delta^2} \to 0 \quad \text{se } n \to \infty.$$

Osserviamo infine che in realtà abbiamo dimostrato che $S_n/n \to \mu$ in L^2 , e quindi in probabilità.

⁴**Disuguaglianza di Chebycev.** Sia Z una v.a. con media m e varianza ρ^2 . Allora, $\mathbb{P}(|Z-m| \geq \delta) \leq \rho^2/\delta^2$. Infatti, per la disuguaglianza di Markov, $\mathbb{P}(|Z-m| \geq \delta) \leq \mathbb{E}(|Z-m|^2)/\delta^2$ e ricordando che $\rho^2 = \text{Var}(Z) = \mathbb{E}((Z-m)^2)$, la disuguaglianza di Chebycev segue immediatamente.

2 Legge dei Grandi Numeri

Con il nome di "legge dei Grandi Numeri" si intende lo studio della convergenza della media empirica S_n/n alla media teorica μ come nell'Esercizio 1.8, dov'è stata dimostrata una versione classica della Legge "Debole" dei Grandi Numeri, così detta perché la convergenza è in probabilità. Più in generale, data una successione $\{X_n\}_n$ di v.a. con medie $\mu_n = \mathbb{E}(X_n)$, studieremo la convergenza a 0 di

$$\frac{1}{n} S_n = \frac{1}{n} \sum_{k=1}^n (X_k - \mu_k).$$

Parleremo di Legge "Forte" dei Grandi Numeri se la convergenza in questione è quasi certa.

Teorema 2.1 [Legge forte di Rajchmann] Se le v.a. X_n sono a due a due non correlate e se esiste L > 0 tale che $\sup_n \operatorname{Var}(X_n) \leq L$ allora $S_n/n \to 0$ q.c.

Dimostrazione. Senza perdere in generalità, possiamo supporre $\mu_n = 0$ per ogni n (altrimenti lavoriamo con le v.a. $\tilde{X}_n = X_n - \mu_n$). Poiché le X_n sono a due a due non correlate, si ha $\operatorname{Var}(\sum_{k=1}^n X_k) = \sum_{k=1}^n \operatorname{Var}(X_k)$, quindi come nell'Esercizio 1.8 si ha

$$\mathbb{P}(|S_n/n| > \delta) \le \frac{\operatorname{Var}(S_n/n)}{\delta^2} = \frac{\sum_{k=1}^n \operatorname{Var}(X_k)}{n^2 \delta^2} \le \frac{L}{n\delta}$$
 (1)

perché le varianze sono uniformemente limitate. Quindi ancora $S_n/n \to 0$ in L^2 e in probabilità. Osserviamo però che la stima appena ottenuta non consente di stabilire che $\sum_n \mathbb{P}(|S_n/n| > \delta) < \infty$ e quindi (Proposizione 1.2) la convergenza q.c. Per tale ragione, consideriamo la sottosuccessione $\{S_{n^2}/n^2\}_n$ di $\{S_n/n\}_n$: da (1) otteniamo, per $\delta > 0$,

$$\mathbb{P}(|S_{n^2}/n^2| > \delta) \le \frac{L}{n^2 \delta}.$$

Quindi $\sum_{n} \mathbb{P}(|S_{n^2}/n^2| > \delta) < \infty$ e dalla Proposizione 1.2 si ha

$$\lim_{n \to \infty} \frac{1}{n^2} S_{n^2} = 0 \quad \text{q.c.}$$
 (2)

Ora, fissato n poniamo

$$D_n = \sup_{n^2 \le k < (n+1)^2} |S_k - S_{n^2}|.$$

Per ogni $k \geq 1$

$$|S_k| = |S_k - S_{n^2} + S_{n^2}| \le |S_k - S_{n^2}| + |S_{n^2}|,$$

quindi se n è scelto tale che $n^2 \le k < (n+1)^2$ si ha

$$\left| \frac{1}{k} S_k \right| \leq \frac{1}{k} \left(\sup_{n^2 \leq k < (n+1)^2} |S_k - S_{n^2}| + |S_{n^2}| \right) = \frac{1}{k} \left(D_n + |S_{n^2}| \right) \leq \frac{1}{n^2} D_n + \left| \frac{1}{n^2} S_{n^2} \right|.$$

