Lavoro Guidato N3 di AM2

Esercizio1

Determinare il raggio di convergenza delle seguenti serie di potenze

$$\sum_{n=1}^{+\infty} n! x^n \qquad \sum_{n=1}^{+\infty} \frac{n!}{n^n} x^n \qquad \sum_{n=1}^{+\infty} |1 + i^n|^n x^n$$

Esercizio2

Siano $f_n \in C([a, b])$. Provare che

$$f_n \to f$$
 uniformemente in $[a, b]$ \Rightarrow $($ $x_n \to x \Rightarrow f_n(x_n) \to f(x))$

Esercizio3

Siano $f_n \in C([a,b])$ tali che $f_n(x) \to_{n\to+\infty} f(x), |f_n(x)| \leq g(x) \, \forall n, x, \text{ con}$

$$\int_0^{+\infty} g(x)dx < +\infty$$

Supponiamo che $\forall \epsilon$ esistono intervalli disgiunti $I_j^{\epsilon}, j = 1, \dots, n_{\epsilon}$, tali che

$$\sum_{j=1}^{n_{\epsilon}} l(I_j^{\epsilon}) \le \epsilon$$

$$\sup_{x \notin \bigcup_{j=1}^{n_{\epsilon}} I_{j}^{\epsilon}} |f_{n} - f|(x) \to_{n \to +\infty} 0$$

Allora

$$\int_0^{+\infty} f_n(x)dx \to \int_0^{+\infty} f(x)dx$$

Esercizio4

Sia $f:[x_1,+\infty) \to \mathbf{R}$ continua e sia $x_1 < x_2 < \dots < x_n < \dots$ la successione degli zeri di f.

Supponiamo che la successione $x_n \uparrow +\infty$ e che valga

$$f(x) > 0 \text{ in } (x_1, x_2)$$

 $f(x) < 0 \text{ in } (x_2, x_3)$

.

$$f(x) > 0 \text{ in } (x_{2n-1}, x_{2n}) \forall n$$

 $f(x) < 0 \text{ in } (x_{2n}, x_{2n+1}) \forall n$

Posto $a_n = \int_{x_n}^{x_{n+1}} |f(x)| dx$, provare che

 $a_{n+1} < a_n \, \forall \, n \implies f$ è integrabile in senso improprio in $[x_1, +\infty)$

Sugg. Usare il criterio di Leibniz per serie a segni alterni.

Esercizio5

dedurre dall'esercizio precedente che, se $g \in C((0, +\infty))$ è una funzione positiva tale che $f(x) \downarrow_{x \to +\infty} 0$, allora la funzione $g(x) \sin x$ è integrabile in senso improprio in $[\pi, +\infty)$.

Sugg. Trasformare $\int_{n\pi}^{(n+1)\pi} g(x) \sin x dx$ mediante il cambio di variabile $x = t - \pi$.