UNIVERSITÀ DEGLI STUDI ROMA TRE

Corso di Laurea Triennale in Matematica a.a. 2001/2002

$\begin{array}{c} AL1 \text{ - Algebra 1, fondamenti} \\ Appello \ X \end{array}$

11 aprile 2002

$Cognome____$	Nome
Numero di matricola	
Avvertenza: Svolgere ogni esercizio nello spazio assegnato, senza consegnare altri fogli e giustificando tutte le affermazioni fatte. Non è consentito l'uso di libri, appunti e calcolatrici.	
1. Risolvere il seguente sistema di cong	gruenze lineari:

 $\begin{cases} 8X \equiv 2 \pmod{11} \\ 6X \equiv 4 \pmod{8} \\ 3X \equiv 6 \pmod{9} \end{cases}$

e determinare la più piccola soluzione positiva.

- **2.** Siano a, b, x, y elementi di \mathbb{Z} tali che xa + yb = 1. Provare o fornire un controesempio per ciascuna delle seguenti proposizioni:
 - 1. MCD(xa, yb) = 1.
 - 2. MCD(xb, ya) = 1.
 - 3. MCD(xy, ab) = 1.

3. Nell'insieme $\mathbb{Z} \times \mathbb{Z}$ si consideri la seguente operazione:

$$(a,b) \star (c,d) = (ac,bc+d)$$

dove a, b, c, d sono numeri interi.

- 1. Stabilire se l'operazione \star gode delle proprietà:
 - (a) associativa;
 - (b) commutativa;
 - (c) esistenza di un elemento neutro.
- 2. Stabilire se $(\mathbb{Z}\times\mathbb{Z},\star)$ è un gruppo.

- **4.** Se n è un numero intero positivo, sia d(n) il numero dei divisori positivi di n (inclusi 1 e n).
 - 1. Trovare d(4), d(5), d(6) e d(12).
 - 2. Dimostrare che se a e b sono numeri interi positivi tali che $\mathrm{MCD}(a,b) = 1$, allora

$$d(a)d(b) = d(ab).$$

- 3. Trovare $d(p^m)$ con p numero primo ed m numero intero positivo.
- 4. Trovare d(n) per ogni numero intero positivo n.
- 5. Provare che se f(X) è un polinomio monico di $\mathbb{Z}[X]$ e f(0)=m con $m\neq 0$, allora f(X) ha al più 2d(|m|) radici razionali.

- 5. Si considerino i seguenti anelli:
 - (a) $(\mathbb{Z}_{20}, +, \cdot)$,
 - (b) $(\mathbb{Z}_{13}, +, \cdot)$
 - (c) $(\mathbb{Z}_5[X], +, \cdot),$
 - (d) $(\mathbb{C}[X], +, \cdot),$
- (e) $(\mathcal{P}(S), \Delta, \cap)$ dove $S = \{1, 2, 3\}, \mathcal{P}(S)$ è l'insieme delle parti di S e Δ è la differenza simmetrica di sottoinsiemi di S.
 - 1. Stabilire quali di essi sono domini d'integrità e quali sono campi.
 - 2. Per ciascuno degli anelli assegnati che non sono domini d'integrità, determinare l'insieme degli zero-divisori.

- **6.** Decomporre i seguenti polinomi in fattori irriducibili in $\mathbb{Z}[X], \mathbb{Q}[X], \mathbb{R}[X], \mathbb{C}[X]$:
 - 1. $f(X) = X^4 + 81$
 - 2. $g(X) = X^5 X^4 2X^3 + 2X^2 3X + 3$.