Da (2), $|S_{n^2}/n^2| \to 0$ q.c., quindi basta dimostrare che $D_n/n^2 \to 0$ q.c. Infatti, fissato $\delta > 0$, usando la disuguaglianza di Markov,

$$\mathbb{P}(D_n/n^2 > \delta) = \mathbb{P}(D_n > n^2 \delta) \le \frac{\mathbb{E}(D_n^2)}{n^4 \delta^2}.$$
 (3)

Stimiamo $\mathbb{E}(D_n^2)$:

$$D_n^2 = \sup_{n^2 \le k < (n+1)^2} |S_k - S_{n^2}|^2 \le \sum_{k=n^2}^{(n+1)^2 - 1} |S_k - S_{n^2}|^2 = \sum_{k=n^2}^{(n+1)^2 - 1} \Big| \sum_{j=n^2 + 1}^k X_j \Big|^2.$$

Allora,

$$\begin{split} \mathbb{E}(D_n^2) &\leq \sum_{k=n^2}^{(n+1)^2-1} \mathbb{E}\Big(\Big|\sum_{j=n^2+1}^k X_j\Big|^2\Big) = \sum_{k=n^2}^{(n+1)^2-1} \mathbb{E}\Big(\sum_{j,\ell=n^2+1}^k X_j \, X_\ell\Big) \\ &= \sum_{k=n^2}^{(n+1)^2-1} \Big(\sum_{j=n^2+1}^k \mathbb{E}(X_j^2) + \sum_{j,\ell=n^2+1, j \neq \ell}^k \mathbb{E}(X_j \, X_\ell)\Big). \end{split}$$

Poiché $\mathbb{E}(X_n) = 0$, si ha che $\mathbb{E}(X_j^2) = \operatorname{Var}(X_j) \le L$ per ogni $j \in \mathbb{E}(X_j X_\ell) = \operatorname{Cov}(X_j, X_\ell) = 0$ per $j \ne \ell$, da cui segue che⁵

$$\mathbb{E}(D_n^2) \le \sum_{k=n^2}^{(n+1)^2 - 1} \sum_{j=n^2 + 1}^k L = L \sum_{k=n^2}^{(n+1)^2 - 1} (k - n^2)$$

$$\le L \sum_{k=n^2}^{(n+1)^2 - 1} \left((n+1)^2 - 1 - n^2 \right) \le L \left((n+1)^2 - n^2 \right) \left((n+1)^2 - 1 - n^2 \right) = 2Ln(2n+1).$$

Da (3), si ottiene

$$\mathbb{P}(D_n/n^2 > \delta) \le \frac{2L n (2n+1)}{n^4 \delta^2} = O\left(\frac{1}{n^2}\right),$$

quindi $\sum_n \mathbb{P}(D_n/n^2 > \delta) < \infty$ e, usando la Proposizione 1.2, possiamo concludere che $D_n/n^2 \to 0$ q.c.

Come immediata conseguenza, possiamo rafforzare quanto dimostrato nell'Esercizio 1.8:

Corollario 2.2 Se X_1, X_2, \ldots sono v.a. i.i.d. con media μ e varianza σ^2 allora

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} X_k = \mu \quad q.c.$$

Dimostrazione. Poiché sono verificate le ipotesi del Teorema 2.1, si ha

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} (X_k - \mu) = 0 \quad \text{q.c.}$$

e poiché $\frac{1}{n}\sum_{k=1}^{n}\mu=\mu$, la tesi segue immediatamente.

Proponiamo il seguente

⁵Ricordiamo che $\sum_{j=n_1}^{n_2} 1 = n_2 - n_1 + 1$.

Esercizio 2.3 Sia $\{X_n\}_n$ una successione di v.a. i.i.d. tali che

$$\mathbb{P}(X_i > x) = \begin{cases} x^{-\lambda} & se \ x > 1\\ 1 & se \ x \le 1 \end{cases}$$

dove $\lambda > 1$.

- a) Calcolare media e varianza delle X_i , se esistono.
- b) Posto $Y_i = \log X_i$, determinare la legge di X_i .
- c) Studiare la convergenza q.c. della successione $\{(X_1X_2\cdots X_n)^{1/n}\}_n$.

Soluzione. a) La f.d. comune è $F(x) = 1 - \mathbb{P}(X_i > x)$ e per q.o. x, $F'(x) = \lambda x^{-(\lambda+1)} \mathbb{1}_{x>1} =: f(x)$. Ora, $\int_{\mathbb{R}} f(x) dx = 1$ quindi f è la densità di probabilità delle X_i . Inoltre, si verifica facilmente che $xf(x) \in L^1$ se e solo se $\lambda > 1$ e $x^2f(x) \in L^2$ se e solo se $\lambda > 2$ e in tal caso,

$$\mathbb{E}(X_i) = \int_{\mathbb{R}} x \, f(x) \, dx = rac{\lambda}{\lambda - 1} \qquad \mathbb{E}(X_i^2) = \int_{\mathbb{R}} x^2 \, f(x) \, dx = rac{\lambda}{\lambda - 2},$$

quindi se $\lambda > 2$ allora esiste

$$\operatorname{Var}(X_i) = rac{\lambda}{\lambda - 2} - \Big(rac{\lambda}{\lambda - 1}\Big)^2 = rac{\lambda}{(\lambda - 1)^2(\lambda - 2)}.$$

b) Intanto, osserviamo che poiché $X_i \ge 1 > 0$ q.c., le Y_i sono ben poste. Inoltre, è evidente che le Y_i rimangono i.i.d. Poi, detta G la f.d. delle Y_i , si ha

$$G(y) = \mathbb{P}(Y_i \le y) = \mathbb{P}(X_i \le e^y) = F(e^y)$$

quindi, per q.o. y,

$$g(y) := G'(y) = F'(e^y) e^y = f(e^y) e^y = \lambda x^{-(\lambda+1)} 1_{x>1} \Big|_{x=e^y} e^y = \lambda e^{-\lambda y} 1_{y>0}$$

che è la densità di una $\text{Exp}(\lambda)$, quindi $Y_i \sim \text{Exp}(\lambda)$.

c) Osserviamo che

$$\log(X_1 X_2 \cdots X_n)^{1/n} = \frac{1}{n} \sum_{k=1}^n \log X_k = \frac{1}{n} \sum_{k=1}^n Y_k$$

e, per ogni $\lambda > 0$ le Y_k sono i.i.d. di media $\mu = 1/\lambda$ e varianza finita. Allora, dal Corollario 2.2 deduciamo che

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} Y_k = \frac{1}{\lambda} \quad \text{q.c.}$$

e quindi

$$\lim_{n\to\infty} (X_1X_2\cdots X_n)^{1/n} = \lim_{n\to\infty} \exp\left(\frac{1}{n}\sum_{k=1}^n Y_k\right) = e^{1/\lambda} \quad \text{ q.c.}$$

perché $x \mapsto e^x$ è una funzione continua.

Enunciamo ora la più celebre Legge dei Grandi Numeri, dove le ipotesi di esistenza dei momenti sono più deboli ma si suppone che le v.a. siano i.i.d.:

Teorema 2.4 [Legge forte di Kolmogorov] $Sia\ \{X_n\}_n\ una\ successione\ di\ v.a.\ i.i.d.$

(i) Se $X_i \in L^1$, allora detta $\mu = \mathbb{E}(X_i)$ si ha

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n} X_k = \mu \quad q.c.$$

(ii) Se $X_i \notin L^1$ allora almeno una delle due variabili terminali

$$\liminf_{n} \frac{1}{n} \sum_{k=0}^{n} X_k \qquad \qquad \lim_{n} \sup_{n} \frac{1}{n} \sum_{k=0}^{n} X_k$$

è q.c. infinita.

Quindi, nel caso di v.a. i.i.d., possiamo dire che: esiste $\mu = \mathbb{E}(X_i)$ se e solo se esiste X v.a. finita⁶ tale che $\frac{1}{n}\sum_{k=1}^{n}X_k$ converge q.c. a X, e in tal caso necessariamente dev'essere $X = \mu$ q.c.

Infatti, se esiste $\mu = \mathbb{E}(X_i)$ allora la tesi segue da (i) del Teorema 2.4. Viceversa, se esiste una v.a. X finita che è limite q.c. di $\frac{1}{n}\sum_{k=1}^{n}X_k$, allora da (ii) del Teorema 2.4 segue che $\mu = \mathbb{E}(X_i) < \infty$ perché, se così non fosse, si avrebbe $\mathbb{P}(|X| = +\infty) > 0$.

3 Il Teorema di Weierstrass

In questo paragrafo mostreremo con tecniche probabilistiche il

Teorema 3.1 [Weierstrass] I polinomi sono densi nello spazio delle funzioni continue su [0,1] dotato della norma del sup.

In altre parole, presa $f \in C([0,1])$ allora esiste una successione di polinomi $\{P_n\}_n$ tali che

$$\lim_{n \to \infty} \sup_{x \in [0,1]} |P_n(x) - f(x)| = 0.$$
 (4)

Inoltre, daremo a P_n un'espressione esplicita. Cominciamo infatti a dimostrare il seguente risultato, conseguenza della Legge dei Grandi Numeri:

Proposizione 3.2 Sia $f \in C([0,1])$ e, per $x \in [0,1]$ e $n \ge 1$, sia

$$P_n(x) = \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}.$$
 (5)

Allora, $\lim_{n\to\infty} P_n(x) = f(x)$.

⁶Con "X è una v.a. finita" intendiamo $\mathbb{P}(|X| < +\infty) = 1$, o equivalentemente $\mathbb{P}(|X| = +\infty) = 0$.

Dimostrazione. Fissiamo $f \in C([0,1])$ e $x_0 \in [0,1]$. Sia $\{Z_n\}_n$ una successione di v.a. i.i.d., con $Z_k \sim \text{Be}(x_0)$. Posto $\bar{Z}_n = \frac{1}{n} \sum_{k=1}^n Z_k$ allora la Legge Forte dei Grandi Numeri stabilita nel Corollario 2.2 assicura che

$$\lim_{n\to\infty} \bar{Z}_n = \mathbb{E}(Z_1) = x_0 \quad \text{q.c.}$$

Ora, poiché f è continua in x_0 , si ha anche

$$\lim_{n \to \infty} f(\bar{Z}_n) = f(x_0) \quad \text{q.c.}$$

Inoltre, essendo f continua sul compatto [0,1], è anche limitata, quindi usando la Proposizione 1.4 (parte (d)), $f(\bar{Z}_n)$ converge a $f(x_0)$ anche in L^1 , quindi in particolare

$$\lim_{n \to \infty} \mathbb{E}(f(\bar{Z}_n)) = \mathbb{E}(f(x_0)) = f(x_0).$$

Mostriamo infine che $\mathbb{E}(f(\bar{Z}_n)) = P_n(x_0)$. Infatti, detta $V_n = \sum_{k=0}^n Z_k \text{ con } Z_1, \dots, Z_n$ i.i.d. bernoulliane di parametro x_0 , allora $V_n \sim \text{Bi}(n, x_0)$:

$$\mathbb{P}(V_n = k) = \binom{n}{k} x_0^k (1 - x_0)^{n-k} \qquad k = 0, 1, \dots, n$$

quindi

$$\mathbb{E}(f(\bar{Z}_n)) = \mathbb{E}\Big(f\Big(\frac{V_n}{n}\Big)\Big) = \sum_{k=0}^n f\Big(\frac{k}{n}\Big) \mathbb{P}(V_n = k) = \sum_{k=0}^n f\Big(\frac{k}{n}\Big) \binom{n}{k} x_0^k (1 - x_0)^{n-k} = P_n(x_0)$$

e la tesi è dimostrata.

La proposizione precedente garantisce che il polinomio P_n converge a f puntualmente. Dimostriamo ora che la convergenza è uniforme, come stabilito dal Teorema di Weierstrass.

Dimostrazione del Teorema 3.1. Presa $f \in C([0,1])$, sia $\{P_n\}_n$ la successione di polinomi definita tramite (5) e dimostriamo che vale la (4).

Nel corso della dimostrazione della Proposizione 3.2 abbiamo visto che

$$|P_n(x) - f(x)| = |\mathbb{E}(f(\bar{Z}_n^x)) - f(x)|$$

dove con \bar{Z}_n^x indichiamo la v.a. costruita precedentemente, a partire da v.a. Z_1^x, \ldots, Z_n^x i.i.d. bernoulliane di parametro $x \in [0, 1]$. Quindi,

$$|P_n(x) - f(x)| \leq \mathbb{E}(|f(\bar{Z}_n^x) - f(x)|) = \mathbb{E}(|f(\bar{Z}_n^x) - f(x)| \, 1\!\!1_{|\bar{Z}_n^x - x| < \delta}) + \mathbb{E}(|f(\bar{Z}_n^x) - f(x)| \, 1\!\!1_{|\bar{Z}_n^x - x| \ge \delta})$$

dove δ denota una costante positiva. Posto $\alpha_n(x;\delta) = \mathbb{E}(|f(\bar{Z}_n^x) - f(x)| \, \mathbbm{1}_{|\bar{Z}_n^x - x| < \delta})$ e $\beta_n(x;\delta) = \mathbb{E}(|f(\bar{Z}_n^x) - f(x)| \, \mathbbm{1}_{|\bar{Z}_n^x - x| \geq \delta})$, possiamo scrivere

$$|P_n(x) - f(x)| \le \alpha_n(x;\delta) + \beta_n(x;\delta)$$

Studiamo le quantità α_n e β_n . Poiché f è continua su [0,1], è anche uniformemente continua: preso un arbitrario $\varepsilon > 0$ esiste un δ^* tale che

$$\sup_{z,y \,:\, |z-y| < \delta^*} |f(z) - f(y)| < \varepsilon.$$

Scelto $\delta=\delta^*$, per ogni ω e x tali che $|\bar{Z}_n^x(\omega)-x|<\delta^*$ si ha che $|f(\bar{Z}_n^x)-f(x)|<\varepsilon$, quindi

$$\sup_{x\in[0,1]}|f(\bar{Z}_n^x)-f(x)|\,1\!\!1_{|\bar{Z}_n^x-x|<\delta^*}<\varepsilon$$

e

$$\sup_{x \in [0,1]} \alpha_n(x; \delta^*) \le \varepsilon.$$

Possiamo allora scrivere

$$\sup_{x \in [0,1]} |P_n(x) - f(x)| \le \sup_{x \in [0,1]} \alpha_n(x; \delta^*) + \sup_{x \in [0,1]} \beta_n(x; \delta^*) \le \varepsilon + \sup_{x \in [0,1]} \beta_n(x; \delta^*). \tag{6}$$

Ora, f è limitata, e sia M tale che $|f(x)| \leq M$ per ognix. Quindi $|f(\bar{Z}_n^x) - f(x)| \leq 2M$ e

$$\begin{split} \beta_n(x;\delta^*) &= \mathbb{E}(|f(\bar{Z}_n^x) - f(x)| \ 1\!\!1_{|\bar{Z}_n^x - x| \ge \delta^*}) \\ &\leq 2M \mathbb{E}(1\!\!1_{|\bar{Z}_n^x - x| \ge \delta^*}) = 2M \mathbb{P}(|\bar{Z}_n^x - x| \ge \delta^*) \le 2M \frac{\operatorname{Var}(\bar{Z}_n^x)}{\delta^{*2}} \end{split}$$

dove si è usata la disuguaglianza di Chebycev. Ma⁷

$$\operatorname{Var}(\bar{Z}_{n}^{x}) = \operatorname{Var}\left(\frac{1}{n}\sum_{k=1}^{n}Z_{k}^{x}\right) = \frac{1}{n^{2}}n x(1-x)$$

e poiché $x(1-x) \leq 1/4$ per ogni $x \in [0,1],$ si ha

$$\sup_{x \in [0,1]} \beta_n(x; \delta^*) \le \frac{M}{2n\delta^{*2}}.$$

Da (6) segue che

$$\sup_{x \in [0,1]} |P_n(x) - f(x)| \le \varepsilon + \frac{M}{2n\delta^{*2}}.$$

Passando al limite per $n \to \infty$, si ottiene

$$\lim_{n\to\infty}\sup_{x\in[0,1]}|P_n(x)-f(x)|\leq\varepsilon$$

e data l'arbitrarietà di ε , si può concludere che

$$\lim_{n\to\infty}\sup_{x\in[0,1]}|P_n(x)-f(x)|=0,$$

da cui la tesi.

⁷Ricordiamo che se $Z \sim \text{Be}(p), \overline{\text{Var}(Z) = p(1-p)}.$